Plagiarism of common code - sorting

I'm a student currently at Rutgers University. I've taken Data Structures before, now I've been assigned a program that must add/multiply polynomials w/ a singly linked list. It's really simple, now my issue is that I must use a sorting technique (not required by the assignment itself just a necessary thing in order to complete it) and I chose to use merge sort as it's the most efficient (and simplest if written properly).
I can re-write it using iteration and write the getMiddleNode method by iterating twice and just using a counter, but I don't see how that would help improve my code at all. I honestly believe this is the best implementation that anyone could write without being allowed the usage of imports.
[CODE]
/**
* Sorts the polynomial in order of degree from the <strong>highest to the lowest</strong> respectively.
* <br><br><strong>Note</strong>:<br>Utilizes merge sort technique.
*
* #param p The polynomial to be resorted.
* #return The front of the node.
*/
private void sort() {
if (poly == null)
return;
poly = sort(poly);
}
/**
* Recursively splits a node into two parts, left and right. It continues this process until
* the nodes are paired in two parts and then merges them in descending order.
*
* #param node The node to be split into left and right parts.
* #return The sorted node.
*/
private static Node sort(Node node) {
// If the linked list is empty or only has one element it is already sorted.
if (node == null || node.next == null)
return node;
// Find the middle of the linked list.
Node middle = getMiddle(node), middleNext = middle.next;
// Split the node in half.
middle.next = null;
// Merge the left and right half.
return merge(sort(node), sort(middleNext));
}
/**
* Compares the left and right side of each half.
*
* #param left
* #param right
* #return
*/
private static Node merge(Node left, Node right) {
if (left == null)
return right;
else if (right == null)
return left;
System.out.println(left.term +", "+right.term);
if (left.term.degree < right.term.degree) {
left.next = merge(left.next, right);
return left;
} else {
right.next = merge(left, right.next);
return right;
}
}
/**
* Iterates the linked list until the middle node is found.
*
* #param node The node to be iterated.
* #return The middle node of the linked list.
*/
private static Node getMiddle(Node node) {
if (node == null)
return null;
Node slow, fast;
slow = fast = node;
// Iterate two nodes concurrently
while (fast.next != null && fast.next.next != null) {
// Faster node reaches the end of the linked list two times faster than the slower node.
// Eliminates the need for a counter and re-iterating.
slow = slow.next;
fast = fast.next.next;
}
return slow;
}
[/CODE]
This is the code that I've basically been taught in my previous data structure class. I wrote it in my notes a long time ago and used it in my program. My question is would my university consider this plagiarism. I did not think of the code whatsoever, I only wrote down documentation showing I understand how the code itself works.

Related

Linked List in Binary Tree

I'm trying to solve : https://leetcode.com/contest/weekly-contest-178/problems/linked-list-in-binary-tree/
I have the following solution :
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
boolean ans;
ListNode originalHead;
public boolean isSubPath(ListNode head, TreeNode root) {
this.ans = false;
originalHead = head;
traverse(head, root);
return ans;
}
public void traverse(ListNode head, TreeNode root) {
if(head == null) {
ans = true;
return;
}
if(root == null) return;
if(!ans && root.val == head.val) traverse(head.next, root.right);
if(!ans && root.val == head.val) traverse(head.next, root.left);
if(!ans) traverse(originalHead, root.right);
if(!ans) traverse(originalHead, root.left);
}
}
I'm wondering if this solution has a time complexity of O(n^2) or not. I ask this since I'm encountering a Time Limit Exceeded error for one of the test cases in the test suite.
I do see other O(n^2) solutions passing though.
Appreciate any help.
Thank you!
If n is the number of vertices in the tree, then your algorithm's worst-case time complexity is in Θ(2n) rather than O(n2).
This worst case occurs when every non-leaf node of the tree has just one child, the linked list is longer than the tree is deep, and all of the nodes in the tree and the linked list all have the same value. When that happens, you end up making all of your recursive calls — your if-conditions are always met — so each time you call traverse on a node, you call traverse twice on its child node. So you call traverse once on the root node, twice on its child, four times on its grandchild, eight times on its great-grandchild, etc., which is Θ(2n) if there are n nodes.

How to validate if a B-tree is sorted

I just had this as an interview question and was wondering if anyone knows the answer?
Write a method that validates whether a B-tree is correctly sorted. You do NOT need to validate whether
the tree is balanced. Use the following model for a node in the B-tree.
It was to be done in Java and use this model:
class Node {
List<Integer> keys;
List<Node> children;
}
One (space-inefficient but simple) way to do this is to do a generalized inorder traversal of the B-tree to get back the keys in what should be sorted order, then to check whether that sequence actually is in sorted order. Here's some quick code for this:
public static boolean isSorted(Node root) {
ArrayList<Integer> values = new ArrayList<Integer>();
performInorderTraversal(root, values);
return isArraySorted(values);
}
private static void performInorderTraversal(Node root, ArrayList<Integer> result) {
/* An empty tree has no values. */
if (result == null) return;
/* Process the first tree here, then loop, processing the interleaved
* keys and trees.
