Matlab image rotation - image

I am new to image processing, I have implemented a code for image warping and it works perfectly. I would like to improve the code by using linear interpolation to rotate the image WITHOUT using the built-in function (interp). Here is my code:
close all;
clear all;
img = 'woods.jpg';
input_image =double(imread(img))./255;
H=size(input_image,1);
W=size(input_image,2);
th=pi/4;
s0 = 2;
s1 = 2;
x0 = -W/2;
x1 = -H/2;
T=[1 0 x0 ; ...
0 1 x1 ; ...
0 0 1];
RST = [ (s0*cos(th)) (-s1*sin(th)) ((s0*x0*cos(th))-(s1*x1*sin(th))); ...
(s0*sin(th)) (s1*cos(th)) ((s0*x0*sin(th))+(s1*x1*cos(th))); ...
0 0 1];
M=inv(T)*R;
N = inv(M);
output_image=zeros(H,W,3);
for i=1:W
for j=1:H
x = [i ; j ; 1];
y = N * x;
a = y(1)/y(3);
b = y(2)/y(3);
a = round(a);
b = round(b);
if (a>0 && a<=W && b>0 && b<=H)
output_image(j,i,:)=input_image(b,a,:);
end
end
end
imgshow(output_image);

Check the following solution:
I verified implementation by comparing to Matalb build in function [imwarp][1].
close all;
clear all;
img = 'peppers.png';
input_image =double(imread(img))./255;
H=size(input_image,1); % height
W=size(input_image,2); % width
th=pi/4;
s0 = 2;
s1 = 2;
x0 = -W/2;
x1 = -H/2;
T=[1 0 x0 ; ...
0 1 x1 ; ...
0 0 1];
RST = [ (s0*cos(th)) (-s1*sin(th)) ((s0*x0*cos(th))-(s1*x1*sin(th))); ...
(s0*sin(th)) (s1*cos(th)) ((s0*x0*sin(th))+(s1*x1*cos(th))); ...
0 0 1];
M=inv(T)*RST;
N = inv(M);
output_image=zeros(H,W,3);
for i=1:W
for j=1:H
x = [i ; j ; 1];
y = N * x;
a = y(1)/y(3);
b = y(2)/y(3);
%Nearest neighbor
%a = round(a);
%b = round(b);
x1 = floor(a);
y1 = floor(b);
x2 = x1 + 1;
y2 = y1 + 1;
%Bi-linear interpolation ilsutration:
%Image coordinates style (horizontal index first)
%
%(x1,y1) | (x2,y1)
% | 1-dy
% 1-dx | dx
% ------(a,b)------------
% |
% |
% |
% | dy
% |
% |
%(x1,y2) | (x2,y2)
if ((x1 >= 1) && (y1 >= 1) && (x2 <= W) && (y2 <= H))
%Load 2x2 pixels
i11 = input_image(y1, x1, :); %Top left pixel
i21 = input_image(y2, x1, :); %Bottom left pixel
i12 = input_image(y1, x2, :); %Top right pixel
i22 = input_image(y2, x2, :); %Bottom right pixel
%Interpolation wieghts
dx = x2 - a;
dy = y2 - b;
%Bi-lienar interpolation
output_image(j, i, :) = i11*dx*dy + i21*dx*(1-dy) + i12*(1-dx)*dy + i22*(1-dx)*(1-dy);
end
end
end
imshow(output_image);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Verify implementation by comparing with Matalb build in function imwarp:
tform = affine2d(M');
ref_image = imwarp(input_image, tform, 'OutputView', imref2d(size(input_image)), 'Interp', 'linear');
figure;imshow(ref_image)
figure;imshow(output_image - ref_image)
max_diff = max(abs(output_image(:) - ref_image(:)));
disp(['Maximum difference from imwarp = ', num2str(max_diff)]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Result:
Remark:
I missed the following execelnt post that resizes an image using bilinear interpolation (bilinear interpolation is explained better):
Resize an image with bilinear interpolation without imresize

