Related
Let's say that the algorithm involves iterating through a string character by character.
If I know for sure that the length of the string is less than, say, 15 characters, will the time complexity be O(1) or will it remain as O(n)?
There are two aspects to this question - the core of the question is, can problem constraints change the asymptotic complexity of an algorithm? The answer to that is yes. But then you give an example of a constraint (strings limited to 15 characters) where the answer is: the question doesn't make sense. A lot of the other answers here are misleading because they address only the second aspect but try to reach a conclusion about the first one.
Formally, the asymptotic complexity of an algorithm is measured by considering a set of inputs where the input sizes (i.e. what we call n) are unbounded. The reason n must be unbounded is because the definition of asymptotic complexity is a statement like "there is some n0 such that for all n ≥ n0, ...", so if the set doesn't contain any inputs of size n ≥ n0 then this statement is vacuous.
Since algorithms can have different running times depending on which inputs of each size we consider, we often distinguish between "average", "worst case" and "best case" time complexity. Take for example insertion sort:
In the average case, insertion sort has to compare the current element with half of the elements in the sorted portion of the array, so the algorithm does about n2/4 comparisons.
In the worst case, when the array is in descending order, insertion sort has to compare the current element with every element in the sorted portion (because it's less than all of them), so the algorithm does about n2/2 comparisons.
In the best case, when the array is in ascending order, insertion sort only has to compare the current element with the largest element in the sorted portion, so the algorithm does about n comparisons.
However, now suppose we add the constraint that the input array is always in ascending order except for its smallest element:
Now the average case does about 3n/2 comparisons,
The worst case does about 2n comparisons,
And the best case does about n comparisons.
Note that it's the same algorithm, insertion sort, but because we're considering a different set of inputs where the algorithm has different performance characteristics, we end up with a different time complexity for the average case because we're taking an average over a different set, and similarly we get a different time complexity for the worst case because we're choosing the worst inputs from a different set. Hence, yes, adding a problem constraint can change the time complexity even if the algorithm itself is not changed.
However, now let's consider your example of an algorithm which iterates over each character in a string, with the added constraint that the string's length is at most 15 characters. Here, it does not make sense to talk about the asymptotic complexity, because the input sizes n in your set are not unbounded. This particular set of inputs is not valid for doing such an analysis with.
In the mathematical sense, yes. Big-O notation describes the behavior of an algorithm in the limit, and if you have a fixed upper bound on the input size, that implies it has a maximum constant complexity.
That said, context is important. All computers have a realistic limit to the amount of input they can accept (a technical upper bound). Just because nothing in the world can store a yottabyte of data doesn't mean saying every algorithm is O(1) is useful! It's about applying the mathematics in a way that makes sense for the situation.
Here are two contexts for your example, one where it makes sense to call it O(1), and one where it does not.
"I decided I won't put strings of length more than 15 into my program, therefore it is O(1)". This is not a super useful interpretation of the runtime. The actual time is still strongly tied to the size of the string; a string of size 1 will run much faster than one of size 15 even if there is technically a constant bound. In other words, within the constraints of your problem there is still a strong correlation to n.
"My algorithm will process a list of n strings, each with maximum size 15". Here we have a different story; the runtime is dominated by having to run through the list! There's a point where n is so large that the time to process a single string doesn't change the correlation. Now it makes sense to consider the time to process a single string O(1), and therefore the time to process the whole list O(n)
That said, Big-O notation doesn't have to only use one variable! There are problems where upper bounds are intrinsic to the algorithm, but you wouldn't put a bound on the input arbitrarily. Instead, you can describe each dimension of your input as a different variable:
n = list length
s = maximum string length
=> O(n*s)
It depends.
If your algorithm's requirements would grow if larger inputs were provided, then the algorithmic complexity can (and should) be evaluated independently of the inputs. So iterating over all the elements of a list, array, string, etc., is O(n) in relation to the length of the input.
If your algorithm is tied to the limited input size, then that fact becomes part of your algorithmic complexity. For example, maybe your algorithm only iterates over the first 15 characters of the input string, regardless of how long it is. Or maybe your business case simply indicates that a larger input would be an indication of a bug in the calling code, so you opt to immediately exit with an error whenever the input size is larger than a fixed number. In those cases, the algorithm will have constant requirements as the input length tends toward very large numbers.
From Wikipedia
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity.
...
In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows.
In practice, almost all inputs have limits: you cannot input a number larger than what's representable by the numeric type, or a string that's larger than the available memory space. So it would be silly to say that any limits change an algorithm's asymptotic complexity. You could, in theory, use 15 as your asymptote (or "particular value"), and therefore use Big-O notation to define how an algorithm grows as the input approaches that size. There are some algorithms with such terrible complexity (or some execution environments with limited-enough resources) that this would be meaningful.
But if your argument (string length) does not tend toward a large enough value for some aspect of your algorithm's complexity to define the growth of its resource requirements, it's arguably not appropriate to use asymptotic notation at all.
NO!
The time complexity of an algorithm is independent of program constraints. Here is (a simple) way of thinking about it:
Say your algorithm iterates over the string and appends all consonants to a list.
Now, for iteration time complexity is O(n). This means that the time taken will increase roughly in proportion to the increase in the length of the string. (Time itself though would vary depending on the time taken by the if statement and Branch Prediction)
The fact that you know that the string is between 1 and 15 characters long will not change how the program runs, it merely tells you what to expect.
For example, knowing that your values are going to be less than 65000 you could store them in a 16-bit integer and not worry about Integer overflow.
Do problem constraints change the time complexity of algorithms?
No.
If I know for sure that the length of the string is less than, say, 15 characters ..."
We already know the length of the string is less than SIZE_MAX. Knowing an upper fixed bound for string length does not make the the time complexity O(1).
Time complexity remains O(n).
Big-O measures the complexity of algorithms, not of code. It means Big-O does not know the physical limitations of computers. A Big-O measure today will be the same in 1 million years when computers, and programmers alike, have evolved beyond recognition.
So restrictions imposed by today's computers are irrelevant for Big-O. Even though any loop is finite in code, that need not be the case in algorithmic terms. The loop may be finite or infinite. It is up to the programmer/Big-O analyst to decide. Only s/he knows which algorithm the code intends to implement. If the number of loop iterations is finite, the loop has a Big-O complexity of O(1) because there is no asymptotic growth with N. If, on the other hand, the number of loop iterations is infinite, the Big-O complexity is O(N) because there is an asymptotic growth with N.
