Binary tree level order traversal - algorithm

Three types of tree traversals are inorder, preorder, and post order.
A fourth, less often used, traversal is level-order traversal. In a
level-order traveresal, all nodes at depth "d" are processed before
any node at depth d + 1. Level-order traversal differs from the other
traversals in that it is not done recursively; a queue is used,
instead of the implied stack of recursion.
My questions on above text snippet are
Why level order traversals are not done recursively?
How queue is used in level order traversal? Request clarification with Pseudo code will be helpful.
Thanks!

Level order traversal is actually a BFS, which is not recursive by nature. It uses Queue instead of Stack to hold the next vertices that should be opened. The reason for it is in this traversal, you want to open the nodes in a FIFO order, instead of a LIFO order, obtained by recursion
as I mentioned, the level order is actually a BFS, and its [BFS] pseudo code [taken from wikipedia] is:
1 procedure BFS(Graph,source):
2 create a queue Q
3 enqueue source onto Q
4 mark source
5 while Q is not empty:
6 dequeue an item from Q into v
7 for each edge e incident on v in Graph:
8 let w be the other end of e
9 if w is not marked:
10 mark w
11 enqueue w onto Q
(*) in a tree, marking the vertices is not needed, since you cannot get to the same node in 2 different paths.

void levelorder(Node *n)
{ queue < Node * >q;
q.push(n);
while(!q.empty())
{
Node *node = q.front();
cout<<node->value;
q.pop();
if(node->left != NULL)
q.push(node->left);
if (node->right != NULL)
q.push(node->right);
}
}

Instead of a queue, I used a map to solve this. Take a look, if you are interested. As I do a postorder traversal, I maintain the depth at which each node is positioned and use this depth as the key in a map to collect values in the same level
class Solution {
public:
map<int, vector<int> > levelValues;
void recursivePrint(TreeNode *root, int depth){
if(root == NULL)
return;
if(levelValues.count(root->val) == 0)
levelValues.insert(make_pair(depth, vector<int>()));
levelValues[depth].push_back(root->val);
recursivePrint(root->left, depth+1);
recursivePrint(root->right, depth+1);
}
vector<vector<int> > levelOrder(TreeNode *root) {
recursivePrint(root, 1);
vector<vector<int> > result;
for(map<int,vector<int> >::iterator it = levelValues.begin(); it!= levelValues.end(); ++it){
result.push_back(it->second);
}
return result;
}
};
The entire solution can be found here - http://ideone.com/zFMGKU
The solution returns a vector of vectors with each inner vector containing the elements in the tree in the correct order.
you can try solving it here - https://oj.leetcode.com/problems/binary-tree-level-order-traversal/
And, as you can see, we can also do this recursively in the same time and space complexity as the queue solution!

My questions on above text snippet are
Why level order traversals are not done recursively?
How queue is used in level order traversal? Request clarification with Pseudo code will be helpful.
I think it'd actually be easier to start with the second question. Once you understand the answer to the second question, you'll be better prepared to understand the answer to the first.
How level order traversal works
I think the best way to understand how level order traversal works is to go through the execution step by step, so let's do that.
We have a tree.
We want to traverse it level by level.
So, the order that we'd visit the nodes would be A B C D E F G.
To do this, we use a queue. Remember, queues are first in, first out (FIFO). I like to imagine that the nodes are waiting in line to be processed by an attendant.
Let's start by putting the first node A into the queue.
Ok. Buckle up. The setup is over. We're about to start diving in.
The first step is to take A out of the queue so it can be processed. But wait! Before we do so, let's put A's children, B and C, into the queue also.
Note: A isn't actually in the queue anymore at this point. I grayed it out to try to communicate this. If I removed it completely from the diagram, it'd make it harder to visualize what's happening later on in the story.
Note: A is being processed by the attendant at the desk in the diagram. In real life, processing a node can mean a lot of things. Using it to compute a sum, send an SMS, log to the console, etc, etc. Going off the metaphor in my diagram, you can tell the attendant how you want them to process the node.
Now we move on to the node that is next in line. In this case, B.
We do the same thing that we did with A: 1) add the children to the line, and 2) process the node.
Hey, check it out! It looks like what we're doing here is going to get us that level order traversal that we were looking for! Let's prove this to ourselves by continuing the step through.
Once we finish with B, C is next in line. We place C's children at the back of the line, and then process C.
Now let's see what happens next. D is next in line. D doesn't have any children, so we don't place anything at the back of the line. We just process D.
And then it's the same thing for E, F, and G.
Why it's not done recursively
Imagine what would happen if we used a stack instead of a queue. Let's rewind to the point where we had just visited A.
Here's how it'd look if we were using a stack.
Now, instead of going "in order", this new attendant likes to serve the most recent clients first, not the ones who have been waiting the longest. So C is who is up next, not B.
Here's where the key point is. Where the stack starts to cause a different processing order than we had with the queue.
Like before, we add C's children and then process C. We're just adding them to a stack instead of a queue this time.
Now, what's next? This new attendant likes to serve the most recent clients first (ie. we're using a stack), so G is up next.
I'll stop the execution here. The point is that something as simple as replacing the queue with a stack actually gives us a totally different execution order. I'd encourage you to finish the step through though.
You might be thinking: "Ok... but the question asked about recursion. What does this have to do with recursion?" Well, when you use recursion, something sneaky is going on. You never did anything with a stack data structure like s = new Stack(). However, the runtime uses the call stack. This ends up being conceptually similar to what I did above, and thus doesn't give us that A B C D E F G ordering we were looking for from level order traversal.

https://github.com/arun2pratap/data-structure/blob/master/src/main/java/com/ds/tree/binarytree/BinaryTree.java
for complete can look out for the above link.
public void levelOrderTreeTraversal(List<Node<T>> nodes){
if(nodes == null || nodes.isEmpty()){
return;
}
List<Node<T>> levelNodes = new ArrayList<>();
nodes.stream().forEach(node -> {
if(node != null) {
System.out.print(" " + node.value);
levelNodes.add(node.left);
levelNodes.add(node.right);
}
});
System.out.println("");
levelOrderTreeTraversal(levelNodes);
}
Also can check out
http://www.geeksforgeeks.org/
here you will find Almost all Data Structure related answers.