Related

Matalb code Error in Selecting Disc view of Waves

I am getting an error when I run this code for disc waves. The code is attached.
The Error is in line 137 and 292. Please help in resolving issue.
function waves
% WAVES Wave equation in one and two space dimensions.
% The two-dimensional domains include a pi-by-pi square, a unit disc,
% a three-quarter circular sector and the L-shaped union of three squares.
% The eigenfunctions of the square are sin(m*x)*sin(n*y). With polar
% coordinates, the eigenfunctions of the disc and the sector involve Bessel
% functions. The eigenfunctions of the L-shaped domain also involve
% Bessel functions and are computed by the MATLAB function membranetx.m.
% 2-D eigenvalues and eigenfunctions
m = 11; % Determines number of grid points
speed = 1;
bvals = [1; 0; 0; 0; 0];
t = 0;
while bvals(5) == 0
% Initialize figure
shg
clf reset
set(gcf,'doublebuffer','on','menubar','none','tag','', ...
'numbertitle','off','name','Waves','colormap',hot(64));
for k= 1:5
b(k) = uicontrol('style','toggle','value',bvals(k), ...
'units','normal','position',[.15*k .01 .14 .05]);
end
set(b(1),'style','pop','string', ...
{'1-d','square','disc','sector'})
set(b(2),'string','modes/wave')
set(b(3),'string','slower')
set(b(4),'string','faster')
set(b(5),'string','close')
if bvals(3)==1
speed = speed/sqrt(2);
set(b(3),'value',0);
end
if bvals(4)==1
speed = speed*sqrt(2);
set(b(4),'value',0);
end
bvals = cell2mat(get(b,'value'));
region = bvals(1);
modes = bvals(2)==0;
if region == 1
% 1-D
x = (0:4*m)/(4*m)*pi;
orange = [1 1/3 0];
gray = get(gcf,'color');
if modes
% 1-D modes
for k = 1:4
subplot(2,2,k)
h(k) = plot(x,zeros(size(x)));
axis([0 pi -3/2 3/2])
set(h(k),'color',orange,'linewidth',3)
set(gca,'color',gray','xtick',[],'ytick',[])
end
delta = 0.005*speed;
bvs = bvals;
while all(bvs == bvals)
t = t + delta;
for k = 1:4
u = sin(k*t)*sin(k*x);
set(h(k),'ydata',u)
end
drawnow
bvs = cell2mat(get(b,'value'));
end
else
% 1-D wave
h = plot(x,zeros(size(x)));
axis([0 pi -9/4 9/4])
set(h,'color',orange,'linewidth',3)
set(gca,'color',gray','xtick',[],'ytick',[])
delta = 0.005*speed;
a = 1./(1:4);
bvs = bvals;
while all(bvs == bvals)
t = t + delta;
u = zeros(size(x));
for k = 1:4
u = u + a(k)*sin(k*t)*sin(k*x);
end
set(h,'ydata',u)
drawnow
bvs = cell2mat(get(b,'value'));
end
end
elseif region <= 5
switch region
case 2
% Square
x = (0:2*m)/(2*m)*pi;
y = x';
lambda = zeros(4,1);
V = cell(4,1);
k = 0;
for i = 1:2
for j = 1:2
k = k+1;
lambda(k) = i^2 + j^2;
V{k} = sin(i*y)*sin(j*x);
end
end
ax = [0 pi 0 pi -1.75 1.75];
case 3
% Disc, mu = zeros of J_0(r) and J_1(r)
mu = [bjzeros(0,2) bjzeros(1,2)];
[r,theta] = meshgrid((0:m)/m,(-m:m)/m*pi);
x = r.*cos(theta);
y = r.*sin(theta);
V = cell(4,1);
k = 0;
for j = 0:1
for i = 1:2
k = k+1;
if j == 0
V{k} = besselj(0,mu(k)*r);
else
V{k} = besselj(j,mu(k)*r).*sin(j*theta);
end
V{k} = V{k}/max(max(abs(V{k})));
end
end
lambda = mu.^2;
ax = [-1 1 -1 1 -1.75 1.75];
case 4
% Circular sector , mu = zeros of J_(2/3)(r) and J_(4/3)(r)
mu = [bjzeros(2/3,2) bjzeros(4/3,2)];
[r,theta] = meshgrid((0:m)/m,(3/4)*(0:2*m)/m*pi);
x = r.*cos(theta+pi);
y = r.*sin(theta+pi);
V = cell(4,1);
k = 0;
for j = 1:2
for i = 1:2
k = k+1;
alpha = 2*j/3;
V{k} = besselj(alpha,mu(k)*r).*sin(alpha*theta);
V{k} = V{k}/max(max(abs(V{k})));
end
end
lambda = mu.^2;
ax = [-1 1 -1 1 -1.75 1.75];
case 5\
% L-membrane
x = (-m:m)/m;
y = x';
lambda = zeros(4,1);
V = cell(4,1);
for k = 1:4
[L lambda(k)] = membranetx(k,m,9,9);
L(m+2:2*m+1,m+2:2*m+1) = NaN;
V{k} = rot90(L,-1);
end
ax = [-1 1 -1 1 -1.75 1.75];
end
if modes
% 2-D modes
p = [.02 .52 .02 .52];
q = [.52 .52 .02 .02];
for k = 1:4
axes('position',[p(k) q(k) .46 .46]);
h(k) = surf(x,y,zeros(size(V{k})));
axis(ax)
axis off
view(225,30);
caxis([-1.5 1]);
end
delta = .08*speed;
mu = sqrt(lambda(:));
bvs = bvals;
while all(bvs == bvals)
t = t + delta;
for k = 1:4
U = 1.5*sin(mu(k)*t)*V{k};
set(h(k),'zdata',U)
set(h(k),'cdata',U)
end
drawnow
bvs = cell2mat(get(b,'value'));
end
else
% 2-D wave
h = surf(x,y,zeros(size(V{1})));
axis(ax);
axis off
view(225,30);
caxis([-1.5 1]);
delta = .02*speed;
mu = sqrt(lambda(:));
a = 1.25./(1:4);
bvs = bvals;
while all(bvs == bvals)
t = t + delta;
U = zeros(size(V{1}));
for k = 1:4
U = U + a(k)*sin(mu(k)*t)*V{k};
end
set(h,'zdata',U)
set(h,'cdata',U)
drawnow
bvs = cell2mat(get(b,'value'));
end
end
elseif region == 6
figure
bizcard
set(b(1),'value',1)
end
% Retain uicontrol values
bvals = cell2mat(get(b,'value'));
end
close
% -------------------------------
function z = bjzeros(n,k)
% BJZEROS Zeros of the Bessel function.
% z = bjzeros(n,k) is the first k zeros of besselj(n,x)
% delta must be chosen so that the linear search can take
% steps as large as possible without skipping any zeros.
% delta is approx bjzero(0,2)-bjzero(0,1)
delta = .99*pi;
Jsubn = inline('besselj(n,x)''x','n');
a = n+1;
fa = besselj(n,a);
z = zeros(1,k);
j = 0;
while j < k
b = a + delta;
fb = besselj(n,b);
if sign(fb) ~= sign(fa)
j = j+1;
z(j) = fzerotx(Jsubn,[a b],n);
end
a = b;
fa = fb;
end