The above is straight from the definition of Big-O complexity. There are no ifs or buts. The way the OP describes the loop makes it O(1).
A fundamental requirement of big-O notation is that parameters do not have an upper limit. Suppose performing an operation on N elements takes a time precisely equal to 3E24*N*N*N / (1E24+N*N*N) microseconds. For small values of N, the execution time would be proportional to N^3, but as N gets larger the N^3 term in the denominator would start to play an increasing role in the computation.
If N is 1, the time would be 3 microseconds.
If N is 1E3, the time would be about 3E33/1E24, i.e. 3.0E9.
If N is 1E6, the time would be about 3E42/1E24, i.e. 3.0E18
If N is 1E7, the time would be 3E45/1.001E24, i.e. ~2.997E21
If N is 1E8, the time would be about 3E48/2E24, i.e. 1.5E24
If N is 1E9, the time would be 3E51/1.001E27, i.e. ~2.997E24
If N is 1E10, the time would be about 3E54/1.000001E30, i.e. 2.999997E24
As N gets bigger, the time would continue to grow, but no matter how big N gets the time would always be less than 3.000E24 seconds. Thus, the time required for this algorithm would be O(1) because one could specify a constant k such that the time necessary to perform the computation with size N would be less than k.
For any practical value of N, the time required would be proportional to N^3, but from an O(N) standpoint the worst-case time requirement is constant. The fact that the time changes rapidly in response to small values of N is irrelevant to the "big picture" behaviour, which is what big-O notation measures.
It will be O(1) i.e. constant.
This is because for calculating time complexity or worst-case time complexity (to be precise), we think of the input as a huge chunk of data and the length of this data is assumed to be n.
Let us say, we do some maximum work C on each part of this input data, which we will consider as a constant.
In order to get the worst-case time complexity, we need to loop through each part of the input data i.e. we need to loop n times.
So, the time complexity will be:
n x C.
Since you fixed n to be less than 15 characters, n can also be assumed as a constant number.
Hence in this case:
n = constant and,
(maximum constant work done) = C = constant
So time complexity is n x C = constant x constant = constant i.e. O(1)
Edit
The reason why I have said n = constant and C = constant for this case, is because the time difference for doing calculations for smaller n will become so insignificant (compared to n being a very large number) for modern computers that we can assume it to be constant.
Otherwise, every function ever build will take some time, and we can't say things like:
lookup time is constant for hashmaps
I am trying to learn analysis of algorithms and I am stuck with relation between asymptotic notation(big O...) and cases(best, worst and average).
I learn that the Big O notation defines an upper bound of an algorithm, i.e. it defines function can not grow more than its upper bound.
At first it sound to me as it calculates the worst case.
I google about(why worst case is not big O?) and got ample of answers which were not so simple to understand for beginner.
I concluded it as follows:
Big O is not always used to represent worst case analysis of algorithm because, suppose a algorithm which takes O(n) execution steps for best, average and worst input then it's best, average and worst case can be expressed as O(n).
Please tell me if I am correct or I am missing something as I don't have anyone to validate my understanding.
Please suggest a better example to understand why Big O is not always worst case.
Big-O?
First let us see what Big O formally means:
In computer science, big O notation is used to classify algorithms
according to how their running time or space requirements grow as the
input size grows.
This means that, Big O notation characterizes functions according to their growth rates: different functions with the same growth rate may be represented using the same O notation. Here, O means order of the function, and it only provides an upper bound on the growth rate of the function.
Now let us look at the rules of Big O:
If f(x) is a sum of several terms, if there is one with largest
growth rate, it can be kept, and all others omitted
If f(x) is a product of several factors, any constants (terms in the
product that do not depend on x) can be omitted.
Example:
f(x) = 6x^4 − 2x^3 + 5
Using the 1st rule we can write it as, f(x) = 6x^4
Using the 2nd rule it will give us, O(x^4)
What is Worst Case?
Worst case analysis gives the maximum number of basic operations that
have to be performed during execution of the algorithm. It assumes
that the input is in the worst possible state and maximum work has to
be done to put things right.
For example, for a sorting algorithm which aims to sort an array in ascending order, the worst case occurs when the input array is in descending order. In this case maximum number of basic operations (comparisons and assignments) have to be done to set the array in ascending order.
It depends on a lot of things like:
CPU (time) usage
memory usage
disk usage
network usage
What's the difference?
Big-O is often used to make statements about functions that measure the worst case behavior of an algorithm, but big-O notation doesn’t imply anything of the sort.
The important point here is we're talking in terms of growth, not number of operations. However, with algorithms we do talk about the number of operations relative to the input size.
Big-O is used for making statements about functions. The functions can measure time or space or cache misses or rabbits on an island or anything or nothing. Big-O notation doesn’t care.
In fact, when used for algorithms, big-O is almost never about time. It is about primitive operations.
When someone says that the time complexity of MergeSort is O(nlogn), they usually mean that the number of comparisons that MergeSort makes is O(nlogn). That in itself doesn’t tell us what the time complexity of any particular MergeSort might be because that would depend how much time it takes to make a comparison. In other words, the O(nlogn) refers to comparisons as the primitive operation.
The important point here is that when big-O is applied to algorithms, there is always an underlying model of computation. The claim that the time complexity of MergeSort is O(nlogn), is implicitly referencing an model of computation where a comparison takes constant time and everything else is free.
Example -
If we are sorting strings that are kk bytes long, we might take “read a byte” as a primitive operation that takes constant time with everything else being free.
In this model, MergeSort makes O(nlogn) string comparisons each of which makes O(k) byte comparisons, so the time complexity is O(k⋅nlogn). One common implementation of RadixSort will make k passes over the n strings with each pass reading one byte, and so has time complexity O(nk).
The two are not the same thing. Worst-case analysis as other have said is identifying instances for which the algorithm takes the longest to complete (i.e., takes the most number of steps), then formulating a growth function using this. One can analyze the worst-case time complexity using Big-Oh, or even other variants such as Big-Omega and Big-Theta (in fact, Big-Theta is usually what you want, though often Big-Oh is used for ease of comprehension by those not as much into theory). One important detail and why worst-case analysis is useful is that the algorithm will run no slower than it does in the worst case. Worst-case analysis is a method of analysis we use in analyzing algorithms.