Level order traversal implemented by queue
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
def levelOrder(root: TreeNode) -> List[List[int]]:
res = [] # store the node value
queue = [root]
while queue:
node = queue.pop()
# visit the node
res.append(node.val)
if node.left:
queue.insert(0, node.left)
if node.right:
queue.insert(0, node.right)
return res
Recursive implementation is also possible. However, it needs to know the max depth of the root in advance.
def levelOrder(root: TreeNode) -> List[int]:
res = []
max_depth = maxDepth(root)
for i in range(max_depth):
# level start from 0 to max_depth-1
visitLevel(root, i, action)
return res
def visitLevel(root:TreeNode, level:int, res: List):
if not root:
return
if level==0:
res.append(node.val)
else:
self.visitLevel(root.left, level-1, res)
self.visitLevel(root.right, level-1, res)
def maxDepth(root: TreeNode) -> int:
if not root:
return 0
if not root.left and not root.right:
return 1
return max([ maxDepth(root.left), maxDepth(root.right)]) + 1

For your point 1) we can use Java below code for level order traversal in recursive order, we have not used any library function for tree, all are user defined tree and tree specific functions -
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
boolean isLeaf() { return left == null ? right == null : false; }
}
public class BinaryTree {
Node root;
Queue<Node> nodeQueue = new ConcurrentLinkedDeque<>();
public BinaryTree() {
root = null;
}
public static void main(String args[]) {
BinaryTree tree = new BinaryTree();
tree.root = new Node(1);
tree.root.left = new Node(2);
tree.root.right = new Node(3);
tree.root.left.left = new Node(4);
tree.root.left.right = new Node(5);
tree.root.right.left = new Node(6);
tree.root.right.right = new Node(7);
tree.root.right.left.left = new Node(8);
tree.root.right.left.right = new Node(9);
tree.printLevelOrder();
}
/*Level order traversal*/
void printLevelOrder() {
int h = height(root);
int i;
for (i = 1; i <= h; i++)
printGivenLevel(root, i);
System.out.println("\n");
}
void printGivenLevel(Node root, int level) {
if (root == null)
return;
if (level == 1)
System.out.print(root.data + " ");
else if (level > 1) {
printGivenLevel(root.left, level - 1);
printGivenLevel(root.right, level - 1);
}
}
/*Height of Binary tree*/
int height(Node root) {
if (root == null)
return 0;
else {
int lHeight = height(root.left);
int rHeight = height(root.right);
if (lHeight > rHeight)
return (lHeight + 1);
else return (rHeight + 1);
}
}
}
For your point 2) If you want to use non recursive function then you can use queue as below function-
public void levelOrder_traversal_nrec(Node node){
System.out.println("Level order traversal !!! ");
if(node == null){
System.out.println("Tree is empty");
return;
}
nodeQueue.add(node);
while (!nodeQueue.isEmpty()){
node = nodeQueue.remove();
System.out.printf("%s ",node.data);
if(node.left !=null)
nodeQueue.add(node.left);
if (node.right !=null)
nodeQueue.add(node.right);
}
System.out.println("\n");
}

Recursive Solution in C++
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levels;
void helper(TreeNode* node,int level)
{
if(levels.size() == level) levels.push_back({});
levels[level].push_back(node->val);
if(node->left)
helper(node->left,level+1);
if(node->right)
helper(node->right,level+1);
}
vector<vector<int>> levelOrder(TreeNode* root) {
if(!root) return levels;
helper(root,0);
return levels;
}
};

We can use queue to solve this problem in less time complexity. Here is the solution of level order traversal suing Java.
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> levelOrderTraversal = new ArrayList<List<Integer>>();
List<Integer> currentLevel = new ArrayList<Integer>();
Queue<TreeNode> queue = new LinkedList<TreeNode>();
if(root != null)
{
queue.add(root);
queue.add(null);
}
while(!queue.isEmpty())
{
TreeNode queueRoot = queue.poll();
if(queueRoot != null)
{
currentLevel.add(queueRoot.val);
if(queueRoot.left != null)
{
queue.add(queueRoot.left);
}
if(queueRoot.right != null)
{
queue.add(queueRoot.right);
}
}
else
{
levelOrderTraversal.add(currentLevel);
if(!queue.isEmpty())
{
currentLevel = new ArrayList<Integer>();
queue.add(null);
}
}
}
return levelOrderTraversal;
}
}