*/
performInorderTraversal(root.children.get(0), result);
for (int i = 1; i < root.children.size(); i++) {
result.add(root.children.get(i - 1));
performInorderTraversal(root.children.get(i), result);
}
}
private static boolean isArraySorted(ArrayList<Integer> array) {
for (int i = 0; i < array.size() - 1; i++) {
if (array.get(i) >= array.get(i + 1)) return false;
}
return true;
}
This takes time O(n) and uses space O(n), where n is the number of elements in the B-tree. You can cut the space usage down to O(h), where h is the height of the B-tree, by not storing all the elements in the traversal and instead just tracking the very last one, stopping the search early if the next-encountered value is not larger than the previous one. I didn't do that here because it takes more code, but conceptually it's not too hard.
Hope this helps!

Merging 2 Binary Search Trees

How do you merge 2 Binary Search Trees in such a way that the resultant tree contains all the elements of both the trees and also maintains the BST property.
I saw the solution provided in
How to merge two BST's efficiently?
However that solution involves converting into a Double Linked List. I was wondering if there is a more elegant way of doing this which could be done in place without the conversion. I came up with the following pseudocode. Does it work for all cases? Also I am having trouble with the 3rd case.
node* merge(node* head1, node* head2) {
if (!head1)
return head2;
if (!head2)
return head1;
// Case 1.
if (head1->info > head2->info) {
node* temp = head2->right;
head2->right = NULL;
head1->left = merge(head1->left, head2);
head1 = merge(head1, temp);
return head1;
} else if (head1->info < head2->info) { // Case 2
// Similar to case 1.
} else { // Case 3
// ...
}
}
The two binary search trees (BST) cannot be merged directly during a recursive traversal.
Suppose we should merge Tree 1 and Tree 2 shown in the figure.
The recursion should reduce the merging to a simpler situation. We cannot reduce
the merging only to the respective left subtrees L1 and L2, because L2 can contain
numbers larger than 10, so we would need to include the right
subtree R1 into the process. But then we include numbers greater
than 10 and possibly greater than 20, so we would need to include
the right subtree R2 as well. A similar reasoning shows that
we cannot simplify the merging by including subtrees from Tree 1 and from Tree 2
at the same time.
The only possibility for reduction is to simplify only inside the respective trees.
So, we can transform
the trees to their right spines with sorted nodes:
Now, we can merge the two spines easily into one spine. This
spine is in fact a BST, so we could stop here. However, this BST
is completely unbalanced, so we transform it to a balanced BST.
The complexity is:
Spine 1: time = O(n1), space = O(1)
Spine 2: time = O(n2), space = O(1)
Merge: time = O(n1+n2), space = O(1)
Balance: time = O(n1+n2), space = O(1)
Total: time = O(n1+n2), space = O(1)
The complete running code is on http://ideone.com/RGBFQ. Here are the essential parts. The top level code is a follows:
Node* merge(Node* n1, Node* n2) {
Node *prev, *head1, *head2;
prev = head1 = 0; spine(n1, prev, head1);
prev = head2 = 0; spine(n2, prev, head2);
return balance(mergeSpines(head1, head2));
}
The auxiliary functions are for the tranformation to spines:
void spine(Node *p, Node *& prev, Node *& head) {
if (!p) return;
spine(p->left, prev, head);
if (prev) prev->right = p;
else head = p;
prev = p;
p->left = 0;
spine(p->right, prev, head);
}
Merging of the spines:
void advance(Node*& last, Node*& n) {
last->right = n;
last = n;
n = n->right;
}
Node* mergeSpines(Node* n1, Node* n2) {
Node head;
Node* last = &head;
while (n1 || n2) {
if (!n1) advance(last, n2);
else if (!n2) advance(last, n1);
else if (n1->info < n2->info) advance(last, n1);
else if (n1->info > n2->info) advance(last, n2);
else {
advance(last, n1);
printf("Duplicate key skipped %d \n", n2->info);
n2 = n2->right;
}
}
return head.right;
}
Balancing:
Node* balance(Node *& list, int start, int end) {
if (start > end) return NULL;
int mid = start + (end - start) / 2;
Node *leftChild = balance(list, start, mid-1);
Node *parent = list;
parent->left = leftChild;
list = list->right;
parent->right = balance(list, mid+1, end);
return parent;
}
Node* balance(Node *head) {
int size = 0;
for (Node* n = head; n; n = n->right) ++size;
return balance(head, 0, size-1);
}
Assuming we have two trees A and B we insert root of tree A into tree B and using rotations move inserted root to become new root of tree B. Next we recursively merge left and right sub-trees of trees A and B. This algorithm takes into account both trees structure but insertion still depends on how balanced target tree is. You can use this idea to merge the two trees in O(n+m) time and O(1) space.
The following implementation is due to Dzmitry Huba:
// Converts tree to sorted singly linked list and appends it
// to the head of the existing list and returns new head.