Big-Oh itself is an asymptotic measure of a growth function; this can be totally independent as people can use Big-Oh to not even measure an algorithm's time complexity; its origins stem from Number Theory. You are correct to say it is the asymptotic upper bound of a growth function; but the manner you prescribe and construct the growth function comes from your analysis. The Big-Oh of a growth function itself means little to nothing without context as it only says something about the function you are analyzing. Keep in mind there can be infinitely many algorithms that could be constructed that share the same time complexity (by the definition of Big-Oh, Big-Oh is a set of growth functions).
In short, worst-case analysis is how you build your growth function, Big-Oh notation is one method of analyzing said growth function. Then, we can compare that result against other worst-case time complexities of competing algorithms for a given problem. Worst-case analysis if done correctly yields the worst-case running time if done exactly (you can cut a lot of corners and still get the correct asymptotics if you use a barometer), and using this growth function yields the worst-case time complexity of the algorithm. Big-Oh alone doesn't guarantee the worst-case time complexity as you had to make the growth function itself. For instance, I could utilize Big-Oh notation for any other kind of analysis (e.g., best case, average case). It really depends on what you're trying to capture. For instance, Big-Omega is great for lower bounds.
Imagine a hypothetical algorithm that in best case only needs to do 1 step, in the worst case needs to do n2 steps, but in average (expected) case, only needs to do n steps. With n being the input size.
For each of these 3 cases you could calculate a function that describes the time complexity of this algorithm.
1 Best case has O(1) because the function f(x)=1 is really the highest we can go, but also the lowest we can go in this case, omega(1). Since Omega is equal to O (the upper bound and lower bound), we state that this function, in the best case, behaves like theta(1).
2 We could do the same analysis for the worst case and figure out that O(n2 ) = omega(n2 ) =theta(n2 ).
3 Same counts for the average case but with theta( n ).
So in theory you could determine 3 cases of an algorithm and for those 3 cases calculate the lower/upper/thight bounds. I hope this clears things up a bit.
https://www.google.co.in/amp/s/amp.reddit.com/r/learnprogramming/comments/3qtgsh/how_is_big_o_not_the_same_as_worst_case_or_big/
Big O notation shows how an algorithm grows with respect to input size. It says nothing of which algorithm is faster because it doesn't account for constant set up time (which can dominate if you have small input sizes). So when you say
which takes O(n) execution steps
this almost doesn't mean anything. Big O doesn't say how many execution steps there are. There are C + O(n) steps (where C is a constant) and this algorithm grows at rate n depending on input size.
Big O can be used for best, worst, or average cases. Let's take sorting as an example. Bubble sort is a naive O(n^2) sorting algorithm, but when the list is sorted it takes O(n). Quicksort is often used for sorting (the GNU standard C library uses it with some modifications). It preforms at O(n log n), however this is only true if the pivot chosen splits the array in to two equal sized pieces (on average). In the worst case we get an empty array one side of the pivot and Quicksort performs at O(n^2).
As Big O shows how an algorithm grows with respect to size, you can look at any aspect of an algorithm. Its best case, average case, worst case in both time and/or memory usage. And it tells you how these grow when the input size grows - but it doesn't say which is faster.
If you deal with small sizes then Big O won't matter - but an analysis can tell you how things will go when your input sizes increase.
One example of where the worst case might not be the asymptotic limit: suppose you have an algorithm that works on the set difference between some set and the input. It might run in O(N) time, but get faster as the input gets larger and knocks more values out of the working set.
Or, to get more abstract, f(x) = 1/x for x > 0 is a decreasing O(1) function.
I'll focus on time as a fairly common item of interest, but Big-O can also be used to evaluate resource requirements such as memory. It's essential for you to realize that Big-O tells how the runtime or resource requirements of a problem scale (asymptotically) as the problem size increases. It does not give you a prediction of the actual time required. Predicting the actual runtimes would require us to know the constants and lower order terms in the prediction formula, which are dependent on the hardware, operating system, language, compiler, etc. Using Big-O allows us to discuss algorithm behaviors while sidestepping all of those dependencies.
Let's talk about how to interpret Big-O scalability using a few examples. If a problem is O(1), it takes the same amount of time regardless of the problem size. That may be a nanosecond or a thousand seconds, but in the limit doubling or tripling the size of the problem does not change the time. If a problem is O(n), then doubling or tripling the problem size will (asymptotically) double or triple the amounts of time required, respectively. If a problem is O(n^2), then doubling or tripling the problem size will (asymptotically) take 4 or 9 times as long, respectively. And so on...
Lots of algorithms have different performance for their best, average, or worst cases. Sorting provides some fairly straightforward examples of how best, average, and worst case analyses may differ.
I'll assume that you know how insertion sort works. In the worst case, the list could be reverse ordered, in which case each pass has to move the value currently being considered as far to the left as possible, for all items. That yields O(n^2) behavior. Doubling the list size will take four times as long. More likely, the list of inputs is in randomized order. In that case, on average each item has to move half the distance towards the front of the list. That's less than in the worst case, but only by a constant. It's still O(n^2), so sorting a randomized list that's twice as large as our first randomized list will quadruple the amount of time required, on average. It will be faster than the worst case (due to the constants involved), but it scales in the same way. The best case, however, is when the list is already sorted. In that case, you check each item to see if it needs to be slid towards the front, and immediately find the answer is "no," so after checking each of the n values you're done in O(n) time. Consequently, using insertion sort for an already ordered list that is twice the size only takes twice as long rather than four times as long.
You are right, in that you can say certainly say that an algorithm runs in O(f(n)) time in the best or average case. We do that all the time for, say, quicksort, which is O(N log N) on average, but only O(N^2) worst case.
Unless otherwise specified, however, when you say that an algorithm runs in O(f(n)) time, you are saying the algorithm runs in O(f(n)) time in the worst case. At least that's the way it should be. Sometimes people get sloppy, and you will often hear that a hash table is O(1) when in the worst case it is actually worse.
The other way in which a big O definition can fail to characterize the worst case is that it's an upper bound only. Any function in O(N) is also in O(N^2) and O(2^N), so we would be entirely correct to say that quicksort takes O(2^N) time. We just don't say that because it isn't useful to do so.