Related

How to calculate a height of a tree

I am trying to learn DSA and got stuck on one problem.
How to calculate height of a tree. I mean normal tree, not any specific implementation of tree like BT or BST.
I have tried google but seems everyone is talking about Binary tree and nothing is available for normal tree.
Can anyone help me to redirect to some page or articles to calculate height of a tree.
Lets say a typical node in your tree is represented as Java class.
class Node{
Entry entry;
ArrayList<Node> children;
Node(Entry entry, ArrayList<Node> children){
this.entry = entry;
this.children = children;
}
ArrayList<Node> getChildren(){
return children;
}
}
Then a simple Height Function can be -
int getHeight(Node node){
if(node == null){
return 0;
}else if(node.getChildren() == null){
return 1;
} else{
int childrenMaxHeight = 0;
for(Node n : node.getChildren()){
childrenMaxHeight = Math.max(childrenMaxHeight, getHeight(n));
}
return 1 + childrenMaxHeight;
}
}
Then you just need to call this function passing the root of tree as argument. Since it traverse all the node exactly once, the run time is O(n).
1. If height of leaf node is considered as 0 / Or height is measured depending on number of edges in longest path from root to leaf :
int maxHeight(treeNode<int>* root){
if(root == NULL)
return -1; // -1 beacuse since a leaf node is 0 then NULL node should be -1
int h=0;
for(int i=0;i<root->childNodes.size();i++){
temp+=maxHeight(root->childNodes[i]);
if(temp>h){
h=temp;
}
}
return h+1;
}
2. If height of root node is considered 1:
int maxHeight(treeNode<int>* root){
if(root == NULL)
return 0;
int h=0;
for(int i=0;i<root->childNodes.size();i++){
temp+=maxHeight(root->childNodes[i]);
if(temp>h){
h=temp;
}
}
return h+1;
Above Code is based upon following class :
template <typename T>
class treeNode{
public:
T data;
vector<treeNode<T>*> childNodes; // vector for storing pointer to child treenode
creating Tree node
treeNode(T data){
this->data = data;
}
};
In case of 'normal tree' you can recursively calculate the height of tree in similar fashion to a binary tree but here you will have to consider all children at a node instead of just two.
To find a tree height a BFS iteration will work fine.
Edited form Wikipedia:
Breadth-First-Search(Graph, root):
create empty set S
create empty queues Q1, Q2
root.parent = NIL
height = -1
Q1.enqueue(root)
while Q1 is not empty:
height = height + 1
switch Q1 and Q2
while Q2 is not empty:
for each node n that is adjacent to current:
if n is not in S:
add n to S
n.parent = current
Q1.enqueue(n)
You can see that adding another queue allows me to know what level of the tree.
It iterates for each level, and for each mode in that level.
This is a discursion way to do it (opposite of recursive). So you don't have to worry about that too.
Run time is O(|V|+ |E|).