// Left pointers are used as next pointer to form singly
// linked list thus basically forming degenerate tree of
// single left oriented branch. Head of the list points
// to the node with greatest element.
static TreeNode<T> ToSortedList<T>(TreeNode<T> tree, TreeNode<T> head)
{
if (tree == null)
// Nothing to convert and append
return head;
// Do conversion using in order traversal
// Convert first left sub-tree and append it to
// existing list
head = ToSortedList(tree.Left, head);
// Append root to the list and use it as new head
tree.Left = head;
// Convert right sub-tree and append it to list
// already containing left sub-tree and root
return ToSortedList(tree.Right, tree);
}
// Merges two sorted singly linked lists into one and
// calculates the size of merged list. Merged list uses
// right pointers to form singly linked list thus forming
// degenerate tree of single right oriented branch.
// Head points to the node with smallest element.
static TreeNode<T> MergeAsSortedLists<T>(TreeNode<T> left, TreeNode<T> right, IComparer<T> comparer, out int size)
{
TreeNode<T> head = null;
size = 0;
// See merge phase of merge sort for linked lists
// with the only difference in that this implementations
// reverts the list during merge
while (left != null || right != null)
{
TreeNode<T> next;
if (left == null)
next = DetachAndAdvance(ref right);
else if (right == null)
next = DetachAndAdvance(ref left);
else
next = comparer.Compare(left.Value, right.Value) > 0
? DetachAndAdvance(ref left)
: DetachAndAdvance(ref right);
next.Right = head;
head = next;
size++;
}
return head;
}
static TreeNode<T> DetachAndAdvance<T>(ref TreeNode<T> node)
{
var tmp = node;
node = node.Left;
tmp.Left = null;
return tmp;
}
// Converts singly linked list into binary search tree
// advancing list head to next unused list node and
// returning created tree root
static TreeNode<T> ToBinarySearchTree<T>(ref TreeNode<T> head, int size)
{
if (size == 0)
// Zero sized list converts to null
return null;
TreeNode<T> root;
if (size == 1)
{
// Unit sized list converts to a node with
// left and right pointers set to null
root = head;
// Advance head to next node in list
head = head.Right;
// Left pointers were so only right needs to
// be nullified
root.Right = null;
return root;
}
var leftSize = size / 2;
var rightSize = size - leftSize - 1;
// Create left substree out of half of list nodes
var leftRoot = ToBinarySearchTree(ref head, leftSize);
// List head now points to the root of the subtree
// being created
root = head;
// Advance list head and the rest of the list will
// be used to create right subtree
head = head.Right;
// Link left subtree to the root
root.Left = leftRoot;
// Create right subtree and link it to the root
root.Right = ToBinarySearchTree(ref head, rightSize);
return root;
}
public static TreeNode<T> Merge<T>(TreeNode<T> left, TreeNode<T> right, IComparer<T> comparer)
{
Contract.Requires(comparer != null);
if (left == null || right == null)
return left ?? right;
// Convert both trees to sorted lists using original tree nodes
var leftList = ToSortedList(left, null);
var rightList = ToSortedList(right, null);
int size;
// Merge sorted lists and calculate merged list size
var list = MergeAsSortedLists(leftList, rightList, comparer, out size);
// Convert sorted list into optimal binary search tree
return ToBinarySearchTree(ref list, size);
}
The best way we could merge the trees in place is something like:
For each node n in first BST {
Go down the 2nd tree and find the appropriate place to insert n
Insert n there
}
Each iteration in the for loop is O(log n) since we are dealing with trees, and the for loop will be iterated n times, so in total we have O(n log n).
A BST is a ordered or sorted binary tree. My algorithm would be to simple :
traverse through both trees
compare the values
insert the smaller of the two into a new BST.
The python code for traversing is as follows:
def traverse_binary_tree(node, callback):
if node is None:
return
traverse_binary_tree(node.leftChild, callback)
callback(node.value)
traverse_binary_tree(node.rightChild, callback)
The cost for traversing through the BST and building a new merged BST would remain O(n)
This blog post provides a solution to the problem with O(logn) space complexity. (Pay attention that the given approach does not modify input trees.)
This can be done in 3 steps:
covert the BSTs to sorted linked list (this can be done in place with O(m+n) time)
Merge this two sorted linked lists to a single list (this can be done in place with O(m+n) time)
Convert sorted linked list to balanced BST (this can be done in place with O(m+n) time)
Here is what I would do.
This solution is O(n1+n2) time complexity.
STEPS:
Perform the inorder traversal of both the trees to get sorted arrays --> linear time
Merge the two arrays --> again linear time
Convert the merged array into a Balanced binary search tree --> again linear time
This would require O(n1+n2) time and space.
Links you may find useful while implementing:
How to merge 2 sorted arrays
Inorder traversal
Sorted array to a balanced BST
The following algorithm is from Algorithms in C++.