Big Theta and Big Omega are there to specify lower bounds and tight bounds respectively.
There are two "different" and most important tools:
the best, worst, and average-case complexity are for generating numerical function over the size of possible problem instances (e.g. f(x) = 2x^2 + 8x - 4) but it is very difficult to work precisely with these functions
big O notation extract the main point; "how efficient the algorithm is", it ignore a lot of non important things like constants and ... and give you a big picture
Hi I would really appreciate some help with Big-O notation. I have an exam in it tomorrow and while I can define what f(x) is O(g(x)) is, I can't say I thoroughly understand it.
The following question ALWAYS comes up on the exam and I really need to try and figure it out, the first part seems easy (I think) Do you just pick a value for n, compute them all on a claculator and put them in order? This seems to easy though so I'm not sure. I'm finding it very hard to find examples online.
From lowest to highest, what is the
correct order of the complexities
O(n2), O(log2 n), O(1), O(2n), O(n!),
O(n log2 n)?
What is the
worst-case computational-complexity of
the Binary Search algorithm on an
ordered list of length n = 2k?
That guy should help you.
From lowest to highest, what is the
correct order of the complexities
O(n2), O(log2 n), O(1), O(2n), O(n!),
O(n log2 n)?
The order is same as if you compare their limit at infinity. like lim(a/b), if it is 1, then they are same, inf. or 0 means one of them is faster.
What is the worst-case
computational-complexity of the Binary
Search algorithm on an ordered list of
length n = 2k?
Find binary search best/worst Big-O.
Find linked list access by index best/worst Big-O.
Make conclusions.
Hey there. Big-O notation is tough to figure out if you don't really understand what the "n" means. You've already seen people talking about how O(n) == O(2n), so I'll try to explain exactly why that is.
When we describe an algorithm as having "order-n space complexity", we mean that the size of the storage space used by the algorithm gets larger with a linear relationship to the size of the problem that it's working on (referred to as n.) If we have an algorithm that, say, sorted an array, and in order to do that sort operation the largest thing we did in memory was to create an exact copy of that array, we'd say that had "order-n space complexity" because as the size of the array (call it n elements) got larger, the algorithm would take up more space in order to match the input of the array. Hence, the algorithm uses "O(n)" space in memory.
Why does O(2n) = O(n)? Because when we talk in terms of O(n), we're only concerned with the behavior of the algorithm as n gets as large as it could possibly be. If n was to become infinite, the O(2n) algorithm would take up two times infinity spaces of memory, and the O(n) algorithm would take up one times infinity spaces of memory. Since two times infinity is just infinity, both algorithms are considered to take up a similar-enough amount of room to be both called O(n) algorithms.
You're probably thinking to yourself "An algorithm that takes up twice as much space as another algorithm is still relatively inefficient. Why are they referred to using the same notation when one is much more efficient?" Because the gain in efficiency for arbitrarily large n when going from O(2n) to O(n) is absolutely dwarfed by the gain in efficiency for arbitrarily large n when going from O(n^2) to O(500n). When n is 10, n^2 is 10 times 10 or 100, and 500n is 500 times 10, or 5000. But we're interested in n as n becomes as large as possible. They cross over and become equal for an n of 500, but once more, we're not even interested in an n as small as 500. When n is 1000, n^2 is one MILLION while 500n is a "mere" half million. When n is one million, n^2 is one thousand billion - 1,000,000,000,000 - while 500n looks on in awe with the simplicity of it's five-hundred-million - 500,000,000 - points of complexity. And once more, we can keep making n larger, because when using O(n) logic, we're only concerned with the largest possible n.
(You may argue that when n reaches infinity, n^2 is infinity times infinity, while 500n is five hundred times infinity, and didn't you just say that anything times infinity is infinity? That doesn't actually work for infinity times infinity. I think. It just doesn't. Can a mathematician back me up on this?)
This gives us the weirdly counterintuitive result where O(Seventy-five hundred billion spillion kajillion n) is considered an improvement on O(n * log n). Due to the fact that we're working with arbitrarily large "n", all that matters is how many times and where n appears in the O(). The rules of thumb mentioned in Julia Hayward's post will help you out, but here's some additional information to give you a hand.
One, because n gets as big as possible, O(n^2+61n+1682) = O(n^2), because the n^2 contributes so much more than the 61n as n gets arbitrarily large that the 61n is simply ignored, and the 61n term already dominates the 1682 term. If you see addition inside a O(), only concern yourself with the n with the highest degree.
Two, O(log10n) = O(log(any number)n), because for any base b, log10(x) = log_b(*x*)/log_b(10). Hence, O(log10n) = O(log_b(x) * 1/(log_b(10)). That 1/log_b(10) figure is a constant, which we've already shown drop out of O(n) notation.
Very loosely, you could imagine picking extremely large values of n, and calculating them. Might exceed your calculator's range for large factorials, though.
If the definition isn't clear, a more intuitive description is that "higher order" means "grows faster than, as n grows". Some rules of thumb:
O(n^a) is a higher order than O(n^b) if a > b.
log(n) grows more slowly than any positive power of n
exp(n) grows more quickly than any power of n
n! grows more quickly than exp(kn)
Oh, and as far as complexity goes, ignore the constant multipliers.
That's enough to deduce that the correct order is O(1), O(log n), O(2n) = O(n), O(n log n), O(n^2), O(n!)
For big-O complexities, the rule is that if two things vary only by constant factors, then they are the same. If one grows faster than another ignoring constant factors, then it is bigger.
So O(2n) and O(n) are the same -- they only vary by a constant factor (2). One way to think about it is to just drop the constants, since they don't impact the complexity.
The other problem with picking n and using a calculator is that it will give you the wrong answer for certain n. Big O is a measure of how fast something grows as n increases, but at any given n the complexities might not be in the right order. For instance, at n=2, n^2 is 4 and n! is 2, but n! grows quite a bit faster than n^2.
It's important to get that right, because for running times with multiple terms, you can drop the lesser terms -- ie, if O(f(n)) is 3n^2+2n+5, you can drop the 5 (constant), drop the 2n (3n^2 grows faster), then drop the 3 (constant factor) to get O(n^2)... but if you don't know that n^2 is bigger, you won't get the right answer.