Implementing the Dutch National Flag Program with Linked Lists

I wanted to sort a linked list containing 0s, 1s or 2s. Now, this is clearly a variant of the Dutch National Flag Problem.
http://en.wikipedia.org/wiki/Dutch_national_flag_problem
The algorithm for the same as given in the link is:
"Have the top group grow down from the top of the array, the bottom group grow up from the bottom, and keep the middle group just above the bottom. The algorithm stores the locations just below the top group, just above the bottom, and just above the middle in three indexes. At each step, examine the element just above the middle. If it belongs to the top group, swap it with the element just below the top. If it belongs in the bottom, swap it with the element just above the bottom. If it is in the middle, leave it. Update the appropriate index. Complexity is Θ(n) moves and examinations."
And a C++ implementation given for the same is:
void threeWayPartition(int data[], int size, int low, int high) {
int p = -1;
int q = size;
for (int i = 0; i < q;) {
if (data[i] == low) {
swap(data[i], data[++p]);
++i;
} else if (data[i] >= high) {
swap(data[i], data[--q]);
} else {
++i;
}
}
}
My only question is how do we traverse back in a linked list like we are doing here in an array?
A standard singly-linked list doesn't allow you to move backwards given a linked list cell. However, you could use a doubly-linked list, where each cell stores a next and a previous pointer. That would let you navigate the list forwards and backwards.
However, for the particular problem you're trying to solve, I don't think this is necessary. One major difference between algorithms on arrays and on linked lists is that when working with linked lists, you can rearrange the cells in the list to reorder the elements in the list. Consequently, the algorithm you've detailed above - which works by changing the contents of the array - might not actually be the most elegant algorithm on linked lists.
If you are indeed working with linked lists, one possible way to solve this problem would be the following:
Create lists holding all values that are 0, 1, or 2.
Remove all cells from the linked list and distribute them into the list of elements that are equal to 0, 1, or 2.
Concatenate these three lists together.
This does no memory allocation and purely works by rearranging the linked list cells. It still runs in time Θ(n), which is another plus. Additionally, you can do this without ever having to walk backwards (i.e. this works on a singly-linked list).
I'll leave the complete implementation to you, but as an example, here's simple C++ code to distribute the linked list cells into the zero, one, and two lists:
struct Cell {
int value;
Cell* next;
}
/* Pointers to the heads of the three lists. */
Cell* lists[3] = { NULL, NULL, NULL };
/* Distribute the cells across the lists. */
while (list != NULL) {
/* Cache a pointer to the next cell in the list, since we will be
* rewiring this linked list.
*/
Cell* next = list->next;
/* Prepend this cell to the list it belongs to. */
list->next = lists[list->value];
lists[list->value] = list;
/* Advance to the next cell in the list. */
list = next;
}
Hope this helps!
As others have said, there is no way to "back up" in a linked list without reverse links. Though it's not exactly an answer to your question, the sort can be easily accomplished with three queues implementing a bucket sort with three buckets.
The advantage of queues (vice pushing on stacks) is that the sort is stable. That is, if there are data in the list nodes (other than the 0,1,2-valued keys), these will remain in the same order for each key.
This is only one of many cases where the canonical algorithm for arrays is not the best for lists.
There is a very slick, simple way to implement the queues: circularly linked lists where the first node, say p, is the tail of the queue and consequently p->next is is the head. With this, the code is concise.
#include <stdio.h>
#include <stdlib.h>
typedef struct node_s {
struct node_s *next;
int val;
int data;
} NODE;
// Add node to tail of queue q and return the new queue.
NODE *enqueue(NODE *q, NODE *node)
{
if (q) {
node->next = q->next;
q->next = node;
}
else node->next = node;
return node;
}
// Concatenate qa and qb and return the result.
NODE *cat(NODE *qa, NODE *qb)
{
NODE *head = qa->next;
qa->next = qb->next;
qb->next = head;
return qb;
}
// Sort a list where all values are 0, 1, or 2.
NODE *sort012(NODE *list)
{
NODE *next = NULL, *q[3] = { NULL, NULL, NULL};
for (NODE *p = list; p; p = next) {
next = p->next;
q[p->val] = enqueue(q[p->val], p);
}
NODE *result = cat(q[0], cat(q[1], q[2]));
// Now transform the circular queue to a simple linked list.
NODE *head = result->next;
result->next = NULL;
return head;
}
int main(void)
{
NODE *list = NULL;
int N = 100;
// Build a list of nodes for testing
for (int i = 0; i < N; ++i) {
NODE *p = malloc(sizeof(NODE));
p->val = rand() % 3;
p->data = N - i; // List ends up with data 1,2,3,..,N
p->next = list;
list = p;
}
list = sort012(list);
for (NODE *p = list; p; p = p->next)
printf("key val=%d, data=%d\n", p->val, p->data);
return 0;
}
This is now a complete simple test and it runs just fine.
This is untested. (I will try to test it if I get time.) But it ought to be at least very close to a solution.
Using a doubly linked list. If you have already implemented a linked list object and the related link list node object, and are able to traverse it in the forward direction it isn't a whole bunch more work to traverse in the reverse direction.
Assuming you have a Node object somewhat like:
public class Node
{
public Node Next;
public Object Value;
}
Then all you really need to do is change you Node class and you Insert method(s) up a little bit to keep track of of the Node that came previously:
public class Node
{
public Node Next;
public Node Previous;
public Object Value;
}
public void Insert(Node currentNode, Node insertedNode)
{
Node siblingNode = currentNode.Next;
insertedNode.Previous = currentNode;
insertedNode.Next = siblingNode;
if(siblingNode!= null)
siblingNode.previous = insertedNode;
currentNode.next = insertedNode;
}
PS Sorry, I didn't notice the edit that included the C++ stuff so it's more C#
Works for all cases by CHANGING NODES rather than NODE DATA.. Hoping its never too late!
METHOD(To throw some light on handling corner cases):
1. Keep three dummy nodes each for 0,1,2;
2. Iterate throught the list and add nodes to respective list.
3. Make the next of zero,one,two pointers as NULL.
4. Backup this last nodes of each list.
5. Now handle 8 different possible cases to join these list and Determine the HEAD.
zero one two
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
An implementation of this in C++.
Node* sortList(Node *head)
{
struct Node dummyzero,dummyone,dummytwo;
dummyzero.next = dummyone.next = dummytwo.next = NULL;
struct Node *zero =&dummyzero,*one = &dummyone,*two=&dummytwo;
Node *curr = head,*next=NULL;
while(curr)
{
next = curr->next;
if(curr->data==0)
{
zero->next = curr;
zero = zero->next;
}
else if(curr->data==1)
{
one->next = curr;
one = one->next;
}
else
{
two->next = curr;
two = two->next;
}
curr = next;
}
zero->next = one->next = two->next =NULL; //Since this dummynode, No segmentation fault here.
Node *zerolast = zero,*onelast = one,*twolast = two;
zero = dummyzero.next;
one = dummyone.next;
two = dummytwo.next;
if(zero==NULL)
{
if(one==NULL)
head = two;
else
{
head = one;
onelast->next = two;
}
}
else
{
head = zero;
if(one==NULL)
zerolast->next = two;
else
{
zerolast->next = one;
onelast->next = two;
}
}
return head;
}
The idea is to use dutch flag sorting algorithm, with a slight modification:
sort 0's and 1's as per dutch flag method,
But for 2's instead of adding them at the end of list, keep them in a separate linked list.
And finally append the 2's list to the sorted list of 0's and 1's.
Node * sort012_linked_list(Node * head) {
if (!head || !head->next)
return head;
Node * head_of_2s = NULL;
Node * prev = NULL;
Node * curr = head;
while (curr) {
if (curr->data == 0) {
if (prev == NULL || prev->data == 0) {
prev = curr;
curr = curr->next;
}
else {
prev->next = curr->next;
curr->next = head;
head = curr;
curr = prev->next;
}
}
else if (curr->data == 1) {
prev = curr;
curr = curr->next;
}
else { // curr->data == 2
if (prev == NULL) {
head = curr->next;
curr->next = head_of_2s;
head_of_2s = curr;
curr = head;
}
else {
prev->next = curr->next;
curr->next = head_of_2s;
head_of_2s = curr;
curr = prev->next;
}
}
}
if (prev)
prev->next = head_of_2s;
return head;
}

Find the least common parent in a binary tree?