The idea is almost the same as in the algorithm posted by PengOne. This algorithm does in place merging, time complexity is O(n+m).
link join(link a, link b) {
if (b == 0) return a;
if (a == 0) return b;
insert(b, a->item);
b->left = join(a->left, b->left);
b->right = join(a->right, b->right);
delete a;
return b;
}
insert just inserts an item in the right place in the tree.
void insert(link &h, Item x) {
if (h == 0) {
h = new node(x);
return;
}
if (x.key() < h->item.key()) {
insert(h->left, x);
rotateRight(h);
}
else {
insert(h->right, x);
rotateLeft(h);
}
}
rotateRight and rotateLeft keep tree in the right order.
void rotateRight(link &h) {
link x = h->left;
h->left = x->right;
x->right = h;
h = x;
}
void rotateLeft(link &h) {
link x = h->right;
h->right = x->left;
x->left = h;
h = x;
}
Here link is node *.
Assuming the question is just to print sorted from both BSTs. Then the easier way is,
Store inorder traversal of 2 BSTs in 2 seperate arrays.
Now the problem reduces to merging\printing elements from 2 sorted arrays, which we got from step one. This merging can be done in o(m) when m>n or o(n) when m
Complexity: o(m+n)
Aux space: o(m+n) for the 2 arrays
MergeTwoBST_to_BalancedBST.java
public class MergeTwoBST_to_BalancedBST {
// arr1 and arr2 are the input arrays to be converted into a binary search
// structure and then merged and then balanced.
int[] arr1 = new int[] { 1, 2, 3, 4, 5, 6, 7, 8 };
int[] arr2 = new int[] { 11, 12, 13, 14, 15, 16, 17, 18 };
BSTNode root1;
BSTNode root2;
// vector object to hold the nodes from the merged unbalanced binary search
// tree.
Vector<BSTNode> vNodes = new Vector<BSTNode>();
/**
* Constructor to initialize the Binary Search Tree root nodes to start
* processing. This constructor creates two trees from two given sorted
* array inputs. root1 tree from arr1 and root2 tree from arr2.
*
* Once we are done with creating the tree, we are traversing the tree in
* inorder format, to verify whether nodes are inserted properly or not. An
* inorder traversal should give us the nodes in a sorted order.
*/
public MergeTwoBST_to_BalancedBST() {
// passing 0 as the startIndex and arr1.length-1 as the endIndex.
root1 = getBSTFromSortedArray(arr1, 0, arr1.length - 1);
System.out.println("\nPrinting the first binary search tree");
inorder(root1); // traverse the tree in inorder format to verify whether
// nodes are inserted correctly or not.
// passing 0 as the startIndex and arr2.length-1 as the endIndex.
root2 = getBSTFromSortedArray(arr2, 0, arr2.length - 1);
System.out.println("\nPrinting the second binary search tree");
inorder(root2); // same here - checking whether the nodes are inserted
// properly or not.
}
/**
* Method to traverse the tree in inorder format. Where it traverses the
* left child first, then root and then right child.
*
* #param node
*/
public void inorder(BSTNode node) {
if (null != node) {
inorder(node.getLeft());
System.out.print(node.getData() + " ");
inorder(node.getRight());
}
}
/**
* Method to traverse the tree in preorder format. Where it traverses the
* root node first, then left child and then right child.
*
* #param node
*/
public void preorder(BSTNode node) {
if (null != node) {
System.out.print(node.getData() + " ");
preorder(node.getLeft());
preorder(node.getRight());
}
}
/**
* Creating a new Binary Search Tree object from a sorted array and
* returning the root of the newly created node for further processing.
*
* #param arr
* #param startIndex
* #param endIndex
* #return
*/
public BSTNode getBSTFromSortedArray(int[] arr, int startIndex, int endIndex) {
if (startIndex > endIndex) {
return null;
}
int middleIndex = startIndex + (endIndex - startIndex) / 2;
BSTNode node = new BSTNode(arr[middleIndex]);
node.setLeft(getBSTFromSortedArray(arr, startIndex, middleIndex - 1));
node.setRight(getBSTFromSortedArray(arr, middleIndex + 1, endIndex));
return node;
}
/**
* This method involves two operation. First - it adds the nodes from root1
* tree to root2 tree, and hence we get a merged root2 tree.Second - it
* balances the merged root2 tree with the help of a vector object which can
* contain objects only of BSTNode type.
*/
public void mergeTwoBinarySearchTree() {
// First operation - merging the trees. root1 with root2 merging should
// give us a new root2 tree.
addUtil(root1);
System.out.println("\nAfter the root1 tree nodes are added to root2");
System.out.println("Inorder Traversal of root2 nodes");
inorder(root2); // inorder traversal of the root2 tree should display
// the nodes in a sorted order.
System.out.println("\nPreorder traversal of root2 nodes");
preorder(root2);
// Second operation - this will take care of balancing the merged binary
// search trees.
balancedTheMergedBST();
}
/**
* Here we are doing two operations. First operation involves, adding nodes
* from root2 tree to the vector object. Second operation involves, creating
* the Balanced binary search tree from the vector objects.