In practice, you can just know that n is linear, log(n) grows more slowly than linear, n^a > n^b if a>b, 2^n is faster than any n^a, and n! is even faster than that. (Hint: try to avoid algorithms that have n in the exponent, and especially avoid ones that are n!.)
For the second part of your question, what happens with a binary search in the worst case? At each step, you cut the space in half until eventually you find your item (or run out of places to look). That is log2(2k). A search where you just walk through the list to find your item would take n steps. And we know from the first part that O(log(n)) < O(n), which is why binary search is faster than just a linear search.
Good luck with the exam!
In easy to understand terms the Big-O notation defines how quickly a particular function grows. Although it has its roots in pure mathematics its most popular application is the analysis of algorithms which can be analyzed on the basis of input size to determine the approximate number of operations that must be performed.
The benefit of using the notation is that you can categorize function growth rates by their complexity. Many different functions (an infinite number really) could all be expressed with the same complexity using this notation. For example, n+5, 2*n, and 4*n + 1/n all have O(n) complexity because the function g(n)=n most simply represents how these functions grow.
I put an emphasis on most simply because the focus of the notation is on the dominating term of the function. For example, O(2*n + 5) = O(2*n) = O(n) because n is the dominating term in the growth. This is because the notation assumes that n goes to infinity which causes the remaining terms to play less of a role in the growth rate. And, by convention, any constants or multiplicatives are omitted.
Read Big O notation and Time complexity for more a more in depth overview.
See this and look up for solutions here is first one.
While answering to this question a debate began in comments about complexity of QuickSort. What I remember from my university time is that QuickSort is O(n^2) in worst case, O(n log(n)) in average case and O(n log(n)) (but with tighter bound) in best case.
What I need is a correct mathematical explanation of the meaning of average complexity to explain clearly what it is about to someone who believe the big-O notation can only be used for worst-case.
What I remember if that to define average complexity you should consider complexity of algorithm for all possible inputs, count how many degenerating and normal cases. If the number of degenerating cases divided by n tend towards 0 when n get big, then you can speak of average complexity of the overall function for normal cases.
Is this definition right or is definition of average complexity different ? And if it's correct can someone state it more rigorously than I ?
You're right.
Big O (big Theta etc.) is used to measure functions. When you write f=O(g) it doesn't matter what f and g mean. They could be average time complexity, worst time complexity, space complexities, denote distribution of primes etc.
Worst-case complexity is a function that takes size n, and tells you what is maximum number of steps of an algorithm given input of size n.
Average-case complexity is a function that takes size n, and tells you what is expected number of steps of an algorithm given input of size n.
As you see worst-case and average-case complexity are functions, so you can use big O to express their growth.
If you're looking for a formal definition, then:
Average complexity is the expected running time for a random input.
Let's refer Big O Notation in Wikipedia:
Let f and g be two functions defined on some subset of the real numbers. One writes f(x)=O(g(x)) as x --> infinity if ...
So what the premise of the definition states is that the function f should take a number as an input and yield a number as an output. What input number are we talking about? It's supposedly a number of elements in the sequence to be sorted. What output number could we be talking about? It could be a number of operations done to order the sequence. But stop. What is a function? Function in Wikipedia:
a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output.
Are we producing exacly one output with our prior defition? No, we don't. For a given size of a sequence we can get a wide variation of number of operations. So to ensure the definition is applicable to our case we need to reduce a set possible outcomes (number of operations) to a single value. It can be a maximum ("the worse case"), a minimum ("the best case") or an average.
The conclusion is that talking about best/worst/average case is mathematically correct and using big O notation without those in context of sorting complexity is somewhat sloppy.
On the other hand, we could be more precise and use big Theta notation instead of big O notation.
I think your definition is correct, but your conclusions are wrong.
It's not necessarily true that if the proportion of "bad" cases tends to 0, then the average complexity is equal to the complexity of the "normal" cases.
For example, suppose that 1/(n^2) cases are "bad" and the rest "normal", and that "bad" cases take exactly (n^4) operations, whereas "normal" cases take exactly n operations.
Then the average number of operations required is equal to:
(n^4/n^2) + n(n^2-1)/(n^2)
This function is O(n^2), but not O(n).
In practice, though, you might find that time is polynomial in all cases, and the proportion of "bad" cases shrinks exponentially. That's when you'd ignore the bad cases in calculating an average.
Average case analysis does the following:
Take all inputs of a fixed length (say n), sum up all the running times of all instances of this length, and build the average.
The problem is you will probably have to enumerate all inputs of length n in order to come up with an average complexity.
Whenever I consider algorithms/data structures I tend to replace the log(N) parts by constants. Oh, I know log(N) diverges - but does it matter in real world applications?
log(infinity) < 100 for all practical purposes.
I am really curious for real world examples where this doesn't hold.
To clarify:
I understand O(f(N))
I am curious about real world examples where the asymptotic behaviour matters more than the constants of the actual performance.
If log(N) can be replaced by a constant it still can be replaced by a constant in O( N log N).
This question is for the sake of (a) entertainment and (b) to gather arguments to use if I run (again) into a controversy about the performance of a design.
Big O notation tells you about how your algorithm changes with growing input. O(1) tells you it doesn't matter how much your input grows, the algorithm will always be just as fast. O(logn) says that the algorithm will be fast, but as your input grows it will take a little longer.
O(1) and O(logn) makes a big diference when you start to combine algorithms.
Take doing joins with indexes for example. If you could do a join in O(1) instead of O(logn) you would have huge performance gains. For example with O(1) you can join any amount of times and you still have O(1). But with O(logn) you need to multiply the operation count by logn each time.
For large inputs, if you had an algorithm that was O(n^2) already, you would much rather do an operation that was O(1) inside, and not O(logn) inside.
Also remember that Big-O of anything can have a constant overhead. Let's say that constant overhead is 1 million. With O(1) that constant overhead does not amplify the number of operations as much as O(logn) does.
Another point is that everyone thinks of O(logn) representing n elements of a tree data structure for example. But it could be anything including bytes in a file.
I think this is a pragmatic approach; O(logN) will never be more than 64. In practice, whenever terms get as 'small' as O(logN), you have to measure to see if the constant factors win out. See also
Uses of Ackermann function?