This question might have been asked by a lot of guys but, it is kinda different. We have a binary tree. And you are given two nodes p & q. We have to find the least common parent. But you dont have root node pointer which points to the root. You are provided with two inbuilt functions which are:
1) BOOL same(node *p, node *q); -> returns true if the nodes are same or else false.
2) node* parentNode(node *c); -> returns a node which is the parent of the current node.
If the node c is actually root then parentNode function will return you with aNULL value.
Using the functions we have to find the least common parent of the tree.
Step1: Using parentNode function find the distance d1 of the node p from root. similarly find distance d2 of node q from the root. (say, d2 comes out ot be greater than d1)
Step 2: Move the farther node(whose ever d-value was greater) pointer d2-d1 steps towards root.
Step3: Simultaneously move pointers p and q towards root till they point to same node and return that node.
Basically it will be like finding the merge point of two linked-lists. Check the below link:
Check if two linked lists merge. If so, where?
Time complexity: O(N)
Your code would look somewhat along the lines:
node* LCP(node* p, node *q){
int d1=0, d2=0;
for(node* t= p; t; t = parentNode(p), ++d1);
for(node* t= q; t; t = parentNode(q), ++d2);
if(d1>d2){
swap(d1, d2);
swap(p, q);
}
for(int i=0; i<(d2-d1); ++i)
q = parentNode(q);
if( same(p, q)){
return parentNode(p);
}
while( !same(p, q)){
p = parentNode(p);
q = parentNode(q);
}
return p;
}
Assuming C++:
node* leastCommonParent(node *p, node *q)
{
node *pParent = parentNode(p);
while(pParent != 0)
{
node *qParent = parentNode(q);
while(qParent != 0)
{
if (0 == same(pParent, qParent))
return pParent;
qParent = parentNode(qParent);
}
pParent = parentNode(pParent);
}
return 0;
}
UPDATE: A version without explicitly declared variables using recursion follows. I'm sure it can be improved and would probably never use it in production code in the current form.
node* qParent(node *p, node *q)
{
if (p == 0 || q == 0)
return 0;
if (same(p, q) == 0)
return p;
return qParent(p, q->parent);
}
node* pParent(node *p, node *q)
{
return qParent(p, q) ? qParent(p, q) : pParent(p->parent, q);
}
node * result = pParent(p, q);