*/
public void balancedTheMergedBST() {
// First operation : adding nodes to the vector object
addNodesToVector(root2, vNodes);
int vSize = vNodes.size();
// Second operation : getting a balanced binary search tree
BSTNode node = getBalancedBSTFromVector(vNodes, 0, vSize - 1);
System.out
.println("\n********************************************************");
System.out.println("After balancing the merged trees");
System.out.println("\nInorder Traversal of nodes");
inorder(node); // traversing the tree in inoder process should give us
// the output in sorted order ascending
System.out.println("\nPreorder traversal of root2 nodes");
preorder(node);
}
/**
* This method will provide us a Balanced Binary Search Tree. Elements of
* the root2 tree has been added to the vector object. It is parsed
* recursively to create a balanced tree.
*
* #param vNodes
* #param startIndex
* #param endIndex
* #return
*/
public BSTNode getBalancedBSTFromVector(Vector<BSTNode> vNodes,
int startIndex, int endIndex) {
if (startIndex > endIndex) {
return null;
}
int middleIndex = startIndex + (endIndex - startIndex) / 2;
BSTNode node = vNodes.get(middleIndex);
node.setLeft(getBalancedBSTFromVector(vNodes, startIndex,
middleIndex - 1));
node.setRight(getBalancedBSTFromVector(vNodes, middleIndex + 1,
endIndex));
return node;
}
/**
* This method traverse the tree in inorder process and adds each node from
* root2 to the vector object vNodes object only accepts objects of BSTNode
* type.
*
* #param node
* #param vNodes
*/
public void addNodesToVector(BSTNode node, Vector<BSTNode> vNodes) {
if (null != node) {
addNodesToVector(node.getLeft(), vNodes);
// here we are adding the node in the vector object.
vNodes.add(node);
addNodesToVector(node.getRight(), vNodes);
}
}
/**
* This method traverse the root1 tree in inorder process and add the nodes
* in the root2 tree based on their value
*
* #param node
*/
public void addUtil(BSTNode node) {
if (null != node) {
addUtil(node.getLeft());
mergeToSecondTree(root2, node.getData());
addUtil(node.getRight());
}
}
/**
* This method adds the nodes found from root1 tree as part it's inorder
* traversal and add it to the second tree.
*
* This method follows simple Binary Search Tree inserstion logic to insert
* a node considering the tree already exists.
*
* #param node
* #param data
* #return
*/
public BSTNode mergeToSecondTree(BSTNode node, int data) {
if (null == node) {
node = new BSTNode(data);
} else {
if (data < node.getData()) {
node.setLeft(mergeToSecondTree(node.getLeft(), data));
} else if (data > node.getData()) {
node.setRight(mergeToSecondTree(node.getRight(), data));
}
}
return node;
}
/**
*
* #param args
*/
public static void main(String[] args) {
MergeTwoBST_to_BalancedBST mergeTwoBST = new MergeTwoBST_to_BalancedBST();
mergeTwoBST.mergeTwoBinarySearchTree();
}
}
BSTNode.java:
public class BSTNode {
BSTNode left, right;
int data;
/* Default constructor */
public BSTNode() {
left = null;
right = null;
data = 0;
}
/* Constructor */
public BSTNode(int data) {
left = null;
right = null;
this.data = data;
}
public BSTNode getLeft() {
return left;
}
public void setLeft(BSTNode left) {
this.left = left;
}
public BSTNode getRight() {
return right;
}
public void setRight(BSTNode right) {
this.right = right;
}
public int getData() {
return data;
}
public void setData(int data) {
this.data = data;
}
}

Binary tree level order traversal

Three types of tree traversals are inorder, preorder, and post order.
A fourth, less often used, traversal is level-order traversal. In a
level-order traveresal, all nodes at depth "d" are processed before
any node at depth d + 1. Level-order traversal differs from the other
traversals in that it is not done recursively; a queue is used,
instead of the implied stack of recursion.
My questions on above text snippet are
Why level order traversals are not done recursively?
How queue is used in level order traversal? Request clarification with Pseudo code will be helpful.
Thanks!
Level order traversal is actually a BFS, which is not recursive by nature. It uses Queue instead of Stack to hold the next vertices that should be opened. The reason for it is in this traversal, you want to open the nodes in a FIFO order, instead of a LIFO order, obtained by recursion
as I mentioned, the level order is actually a BFS, and its [BFS] pseudo code [taken from wikipedia] is:
1 procedure BFS(Graph,source):
2 create a queue Q
3 enqueue source onto Q
4 mark source
5 while Q is not empty:
6 dequeue an item from Q into v
7 for each edge e incident on v in Graph:
8 let w be the other end of e
9 if w is not marked:
10 mark w
11 enqueue w onto Q
(*) in a tree, marking the vertices is not needed, since you cannot get to the same node in 2 different paths.