To quote myself from comments on another answer:
[Big-Oh] 'Analysis' only matters for factors
that are at least O(N). For any
smaller factor, big-oh analysis is
useless and you must measure.
and
"With O(logN) your input size does
matter." This is the whole point of
the question. Of course it matters...
in theory. The question the OP asks
is, does it matter in practice? I
contend that the answer is no, there
is not, and never will be, a data set
for which logN will grow so fast as to
always be beaten a constant-time
algorithm. Even for the largest
practical dataset imaginable in the
lifetimes of our grandchildren, a logN
algorithm has a fair chance of beating
a constant time algorithm - you must
always measure.
EDIT
A good talk:
http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey
about halfway through, Rich discusses Clojure's hash tries, which are clearly O(logN), but the base of the logarithm is large and so the depth of the trie is at most 6 even if it contains 4 billion values. Here "6" is still an O(logN) value, but it is an incredibly small value, and so choosing to discard this awesome data structure because "I really need O(1)" is a foolish thing to do. This emphasizes how most of the other answers to this question are simply wrong from the perspective of the pragmatist who wants their algorithm to "run fast" and "scale well", regardless of what the "theory" says.
EDIT
See also
http://queue.acm.org/detail.cfm?id=1814327
which says
What good is an O(log2(n)) algorithm
if those operations cause page faults
and slow disk operations? For most
relevant datasets an O(n) or even an
O(n^2) algorithm, which avoids page
faults, will run circles around it.
(but go read the article for context).
This is a common mistake - remember Big O notation is NOT telling you about the absolute performance of an algorithm at a given value, it's simply telling you the behavior of an algorithm as you increase the size of the input.
When you take it in that context it becomes clear why an algorithm A ~ O(logN) and an algorithm B ~ O(1) algorithm are different:
if I run A on an input of size a, then on an input of size 1000000*a, I can expect the second input to take log(1,000,000) times as long as the first input
if I run B on an input of size a, then on an input of size 1000000*a, I can expect the second input to take about the same amount of time as the first input
EDIT: Thinking over your question some more, I do think there's some wisdom to be had in it. While I would never say it's correct to say O(lgN) == O(1), It IS possible that an O(lgN) algorithm might be used over an O(1) algorithm. This draws back to the point about absolute performance above: Just knowing one algorithm is O(1) and another algorithm is O(lgN) is NOT enough to declare you should use the O(1) over the O(lgN), it's certainly possible given your range of possible inputs an O(lgN) might serve you best.
You asked for a real-world example. I'll give you one. Computational biology. One strand of DNA encoded in ASCII is somewhere on the level of gigabytes in space. A typical database will obviously have many thousands of such strands.
Now, in the case of an indexing/searching algorithm, that log(n) multiple makes a large difference when coupled with constants. The reason why? This is one of the applications where the size of your input is astronomical. Additionally, the input size will always continue to grow.
Admittedly, these type of problems are rare. There are only so many applications this large. In those circumstances, though... it makes a world of difference.
Equality, the way you're describing it, is a common abuse of notation.
To clarify: we usually write f(x) = O(logN) to imply "f(x) is O(logN)".
At any rate, O(1) means a constant number of steps/time (as an upper bound) to perform an action regardless of how large the input set is. But for O(logN), number of steps/time still grows as a function of the input size (the logarithm of it), it just grows very slowly. For most real world applications you may be safe in assuming that this number of steps will not exceed 100, however I'd bet there are multiple examples of datasets large enough to mark your statement both dangerous and void (packet traces, environmental measurements, and many more).
For small enough N, O(N^N) can in practice be replaced with 1. Not O(1) (by definition), but for N=2 you can see it as one operation with 4 parts, or a constant-time operation.
What if all operations take 1hour? The difference between O(log N) and O(1) is then large, even with small N.
Or if you need to run the algorithm ten million times? Ok, that took 30minutes, so when I run it on a dataset a hundred times as large it should still take 30minutes because O(logN) is "the same" as O(1).... eh...what?
Your statement that "I understand O(f(N))" is clearly false.
Real world applications, oh... I don't know.... EVERY USE OF O()-notation EVER?
Binary search in sorted list of 10 million items for example. It's the very REASON we use hash tables when the data gets big enough. If you think O(logN) is the same as O(1), then why would you EVER use a hash instead of a binary tree?
As many have already said, for the real world, you need to look at the constant factors first, before even worrying about factors of O(log N).
Then, consider what you will expect N to be. If you have good reason to think that N<10, you can use a linear search instead of a binary one. That's O(N) instead of O(log N), which according to your lights would be significant -- but a linear search that moves found elements to the front may well outperform a more complicated balanced tree, depending on the application.
On the other hand, note that, even if log N is not likely to exceed 50, a performance factor of 10 is really huge -- if you're compute-bound, a factor like that can easily make or break your application. If that's not enough for you, you'll frequently see factors of (log N)^2 or (logN)^3 in algorithms, so even if you think you can ignore one factor of (log N), that doesn't mean you can ignore more of them.
Finally, note that the simplex algorithm for linear programming has a worst case performance of O(2^n). However, for practical problems, the worst case never comes up; in practice, the simplex algorithm is fast, relatively simple, and consequently very popular.
About 30 years ago, someone developed a polynomial-time algorithm for linear programming, but it was not initially practical because the result was too slow.
Nowadays, there are practical alternative algorithms for linear programming (with polynomial-time wost-case, for what that's worth), which can outperform the simplex method in practice. But, depending on the problem, the simplex method is still competitive.
The observation that O(log n) is oftentimes indistinguishable from O(1) is a good one.
As a familiar example, suppose we wanted to find a single element in a sorted array of one 1,000,000,000,000 elements:
with linear search, the search takes on average 500,000,000,000 steps
with binary search, the search takes on average 40 steps
Suppose we added a single element to the array we are searching, and now we must search for another element:
with linear search, the search takes on average 500,000,000,001 steps (indistinguishable change)
with binary search, the search takes on average 40 steps (indistinguishable change)
Suppose we doubled the number of elements in the array we are searching, and now we must search for another element:
with linear search, the search takes on average 1,000,000,000,000 steps (extraordinarily noticeable change)
with binary search, the search takes on average 41 steps (indistinguishable change)
As we can see from this example, for all intents and purposes, an O(log n) algorithm like binary search is oftentimes indistinguishable from an O(1) algorithm like omniscience.
The takeaway point is this: *we use O(log n) algorithms because they are often indistinguishable from constant time, and because they often perform phenomenally better than linear time algorithms.
