check whether the ROBDD diagram is correct - data-structures

Here below I have shown a BDD and its ROBDD. Can someone please let me know whether the drawn diagram is correct. If not please let me know the mistake that I have done.
BDD
Answer - ROBDD

Consider valuation 0100: it leads to 1 in the first diagram and to 0 in the second.

Related

Algorithm design manual solution to 1-8

I'm currently reading through The Algorithm Design Manual by Steven S. Skiena. Some of the concepts in the book I haven't used in almost 7 years. Even while I was in college it was difficult for me to understand how some of my classmates came up with some of these proofs. Now, I'm completely stuck on one of the exercises. Please help.
Will you please answer this question and explain how you came up with what to use for your Base case and why each step proves why it is valid and correct. I know this might be asking a lot, but I really need help understanding how to do these.
Thank you in advance!
Proofs of Correctness
Question:
1-8. Proove the correctness of the following algorithm for evaluating a polynomial.
$$P(x) = a_nx_n+a_n−1x_n−1+⋯+a_1x+a_0$$
&function horner(A,x)
p=A_n
for i from n−1 to 0
p=p∗x+Ai
return p$
btw, off topic: Sorry guys, I'm not sure how to correctly add the mathematical formatting for the formula. I tried by addign '$' around each section. Not sure why that isn't working.
https://cs.stackexchange.com/ is probably better for this. Also I'm pretty sure that $$ formatting only works on some StackExchange sites. But anyways, think about what this algorithm is doing at each step.
We start with p = A_n.
Then we take p = p*x + A_{n-1}. So what is this doing? We now have p = x*A_n + A_{n-1}.
I'll try one more step. p = p*x + A_{n-2} so now p = (x^2)*A_n + x*A_{n-1} + A{n-2} (here x^2 means x to the power 2, of course).
You should be able to take it from here.

What are "d-smooth sequences?"

I have a homework problem that tells me this:
I can't seem to make sense of what d-smooth means. Can someone please help explain it in a more understandable way? Thanks!
A sequence is d-smooth if you can increment/decrement each number at most d times to obtain a (strictly) increasing sequence.

diophantine analysis in maxima

I have defined an extended Euclidean algorithm in Maxima as
ext_euclid(a,b):=block(
[x,y,d,x_old,y_old,d_old],
if b = 0 then return([1,0,a])
else ([x_old,y_old,d_old]:ext_euclid(b,mod(a,b)),
[x,y,d]:[y_old,x_old-quotient(a,b)*y_old,d_old],
return([x,y,d])));
in order to solve linear Diophantine equations of the form a+b=c where gcd(a,b)=1, however if a-b=c I get -1 returned by the algorithm for the divisor but gcd(a,-b) as before. Is my algorithm wrong, or can it be used for a-b=c?
Iain
I don't quite understand what the problem is. Can you please give two examples, one in which the result matches what you expected, and one in which it doesn't (and please say what's your expected result in that case).
EDIT: OP replies: "to solve 5x+7y is 23 ext_euclid (5,7) returns [3,-2,1] where gcd(5,7) is 1 however for 5x-7y is 23 ext_euclid(5,-7) returns [-3,1,-1] but gcd(5,-7) is still 1 this fails Bezout's identity ax+by is gcd(a,b)"
Also if you are trying to implement a particular statement of the algorithm, can you please link to it or copy it here.
OP replies: "code at http://mvngu.wordpress.com/2009/08/25/elementary-number-theory-using-maxima/"
One possible thing to look at: does the mod function behave as you expect it?
OP replies: "mod(5,7) is, mod(5,-7) is -2"

LightsOut game solving method "reduced echolean ".Does it always gives correct result?

I am studing the algorithm given here, and
somewhere it is claimed that it is efficent and always give correct result.
But, I try to run the algorithm and it is not giving me correct or efficent output for the following patterns.
For 5 x 5 grid, where (n) is light number and 0/1 state whethere the light is on/off, 1 ON and 0 OFF.
(1)1 (2)0 (3)0 (4)0 (5)0 the output should be 1,7,13,19,25(Pressing this light will make the full grid OFF. But what I am getting is this
(6)0 (7)1 (8)0 (9)0 (10)0 3,5,6,7,8,10,13,16,18,19,20,21,23.
(11)0 (12)0 (13)1 (14)0 (15)0
(16)0 (17)0 (18)0 (19)1 (20)0
(21)0 (22)0 (23)0 (24)0 (25)1
While for some pattern it is giving me correct output as below.
(1)0 (2)0 (3)0 (4)0 (5)1 the output should be 5,9,13,17,21, and the algorithm is giving me correct result.
(6)0 (7)0 (8)0 (9)1 (10)0
(11)0 (12)0 (13)1 (14)0 (15)0
(16)0 (17)1 (18)0 (19)0 (20)0
(21)1 (22)0 (23)0 (24)0 (25)0
If somebody need a code let me know I can post it.
Can please somebody let me know if this methods will always give correct as well as efficient result or not ?
(I'm the author of the code you linked to.) To the best of my knowledge, the code is correct (and I'm sure that the high-level algorithm of using Gaussian elimination over GF(2) is correct). The solution it produces is guaranteed to solve the puzzle, though it's not necessarily the minimal number of button presses. The "efficiency" I was referring to in the writeup refers to the time complexity of solving the puzzle overall (it can solve a Lights Out grid in polynomial time, as opposed to the exponential-time brute-force solution of trying all possible combinations) rather than to the "efficiency" of the generated solution.
I actually don't know any efficient algorithms for finding a solution requiring the minimum number of button presses. Let me know if you find one!
Hope this helps!

backtracking line search in R

why backtracking(step halving) line serach get fail? actually sometimes in my R code i have an ascent direction and step size $t = 1e-21$ which means that Error: Line search failed (tol=1e-10) and i chose alpha=0.3 and beta=0.5.
I'm going to make a wild guess and say that thanks to floating point round off, you can't reliably make steps that small.
But really I don't know. Nor will anyone else until you follow the suggestion to actually show us what is not working.

Resources