void levelorder(Node *n)
{ queue < Node * >q;
q.push(n);
while(!q.empty())
{
Node *node = q.front();
cout<<node->value;
q.pop();
if(node->left != NULL)
q.push(node->left);
if (node->right != NULL)
q.push(node->right);
}
}
Instead of a queue, I used a map to solve this. Take a look, if you are interested. As I do a postorder traversal, I maintain the depth at which each node is positioned and use this depth as the key in a map to collect values in the same level
class Solution {
public:
map<int, vector<int> > levelValues;
void recursivePrint(TreeNode *root, int depth){
if(root == NULL)
return;
if(levelValues.count(root->val) == 0)
levelValues.insert(make_pair(depth, vector<int>()));
levelValues[depth].push_back(root->val);
recursivePrint(root->left, depth+1);
recursivePrint(root->right, depth+1);
}
vector<vector<int> > levelOrder(TreeNode *root) {
recursivePrint(root, 1);
vector<vector<int> > result;
for(map<int,vector<int> >::iterator it = levelValues.begin(); it!= levelValues.end(); ++it){
result.push_back(it->second);
}
return result;
}
};
The entire solution can be found here - http://ideone.com/zFMGKU
The solution returns a vector of vectors with each inner vector containing the elements in the tree in the correct order.
you can try solving it here - https://oj.leetcode.com/problems/binary-tree-level-order-traversal/
And, as you can see, we can also do this recursively in the same time and space complexity as the queue solution!
My questions on above text snippet are
Why level order traversals are not done recursively?
How queue is used in level order traversal? Request clarification with Pseudo code will be helpful.
I think it'd actually be easier to start with the second question. Once you understand the answer to the second question, you'll be better prepared to understand the answer to the first.
How level order traversal works
I think the best way to understand how level order traversal works is to go through the execution step by step, so let's do that.
We have a tree.
We want to traverse it level by level.
So, the order that we'd visit the nodes would be A B C D E F G.
To do this, we use a queue. Remember, queues are first in, first out (FIFO). I like to imagine that the nodes are waiting in line to be processed by an attendant.
Let's start by putting the first node A into the queue.
Ok. Buckle up. The setup is over. We're about to start diving in.
The first step is to take A out of the queue so it can be processed. But wait! Before we do so, let's put A's children, B and C, into the queue also.
Note: A isn't actually in the queue anymore at this point. I grayed it out to try to communicate this. If I removed it completely from the diagram, it'd make it harder to visualize what's happening later on in the story.
Note: A is being processed by the attendant at the desk in the diagram. In real life, processing a node can mean a lot of things. Using it to compute a sum, send an SMS, log to the console, etc, etc. Going off the metaphor in my diagram, you can tell the attendant how you want them to process the node.
Now we move on to the node that is next in line. In this case, B.
We do the same thing that we did with A: 1) add the children to the line, and 2) process the node.
Hey, check it out! It looks like what we're doing here is going to get us that level order traversal that we were looking for! Let's prove this to ourselves by continuing the step through.
Once we finish with B, C is next in line. We place C's children at the back of the line, and then process C.
Now let's see what happens next. D is next in line. D doesn't have any children, so we don't place anything at the back of the line. We just process D.
And then it's the same thing for E, F, and G.
Why it's not done recursively
Imagine what would happen if we used a stack instead of a queue. Let's rewind to the point where we had just visited A.
Here's how it'd look if we were using a stack.
Now, instead of going "in order", this new attendant likes to serve the most recent clients first, not the ones who have been waiting the longest. So C is who is up next, not B.
Here's where the key point is. Where the stack starts to cause a different processing order than we had with the queue.
Like before, we add C's children and then process C. We're just adding them to a stack instead of a queue this time.
Now, what's next? This new attendant likes to serve the most recent clients first (ie. we're using a stack), so G is up next.
I'll stop the execution here. The point is that something as simple as replacing the queue with a stack actually gives us a totally different execution order. I'd encourage you to finish the step through though.
You might be thinking: "Ok... but the question asked about recursion. What does this have to do with recursion?" Well, when you use recursion, something sneaky is going on. You never did anything with a stack data structure like s = new Stack(). However, the runtime uses the call stack. This ends up being conceptually similar to what I did above, and thus doesn't give us that A B C D E F G ordering we were looking for from level order traversal.
https://github.com/arun2pratap/data-structure/blob/master/src/main/java/com/ds/tree/binarytree/BinaryTree.java
for complete can look out for the above link.
public void levelOrderTreeTraversal(List<Node<T>> nodes){
if(nodes == null || nodes.isEmpty()){
return;
}
List<Node<T>> levelNodes = new ArrayList<>();
nodes.stream().forEach(node -> {
if(node != null) {
System.out.print(" " + node.value);
levelNodes.add(node.left);
levelNodes.add(node.right);
}
});
System.out.println("");
levelOrderTreeTraversal(levelNodes);
}
Also can check out
http://www.geeksforgeeks.org/
here you will find Almost all Data Structure related answers.