Obviously, these examples assume reasonable constants. Obviously, these are generic observations and do not apply to all cases. Obviously, these points apply at the asymptotic end of the curve, not the n=3 end.
But this observation explains why, for example, we use such techniques as tuning a query to do an index seek rather than a table scan - because an index seek operates in nearly constant time no matter the size of the dataset, while a table scan is crushingly slow on sufficiently large datasets. Index seek is O(log n).
You might be interested in Soft-O, which ignores logarithmic cost. Check this paragraph in Wikipedia.
What do you mean by whether or not it "matters"?
If you're faced with the choice of an O(1) algorithm and a O(lg n) one, then you should not assume they're equal. You should choose the constant-time one. Why wouldn't you?
And if no constant-time algorithm exists, then the logarithmic-time one is usually the best you can get. Again, does it then matter? You just have to take the fastest you can find.
Can you give me a situation where you'd gain anything by defining the two as equal? At best, it'd make no difference, and at worst, you'd hide some real scalability characteristics. Because usually, a constant-time algorithm will be faster than a logarithmic one.
Even if, as you say, lg(n) < 100 for all practical purposes, that's still a factor 100 on top of your other overhead. If I call your function, N times, then it starts to matter whether your function runs logarithmic time or constant, because the total complexity is then O(n lg n) or O(n).
So rather than asking if "it matters" that you assume logarithmic complexity to be constant in "the real world", I'd ask if there's any point in doing that.
Often you can assume that logarithmic algorithms are fast enough, but what do you gain by considering them constant?
O(logN)*O(logN)*O(logN) is very different. O(1) * O(1) * O(1) is still constant.
Also a simple quicksort-style O(nlogn) is different than O(n O(1))=O(n). Try sorting 1000 and 1000000 elements. The latter isn't 1000 times slower, it's 2000 times, because log(n^2)=2log(n)
The title of the question is misleading (well chosen to drum up debate, mind you).
O(log N) == O(1) is obviously wrong (and the poster is aware of this). Big O notation, by definition, regards asymptotic analysis. When you see O(N), N is taken to approach infinity. If N is assigned a constant, it's not Big O.
Note, this isn't just a nitpicky detail that only theoretical computer scientists need to care about. All of the arithmetic used to determine the O function for an algorithm relies on it. When you publish the O function for your algorithm, you might be omitting a lot of information about it's performance.
Big O analysis is cool, because it lets you compare algorithms without getting bogged down in platform specific issues (word sizes, instructions per operation, memory speed versus disk speed). When N goes to infinity, those issues disappear. But when N is 10000, 1000, 100, those issues, along with all of the other constants that we left out of the O function, start to matter.
To answer the question of the poster: O(log N) != O(1), and you're right, algorithms with O(1) are sometimes not much better than algorithms with O(log N), depending on the size of the input, and all of those internal constants that got omitted during Big O analysis.
If you know you're going to be cranking up N, then use Big O analysis. If you're not, then you'll need some empirical tests.
In theory
Yes, in practical situations log(n) is bounded by a constant, we'll say 100. However, replacing log(n) by 100 in situations where it's correct is still throwing away information, making the upper bound on operations that you have calculated looser and less useful. Replacing an O(log(n)) by an O(1) in your analysis could result in your large n case performing 100 times worse than you expected based on your small n case. Your theoretical analysis could have been more accurate and could have predicted an issue before you'd built the system.
I would argue that the practical purpose of big-O analysis is to try and predict the execution time of your algorithm as early as possible. You can make your analysis easier by crossing out the log(n) terms, but then you've reduced the predictive power of the estimate.
In practice
If you read the original papers by Larry Page and Sergey Brin on the Google architecture, they talk about using hash tables for everything to ensure that e.g. the lookup of a cached web page only takes one hard-disk seek. If you used B-tree indices to lookup you might need four or five hard-disk seeks to do an uncached lookup [*]. Quadrupling your disk requirements on your cached web page storage is worth caring about from a business perspective, and predictable if you don't cast out all the O(log(n)) terms.
P.S. Sorry for using Google as an example, they're like Hitler in the computer science version of Godwin's law.
[*] Assuming 4KB reads from disk, 100bn web pages in the index, ~ 16 bytes per key in a B-tree node.
As others have pointed out, Big-O tells you about how the performance of your problem scales. Trust me - it matters. I have encountered several times algorithms that were just terrible and failed to meet the customers demands because they were too slow. Understanding the difference and finding an O(1) solution is a lot of times a huge improvement.
However, of course, that is not the whole story - for instance, you may notice that quicksort algorithms will always switch to insertion sort for small elements (Wikipedia says 8 - 20) because of the behaviour of both algorithms on small datasets.
So it's a matter of understanding what tradeoffs you will be doing which involves a thorough understanding of the problem, the architecture, & experience to understand which to use, and how to adjust the constants involved.
No one is saying that O(1) is always better than O(log N). However, I can guarantee you that an O(1) algorithm will also scale way better, so even if you make incorrect assumptions about how many users will be on the system, or the size of the data to process, it won't matter to the algorithm.
Yes, log(N) < 100 for most practical purposes, and No, you can not always replace it by constant.
For example, this may lead to serious errors in estimating performance of your program. If O(N) program processed array of 1000 elements in 1 ms, then you are sure it will process 106 elements in 1 second (or so). If, though, the program is O(N*logN), then it will take it ~2 secs to process 106 elements. This difference may be crucial - for example, you may think you've got enough server power because you get 3000 requests per hour and you think your server can handle up to 3600.
Another example. Imagine you have function f() working in O(logN), and on each iteration calling function g(), which works in O(logN) as well. Then, if you replace both logs by constants, you think that your program works in constant time. Reality will be cruel though - two logs may give you up to 100*100 multiplicator.
The rules of determining the Big-O notation are simpler when you don't decide that O(log n) = O(1).
As krzysio said, you may accumulate O(log n)s and then they would make a very noticeable difference. Imagine you do a binary search: O(log n) comparisons, and then imagine that each comparison's complexity O(log n). If you neglect both you get O(1) instead of O(log2n). Similarly you may somehow arrive at O(log10n) and then you'll notice a big difference for not too large "n"s.
Assume that in your entire application, one algorithm accounts for 90% of the time the user waits for the most common operation.