Non-recursive depth first search algorithm [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 2 years ago.
The community reviewed whether to reopen this question 10 months ago and left it closed:
Original close reason(s) were not resolved
Improve this question
I am looking for a non-recursive depth first search algorithm for a non-binary tree. Any help is very much appreciated.
DFS:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.prepend( currentnode.children );
//do something
}
BFS:
list nodes_to_visit = {root};
while( nodes_to_visit isn't empty ) {
currentnode = nodes_to_visit.take_first();
nodes_to_visit.append( currentnode.children );
//do something
}
The symmetry of the two is quite cool.
Update: As pointed out, take_first() removes and returns the first element in the list.
You would use a stack that holds the nodes that were not visited yet:
stack.push(root)
while !stack.isEmpty() do
node = stack.pop()
for each node.childNodes do
stack.push(stack)
endfor
// …
endwhile
If you have pointers to parent nodes, you can do it without additional memory.
def dfs(root):
node = root
while True:
visit(node)
if node.first_child:
node = node.first_child # walk down
else:
while not node.next_sibling:
if node is root:
return
node = node.parent # walk up ...
node = node.next_sibling # ... and right
Note that if the child nodes are stored as an array rather than through sibling pointers, the next sibling can be found as:
def next_sibling(node):
try:
i = node.parent.child_nodes.index(node)
return node.parent.child_nodes[i+1]
except (IndexError, AttributeError):
return None
Use a stack to track your nodes
Stack<Node> s;
s.prepend(tree.head);
while(!s.empty) {
Node n = s.poll_front // gets first node
// do something with q?
for each child of n: s.prepend(child)
}
An ES6 implementation based on biziclops great answer:
root = {
text: "root",
children: [{
text: "c1",
children: [{
text: "c11"
}, {
text: "c12"
}]
}, {
text: "c2",
children: [{
text: "c21"
}, {
text: "c22"
}]
}, ]
}
console.log("DFS:")
DFS(root, node => node.children, node => console.log(node.text));
console.log("BFS:")
BFS(root, node => node.children, node => console.log(node.text));
function BFS(root, getChildren, visit) {
let nodesToVisit = [root];
while (nodesToVisit.length > 0) {
const currentNode = nodesToVisit.shift();
nodesToVisit = [
...nodesToVisit,
...(getChildren(currentNode) || []),
];
visit(currentNode);
}
}
function DFS(root, getChildren, visit) {
let nodesToVisit = [root];
while (nodesToVisit.length > 0) {
const currentNode = nodesToVisit.shift();
nodesToVisit = [
...(getChildren(currentNode) || []),
...nodesToVisit,
];
visit(currentNode);
}
}
While "use a stack" might work as the answer to contrived interview question, in reality, it's just doing explicitly what a recursive program does behind the scenes.
Recursion uses the programs built-in stack. When you call a function, it pushes the arguments to the function onto the stack and when the function returns it does so by popping the program stack.
PreOrderTraversal is same as DFS in binary tree. You can do the same recursion
taking care of Stack as below.
public void IterativePreOrder(Tree root)
{
if (root == null)
return;
Stack s<Tree> = new Stack<Tree>();
s.Push(root);
while (s.Count != 0)
{
Tree b = s.Pop();
Console.Write(b.Data + " ");
if (b.Right != null)
s.Push(b.Right);
if (b.Left != null)
s.Push(b.Left);
}
}
The general logic is, push a node(starting from root) into the Stack, Pop() it and Print() value. Then if it has children( left and right) push them into the stack - push Right first so that you will visit Left child first(after visiting node itself). When stack is empty() you will have visited all nodes in Pre-Order.
Non-recursive DFS using ES6 generators
class Node {
constructor(name, childNodes) {
this.name = name;
this.childNodes = childNodes;
this.visited = false;
}
}
function *dfs(s) {
let stack = [];
stack.push(s);
stackLoop: while (stack.length) {
let u = stack[stack.length - 1]; // peek
if (!u.visited) {
u.visited = true; // grey - visited
yield u;
}
for (let v of u.childNodes) {
if (!v.visited) {
stack.push(v);
continue stackLoop;
}
}
stack.pop(); // black - all reachable descendants were processed
}
}
It deviates from typical non-recursive DFS to easily detect when all reachable descendants of given node were processed and to maintain the current path in the list/stack.
Suppose you want to execute a notification when each node in a graph is visited. The simple recursive implementation is:
void DFSRecursive(Node n, Set<Node> visited) {
visited.add(n);
for (Node x : neighbors_of(n)) { // iterate over all neighbors
if (!visited.contains(x)) {
DFSRecursive(x, visited);
}
}
OnVisit(n); // callback to say node is finally visited, after all its non-visited neighbors
}
Ok, now you want a stack-based implementation because your example doesn't work. Complex graphs might for instance cause this to blow the stack of your program and you need to implement a non-recursive version. The biggest issue is to know when to issue a notification.
The following pseudo-code works (mix of Java and C++ for readability):
void DFS(Node root) {
Set<Node> visited;
Set<Node> toNotify; // nodes we want to notify
Stack<Node> stack;
stack.add(root);
toNotify.add(root); // we won't pop nodes from this until DFS is done
while (!stack.empty()) {
Node current = stack.pop();
visited.add(current);
for (Node x : neighbors_of(current)) {
if (!visited.contains(x)) {
stack.add(x);
toNotify.add(x);
}
}
}
// Now issue notifications. toNotifyStack might contain duplicates (will never
// happen in a tree but easily happens in a graph)
Set<Node> notified;
while (!toNotify.empty()) {
Node n = toNotify.pop();
if (!toNotify.contains(n)) {
OnVisit(n); // issue callback
toNotify.add(n);
}
}
It looks complicated but the extra logic needed for issuing notifications exists because you need to notify in reverse order of visit - DFS starts at root but notifies it last, unlike BFS which is very simple to implement.
For kicks, try following graph:
nodes are s, t, v and w.
directed edges are:
s->t, s->v, t->w, v->w, and v->t.