Level order traversal implemented by queue
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
def levelOrder(root: TreeNode) -> List[List[int]]:
res = [] # store the node value
queue = [root]
while queue:
node = queue.pop()
# visit the node
res.append(node.val)
if node.left:
queue.insert(0, node.left)
if node.right:
queue.insert(0, node.right)
return res
Recursive implementation is also possible. However, it needs to know the max depth of the root in advance.
def levelOrder(root: TreeNode) -> List[int]:
res = []
max_depth = maxDepth(root)
for i in range(max_depth):
# level start from 0 to max_depth-1
visitLevel(root, i, action)
return res
def visitLevel(root:TreeNode, level:int, res: List):
if not root:
return
if level==0:
res.append(node.val)
else:
self.visitLevel(root.left, level-1, res)
self.visitLevel(root.right, level-1, res)
def maxDepth(root: TreeNode) -> int:
if not root:
return 0
if not root.left and not root.right:
return 1
return max([ maxDepth(root.left), maxDepth(root.right)]) + 1
For your point 1) we can use Java below code for level order traversal in recursive order, we have not used any library function for tree, all are user defined tree and tree specific functions -
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
boolean isLeaf() { return left == null ? right == null : false; }
}
public class BinaryTree {
Node root;
Queue<Node> nodeQueue = new ConcurrentLinkedDeque<>();
public BinaryTree() {
root = null;
}
public static void main(String args[]) {
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(5);
tree.root.right.left = new Node(6);
tree.root.right.right = new Node(7);
tree.root.right.left.left = new Node(8);
tree.root.right.left.right = new Node(9);
tree.printLevelOrder();
}
/*Level order traversal*/
void printLevelOrder() {
int h = height(root);
int i;
for (i = 1; i <= h; i++)
printGivenLevel(root, i);
System.out.println("\n");
}
void printGivenLevel(Node root, int level) {
if (root == null)
return;
if (level == 1)
System.out.print(root.data + " ");
else if (level > 1) {
printGivenLevel(root.left, level - 1);
printGivenLevel(root.right, level - 1);
}
}
/*Height of Binary tree*/
int height(Node root) {
if (root == null)
return 0;
else {
int lHeight = height(root.left);
int rHeight = height(root.right);
if (lHeight > rHeight)
return (lHeight + 1);
else return (rHeight + 1);
}
}
}
For your point 2) If you want to use non recursive function then you can use queue as below function-
public void levelOrder_traversal_nrec(Node node){
System.out.println("Level order traversal !!! ");
if(node == null){
System.out.println("Tree is empty");
return;
}
nodeQueue.add(node);
while (!nodeQueue.isEmpty()){
node = nodeQueue.remove();
System.out.printf("%s ",node.data);
if(node.left !=null)
nodeQueue.add(node.left);
if (node.right !=null)
nodeQueue.add(node.right);
}
System.out.println("\n");
}
Recursive Solution in C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levels;
void helper(TreeNode* node,int level)
{
if(levels.size() == level) levels.push_back({});
levels[level].push_back(node->val);
if(node->left)
helper(node->left,level+1);
if(node->right)
helper(node->right,level+1);
}
vector<vector<int>> levelOrder(TreeNode* root) {
if(!root) return levels;
helper(root,0);
return levels;
}
};
We can use queue to solve this problem in less time complexity. Here is the solution of level order traversal suing Java.
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> levelOrderTraversal = new ArrayList<List<Integer>>();
List<Integer> currentLevel = new ArrayList<Integer>();
Queue<TreeNode> queue = new LinkedList<TreeNode>();
if(root != null)
{
queue.add(root);
queue.add(null);
}
while(!queue.isEmpty())
{
TreeNode queueRoot = queue.poll();
if(queueRoot != null)
{
currentLevel.add(queueRoot.val);
if(queueRoot.left != null)
{
queue.add(queueRoot.left);
}
if(queueRoot.right != null)
{
queue.add(queueRoot.right);
}
}
else
{
levelOrderTraversal.add(currentLevel);
if(!queue.isEmpty())
{
currentLevel = new ArrayList<Integer>();
queue.add(null);
}
}
}
return levelOrderTraversal;
}
}

Link Tree nodes at each level

Given a binary tree, how would you join the nodes at each level, left to right.
Say there are 5 nodes at level three, link all of them from left to right.
I don't need anybody to write code for this.. but just an efficient algorithm.
Thanks
Idea is:
1. Traverse tree with BFS.
2. When you do traversing, you're linking nodes on next level - if node has left and right node, you'll link left to right. If node has next node, then you link rightmost child of current node to leftmost child of next node.
public void BreadthFirstSearch(Action<Node> currentNodeAction)
{
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
while (q.Count != 0)
{
Node current = q.Dequeue();
if (currentNodeAction != null)
currentNodeAction(current);
if (current.left != null) q.Enqueue(current.left);
if (current.right != null) q.Enqueue(current.right);
}
}
private void Linker(Node node)
{
Link(node.left, node.right);
if (node.next != null)
Link(node.right ?? node.left, node.next.left ?? node.next.right);
}
private void Link(Node node1, Node node2)
{
if (node1 != null && node2 != null)
node1.next = node2;
}
public void LinkSameLevel()
{
BreadthFirstSearch(Linker);
}
Create a vector of linked lists.
Do a DFS keeping track of your level, and for each node you find, add it to the linked list of the level.
This will run in O(n) which is optimal.
Is this what you want to do?