Suppose in real time the O(1) operation takes a second on your architecture, and the O(logN) operation is basically .5 seconds * log(N). Well, at this point I'd really like to draw you a graph with an arrow at the intersection of the curve and the line, saying, "It matters right here." You want to use the log(N) op for small datasets and the O(1) op for large datasets, in such a scenario.
Big-O notation and performance optimization is an academic exercise rather than delivering real value to the user for operations that are already cheap, but if it's an expensive operation on a critical path, then you bet it matters!
For any algorithm that can take inputs of different sizes N, the number of operations it takes is upper-bounded by some function f(N).
All big-O tells you is the shape of that function.
O(1) means there is some number A such that f(N) < A for large N.
O(N) means there is some A such that f(N) < AN for large N.
O(N^2) means there is some A such that f(N) < AN^2 for large N.
O(log(N)) means there is some A such that f(N) < AlogN for large N.
Big-O says nothing about how big A is (i.e. how fast the algorithm is), or where these functions cross each other. It only says that when you are comparing two algorithms, if their big-Os differ, then there is a value of N (which may be small or it may be very large) where one algorithm will start to outperform the other.
you are right, in many cases it does not matter for pracitcal purposes. but the key question is "how fast GROWS N". most algorithms we know of take the size of the input, so it grows linearily.
but some algorithms have the value of N derived in a complex way. if N is "the number of possible lottery combinations for a lottery with X distinct numbers" it suddenly matters if your algorithm is O(1) or O(logN)
Big-OH tells you that one algorithm is faster than another given some constant factor. If your input implies a sufficiently small constant factor, you could see great performance gains by going with a linear search rather than a log(n) search of some base.
O(log N) can be misleading. Take for example the operations on Red-Black trees.
The operations are O(logN) but rather complex, which means many low level operations.
Whenever N is the amount of objects that is stored in some kind of memory, you're correct. After all, a binary search through EVERY byte representable by a 64-bit pointer can be achieved in just 64 steps. Actually, it's possible to do a binary search of all Planck volumes in the observable universe in just 618 steps.
So in almost all cases, it's safe to approximate O(log N) with O(N) as long as N is (or could be) a physical quantity, and we know for certain that as long as N is (or could be) a physical quantity, then log N < 618
But that is assuming N is that. It may represent something else. Note that it's not always clear what it is. Just as an example, take matrix multiplication, and assume square matrices for simplicity. The time complexity for matrix multiplication is O(N^3) for a trivial algorithm. But what is N here? It is the side length. It is a reasonable way of measuring the input size, but it would also be quite reasonable to use the number of elements in the matrix, which is N^2. Let M=N^2, and now we can say that the time complexity for trivial matrix multiplication is O(M^(3/2)) where M is the number of elements in a matrix.
Unfortunately, I don't have any real world problem per se, which was what you asked. But at least I can make up something that makes some sort of sense:
Let f(S) be a function that returns the sum of the hashes of all the elements in the power set of S. Here is some pesudo:
f(S):
ret = 0
for s = powerset(S))
ret += hash(s)
Here, hash is simply the hash function, and powerset is a generator function. Each time it's called, it will generate the next (according to some order) subset of S. A generator is necessary, because we would not be able to store the lists for huge data otherwise. Btw, here is a python example of such a power set generator:
def powerset(seq):
"""
Returns all the subsets of this set. This is a generator.
"""
if len(seq) <= 1:
yield seq
yield []
else:
for item in powerset(seq[1:]):
yield [seq[0]]+item
yield item
https://www.technomancy.org/python/powerset-generator-python/
So what is the time complexity for f? As with the matrix multiplication, we can choose N to represent many things, but at least two makes a lot of sense. One is number of elements in S, in which case the time complexity is O(2^N), but another sensible way of measuring it is that N is the number of element in the power set of S. In this case the time complexity is O(N)
So what will log N be for sensible sizes of S? Well, list with a million elements are not unusual. If n is the size of S and N is the size of P(S), then N=2^n. So O(log N) = O(log 2^n) = O(n * log 2) = O(n)
In this case it would matter, because it's rare that O(n) == O(log n) in the real world.
I do not believe algorithms where you can freely choose between O(1) with a large constant and O(logN) really exists. If there is N elements to work with at the beginning, it is just plain impossible to make it O(1), the only thing that is possible is move your N to some other part of your code.
What I try to say is that in all real cases I know off you have some space/time tradeoff, or some pre-treatment such as compiling data to a more efficient form.
That is, you do not really go O(1), you just move the N part elsewhere. Either you exchange performance of some part of your code with some memory amount either you exchange performance of one part of your algorithm with another one. To stay sane you should always look at the larger picture.
My point is that if you have N items they can't disappear. In other words you can choose between inefficient O(n^2) algorithms or worse and O(n.logN) : it's a real choice. But you never really go O(1).
What I try to point out is that for every problem and initial data state there is a 'best' algorithm. You can do worse but never better. With some experience you can have a good guessing of what is this intrisic complexity. Then if your overall treatment match that complexity you know you have something. You won't be able to reduce that complexity, but only to move it around.
If problem is O(n) it won't become O(logN) or O(1), you'll merely add some pre-treatment such that the overall complexity is unchanged or worse, and potentially a later step will be improved. Say you want the smaller element of an array, you can search in O(N) or sort the array using any common O(NLogN) sort treatment then have the first using O(1).
Is it a good idea to do that casually ? Only if your problem asked also for second, third, etc. elements. Then your initial problem was truly O(NLogN), not O(N).
And it's not the same if you wait ten times or twenty times longer for your result because you simplified saying O(1) = O(LogN).
I'm waiting for a counter-example ;-) that is any real case where you have choice between O(1) and O(LogN) and where every O(LogN) step won't compare to the O(1). All you can do is take a worse algorithm instead of the natural one or move some heavy treatment to some other part of the larger pictures (pre-computing results, using storage space, etc.)
Let's say you use an image-processing algorithm that runs in O(log N), where N is the number of images. Now... stating that it runs in constant time would make one believe that no matter how many images there are, it would still complete its task it about the same amount of time. If running the algorithm on a single image would hypothetically take a whole day, and assuming that O(logN) will never be more than 100... imagine the surprise of that person that would try to run the algorithm on a very large image database - he would expect it to be done in a day or so... yet it'll take months for it to finish.