Run your own implementation of DFS and the order in which nodes should be visited must be:
w, t, v, s
A clumsy implementation of DFS would maybe notify t first and that indicates a bug. A recursive implementation of DFS would always reach w last.
FULL example WORKING code, without stack:
import java.util.*;
class Graph {
private List<List<Integer>> adj;
Graph(int numOfVertices) {
this.adj = new ArrayList<>();
for (int i = 0; i < numOfVertices; ++i)
adj.add(i, new ArrayList<>());
}
void addEdge(int v, int w) {
adj.get(v).add(w); // Add w to v's list.
}
void DFS(int v) {
int nodesToVisitIndex = 0;
List<Integer> nodesToVisit = new ArrayList<>();
nodesToVisit.add(v);
while (nodesToVisitIndex < nodesToVisit.size()) {
Integer nextChild= nodesToVisit.get(nodesToVisitIndex++);// get the node and mark it as visited node by inc the index over the element.
for (Integer s : adj.get(nextChild)) {
if (!nodesToVisit.contains(s)) {
nodesToVisit.add(nodesToVisitIndex, s);// add the node to the HEAD of the unvisited nodes list.
}
}
System.out.println(nextChild);
}
}
void BFS(int v) {
int nodesToVisitIndex = 0;
List<Integer> nodesToVisit = new ArrayList<>();
nodesToVisit.add(v);
while (nodesToVisitIndex < nodesToVisit.size()) {
Integer nextChild= nodesToVisit.get(nodesToVisitIndex++);// get the node and mark it as visited node by inc the index over the element.
for (Integer s : adj.get(nextChild)) {
if (!nodesToVisit.contains(s)) {
nodesToVisit.add(s);// add the node to the END of the unvisited node list.
}
}
System.out.println(nextChild);
}
}
public static void main(String args[]) {
Graph g = new Graph(5);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
g.addEdge(3, 1);
g.addEdge(3, 4);
System.out.println("Breadth First Traversal- starting from vertex 2:");
g.BFS(2);
System.out.println("Depth First Traversal- starting from vertex 2:");
g.DFS(2);
}}
output:
Breadth First Traversal- starting from vertex 2:
2
0
3
1
4
Depth First Traversal- starting from vertex 2:
2
3
4
1
0
Just wanted to add my python implementation to the long list of solutions. This non-recursive algorithm has discovery and finished events.
worklist = [root_node]
visited = set()
while worklist:
node = worklist[-1]
if node in visited:
# Node is finished
worklist.pop()
else:
# Node is discovered
visited.add(node)
for child in node.children:
worklist.append(child)
You can use a stack. I implemented graphs with Adjacency Matrix:
void DFS(int current){
for(int i=1; i<N; i++) visit_table[i]=false;
myStack.push(current);
cout << current << " ";
while(!myStack.empty()){
current = myStack.top();
for(int i=0; i<N; i++){
if(AdjMatrix[current][i] == 1){
if(visit_table[i] == false){
myStack.push(i);
visit_table[i] = true;
cout << i << " ";
}
break;
}
else if(!myStack.empty())
myStack.pop();
}
}
}
DFS iterative in Java:
//DFS: Iterative
private Boolean DFSIterative(Node root, int target) {
if (root == null)
return false;
Stack<Node> _stack = new Stack<Node>();
_stack.push(root);
while (_stack.size() > 0) {
Node temp = _stack.peek();
if (temp.data == target)
return true;
if (temp.left != null)
_stack.push(temp.left);
else if (temp.right != null)
_stack.push(temp.right);
else
_stack.pop();
}
return false;
}
http://www.youtube.com/watch?v=zLZhSSXAwxI
Just watched this video and came out with implementation. It looks easy for me to understand. Please critique this.
visited_node={root}
stack.push(root)
while(!stack.empty){
unvisited_node = get_unvisited_adj_nodes(stack.top());
If (unvisited_node!=null){
stack.push(unvisited_node);
visited_node+=unvisited_node;
}
else
stack.pop()
}
Using Stack, here are the steps to follow: Push the first vertex on the stack then,
If possible, visit an adjacent unvisited vertex, mark it,
and push it on the stack.
If you can’t follow step 1, then, if possible, pop a vertex off the
stack.
If you can’t follow step 1 or step 2, you’re done.
Here's the Java program following the above steps:
public void searchDepthFirst() {
// begin at vertex 0
vertexList[0].wasVisited = true;
displayVertex(0);
stack.push(0);
while (!stack.isEmpty()) {
int adjacentVertex = getAdjacentUnvisitedVertex(stack.peek());
// if no such vertex
if (adjacentVertex == -1) {
stack.pop();
} else {
vertexList[adjacentVertex].wasVisited = true;
// Do something
stack.push(adjacentVertex);
}
}
// stack is empty, so we're done, reset flags
for (int j = 0; j < nVerts; j++)
vertexList[j].wasVisited = false;
}
Pseudo-code based on #biziclop's answer:
Using only basic constructs: variables, arrays, if, while and for
Functions getNode(id) and getChildren(id)
Assuming known number of nodes N
NOTE: I use array-indexing from 1, not 0.
Breadth-first
S = Array(N)
S[1] = 1; // root id
cur = 1;
last = 1
while cur <= last
id = S[cur]
node = getNode(id)
children = getChildren(id)
n = length(children)
for i = 1..n
S[ last+i ] = children[i]
end
last = last+n
cur = cur+1
visit(node)
end
Depth-first
S = Array(N)
S[1] = 1; // root id
cur = 1;
while cur > 0
id = S[cur]
node = getNode(id)
children = getChildren(id)
n = length(children)
for i = 1..n
// assuming children are given left-to-right
S[ cur+i-1 ] = children[ n-i+1 ]
// otherwise
// S[ cur+i-1 ] = children[i]
end
cur = cur+n-1
visit(node)
end
Here is a link to a java program showing DFS following both reccursive and non-reccursive methods and also calculating discovery and finish time, but no edge laleling.
public void DFSIterative() {
Reset();
Stack<Vertex> s = new Stack<>();
for (Vertex v : vertices.values()) {
if (!v.visited) {
v.d = ++time;
v.visited = true;
s.push(v);
while (!s.isEmpty()) {
Vertex u = s.peek();
s.pop();
boolean bFinished = true;
for (Vertex w : u.adj) {
if (!w.visited) {
w.visited = true;
w.d = ++time;
w.p = u;
s.push(w);
bFinished = false;
break;
}
}
if (bFinished) {
u.f = ++time;
if (u.p != null)
s.push(u.p);
}
}
}
}
}
Full source here.
Stack<Node> stack = new Stack<>();
stack.add(root);
while (!stack.isEmpty()) {
Node node = stack.pop();
System.out.print(node.getData() + " ");
Node right = node.getRight();
if (right != null) {
stack.push(right);
}
Node left = node.getLeft();
if (left != null) {
stack.push(left);
}
}