This is not a direct answer to the question and may not be applicable based on your situation. But if you have control over the creation and maintenance of the binary tree, it would probably be more efficient to maintain the links while building/updating the tree.
If you kept both left and right pointers at each level, then it would be "simple" (always easy to say that word when someone else is doing the work) to maintain them. When inserting a new node at a given level, you know its direct siblings from the parent node information. You can adjust the left and right pointers for the three nodes involved (assuming not at the edge of the tree). Likewise, when removing a node, simply update the left and right pointers of the siblings of the node being removed. Change them to point to each other.
I agree with Thomas Ahle's answer if you want to make all of the row-lists at the same time. It seems that you are only interested in making the list for a one specific row.
Let's say you have a giant tree, but you only want to link the 5th row. There's clearly no point in accessing any node below the 5th row. So just do an early-terminated DFS. Unfortunately, you still have to run through all of the ancestors of every node in the list.
But here's the good news. If you have a perfect binary tree (where every single node branches exactly twice except for the last row) then the first row will have 1 one, the second 2, the third 4, the fourth 8 and the fifth 16. Thus there are more nodes on the last row (16) than all the previous put together (1 + 2 + 4 + 8 = 15), so searching through all of the ancestors is still just O(n), where n is the number of nodes in the row.
The worst case on the other hand would be to have the fifth row consist of a single node with a full binary tree above it. Then you still have to search through all 15 ancestors just to put that one node on the list.
So while this algorithm is really your only choice without modifying your data structure its efficiency relies entirely on how populated the row is compared to higher rows.
#include <queue>
struct Node {
Node *left;
Node *right;
Node *next;
};
/** Link all nodes of the same level in a binary tree. */
void link_level_nodes(Node *pRoot)
{
queue<Node*> q;
Node *prev; // Pointer to the revious node of the current level
Node *node;
int cnt; // Count of the nodes in the current level
int cntnext; // Count of the nodes in the next level
if(NULL == pRoot)
return;
q.push(pRoot);
cnt = 1;
cntnext = 0;
prev = NULL;
while (!q.empty()) {
node = q.front();
q.pop();
/* Add the left and the right nodes of the current node to the queue
and increment the counter of nodes at the next level.
*/
if (node->left){
q.push(node->left);
cntnext++;
}
if (node->right){
q.push(node->right);
cntnext++;
}
/* Link the previous node of the current level to this node */
if (prev)
prev->next = node;
/* Se the previous node to the current */
prev = node;
cnt--;
if (0 == cnt) { // if this is the last node of the current level
cnt = cntnext;
cntnext = 0;
prev = NULL;
}
}
}
What I usually do to solve this problem is that I do a simple inorder traversal.
I initialize my tree with a constructor that gives a level or column value to every node. Hence my head is at Level 0.
public Node(int d)
{
head=this;
data=d;
left=null;
right=null;
level=0;
}
Now, if in the traversal, I take a left or a right, I simply do the traversal with a level indicator. For each level identifier, I make a Linked List, possibly in a Vector of Nodes.
Different approaches can be used to solve this problem. Some of them that comes to mind are -
1) Using level order traversal or BFS.
We can modify queue entries to contain level of nodes.So queue node will contain a pointer to a tree node and an integer level. When we deque a node we can check the level of dequeued node if it is same we can set right pointer to point to it.
Time complexity for this method would be O(n).
2) If we have complete binary tree we can extend Pre-Order traversal. In this method we shall set right pointer of parent before the children.
Time complexity for this method would be O(n).
3) In case of incomplete binary tree we can modify method (2) by traversing first root then right pointer and then left so we can make sure that all nodes at level i have the right pointer set, before the level i+1 nodes.
Time complexity for this method would be O(n^2).
private class Node
{
public readonly Node Left;
public readonly Node Right;
public Node Link { get; private set; }
public void Run()
{
LinkNext = null;
}
private Node LinkNext
{
get
{
return Link == null ? null : (Link.Left ?? Link.Right ?? Link.LinkNext);
}
set
{
Link = value;
if (Right != null)
Right.LinkNext = LinkNext;
if (Left != null)
Left.LinkNext = Right ?? LinkNext;
}
}
}
Keep a depth array while breadth-first search.
vector<forward_list<index_t>> level_link(MAX_NODES);
index_t fringe_depth = 0;
static index_t depth[MAX_NODES];
memset(depth,0,sizeof(depth));
depth[0] = 0;
Now when the depth-changes while de-queuing, you get all linked !
explored[0] = true;
static deque<index_t> fringe;
fringe.clear();
fringe.push_back(0); // start bfs from node 0
while(!fringe.empty()) {
index_t xindex = fringe.front();
fringe.pop_front();
if(fringe_depth < depth[xindex]) {
// play with prev-level-data
fringe_depth = depth[xindex];
}
Now we have fringe-depth, so we can level-link.
level_link[fringe_depth].push_front(xindex);
for(auto yindex : nodes[xindex].connected) {
if(explored[yindex])
continue;
explored[yindex] = true;
depth[yindex] = depth[xindex] + 1;
fringe.push_back(yindex);
}
}

Resources