Link Tree nodes at each level

Given a binary tree, how would you join the nodes at each level, left to right.
Say there are 5 nodes at level three, link all of them from left to right.
I don't need anybody to write code for this.. but just an efficient algorithm.
Thanks
Idea is:
1. Traverse tree with BFS.
2. When you do traversing, you're linking nodes on next level - if node has left and right node, you'll link left to right. If node has next node, then you link rightmost child of current node to leftmost child of next node.
public void BreadthFirstSearch(Action<Node> currentNodeAction)
{
Queue<Node> q = new Queue<Node>();
q.Enqueue(root);
while (q.Count != 0)
{
Node current = q.Dequeue();
if (currentNodeAction != null)
currentNodeAction(current);
if (current.left != null) q.Enqueue(current.left);
if (current.right != null) q.Enqueue(current.right);
}
}
private void Linker(Node node)
{
Link(node.left, node.right);
if (node.next != null)
Link(node.right ?? node.left, node.next.left ?? node.next.right);
}
private void Link(Node node1, Node node2)
{
if (node1 != null && node2 != null)
node1.next = node2;
}
public void LinkSameLevel()
{
BreadthFirstSearch(Linker);
}
Create a vector of linked lists.
Do a DFS keeping track of your level, and for each node you find, add it to the linked list of the level.
This will run in O(n) which is optimal.
Is this what you want to do?
This is not a direct answer to the question and may not be applicable based on your situation. But if you have control over the creation and maintenance of the binary tree, it would probably be more efficient to maintain the links while building/updating the tree.
If you kept both left and right pointers at each level, then it would be "simple" (always easy to say that word when someone else is doing the work) to maintain them. When inserting a new node at a given level, you know its direct siblings from the parent node information. You can adjust the left and right pointers for the three nodes involved (assuming not at the edge of the tree). Likewise, when removing a node, simply update the left and right pointers of the siblings of the node being removed. Change them to point to each other.
I agree with Thomas Ahle's answer if you want to make all of the row-lists at the same time. It seems that you are only interested in making the list for a one specific row.
Let's say you have a giant tree, but you only want to link the 5th row. There's clearly no point in accessing any node below the 5th row. So just do an early-terminated DFS. Unfortunately, you still have to run through all of the ancestors of every node in the list.
But here's the good news. If you have a perfect binary tree (where every single node branches exactly twice except for the last row) then the first row will have 1 one, the second 2, the third 4, the fourth 8 and the fifth 16. Thus there are more nodes on the last row (16) than all the previous put together (1 + 2 + 4 + 8 = 15), so searching through all of the ancestors is still just O(n), where n is the number of nodes in the row.
The worst case on the other hand would be to have the fifth row consist of a single node with a full binary tree above it. Then you still have to search through all 15 ancestors just to put that one node on the list.
So while this algorithm is really your only choice without modifying your data structure its efficiency relies entirely on how populated the row is compared to higher rows.
#include <queue>
struct Node {
Node *left;
Node *right;
Node *next;
};
/** Link all nodes of the same level in a binary tree. */
void link_level_nodes(Node *pRoot)
{
queue<Node*> q;
Node *prev; // Pointer to the revious node of the current level
Node *node;
int cnt; // Count of the nodes in the current level
int cntnext; // Count of the nodes in the next level
if(NULL == pRoot)
return;
q.push(pRoot);
cnt = 1;
cntnext = 0;
prev = NULL;
while (!q.empty()) {
node = q.front();
q.pop();
/* Add the left and the right nodes of the current node to the queue
and increment the counter of nodes at the next level.
*/
if (node->left){
q.push(node->left);
cntnext++;
}
if (node->right){
q.push(node->right);
cntnext++;
}
/* Link the previous node of the current level to this node */
if (prev)
prev->next = node;
/* Se the previous node to the current */
prev = node;
cnt--;
if (0 == cnt) { // if this is the last node of the current level
cnt = cntnext;
cntnext = 0;
prev = NULL;
}
}
}
What I usually do to solve this problem is that I do a simple inorder traversal.
I initialize my tree with a constructor that gives a level or column value to every node. Hence my head is at Level 0.
public Node(int d)
{
head=this;
data=d;
left=null;
right=null;
level=0;
}
Now, if in the traversal, I take a left or a right, I simply do the traversal with a level indicator. For each level identifier, I make a Linked List, possibly in a Vector of Nodes.
Different approaches can be used to solve this problem. Some of them that comes to mind are -
1) Using level order traversal or BFS.
We can modify queue entries to contain level of nodes.So queue node will contain a pointer to a tree node and an integer level. When we deque a node we can check the level of dequeued node if it is same we can set right pointer to point to it.
Time complexity for this method would be O(n).
2) If we have complete binary tree we can extend Pre-Order traversal. In this method we shall set right pointer of parent before the children.
Time complexity for this method would be O(n).
3) In case of incomplete binary tree we can modify method (2) by traversing first root then right pointer and then left so we can make sure that all nodes at level i have the right pointer set, before the level i+1 nodes.
Time complexity for this method would be O(n^2).
private class Node
{
public readonly Node Left;
public readonly Node Right;
public Node Link { get; private set; }
public void Run()
{
LinkNext = null;
}
private Node LinkNext
{
get
{
return Link == null ? null : (Link.Left ?? Link.Right ?? Link.LinkNext);
}
set
{
Link = value;
if (Right != null)
Right.LinkNext = LinkNext;
if (Left != null)
Left.LinkNext = Right ?? LinkNext;
}
}
}
Keep a depth array while breadth-first search.
vector<forward_list<index_t>> level_link(MAX_NODES);
index_t fringe_depth = 0;
static index_t depth[MAX_NODES];
memset(depth,0,sizeof(depth));
depth[0] = 0;
Now when the depth-changes while de-queuing, you get all linked !
explored[0] = true;
static deque<index_t> fringe;
fringe.clear();
fringe.push_back(0); // start bfs from node 0
while(!fringe.empty()) {
index_t xindex = fringe.front();
fringe.pop_front();
if(fringe_depth < depth[xindex]) {
// play with prev-level-data
fringe_depth = depth[xindex];
}
Now we have fringe-depth, so we can level-link.
level_link[fringe_depth].push_front(xindex);
for(auto yindex : nodes[xindex].connected) {
if(explored[yindex])
continue;
explored[yindex] = true;
depth[yindex] = depth[xindex] + 1;
fringe.push_back(yindex);
}
}

Resources