Fast summing of subarrays in Python

I have a data cube a of radius w and for every element of that cube, I would like to add the element and all surrounding values within a cube of radius r, where r < w. The result should be returned in an array of the same shape, b.
As a simple example, suppose:
a = numpy.ones(shape=(2*w,2*w,2*w),dtype='float32')
kernel = numpy.ones(shape=(2*r,2*r,2*r),dtype='float32')
b = convolve(a,kernel,mode='constant',cval=0)
then b would have the value (2r)(2r)(2r) for all the indices not on the edge.
Currently I am using a loop to do this and it is very slow, especially for larger w and r. I tried scipy convolution but got little speedup over the loop. I am now looking at numba's parallel computation feature but cannot figure out how to rewrite the code to work with numba. I have a Nvidia RTX card so CUDA GPU calculations are also possible.
Suggestions are welcome.
Here is my current code:
for x in range(0,w*2):
print(x)
for y in range(0,w*2):
for z in range(0,w*2):
if x >= r:
x1 = x - r
else:
x1 = 0
if x < w*2-r:
x2 = x + r
else:
x2 = w*2 - 1
if y >= r:
y1 = y - r
else:
y1 = 0
if y < w*2-r:
y2 = y + r
else:
y2 = w*2 - 1
if z >= r:
z1 = z - r
else:
z1 = 0
if z < w*2-r:
z2 = z + r
else:
z2 = w*2 - 1
b[x][y][z] = numpy.sum(a[x1:x2,y1:y2,z1:z2])
return b
Here is a very simple version of your code so that it works with numba. I was finding speed-ups of a factor of 10 relative to the pure numpy code. However, you should be able to get even greater speed-ups using a FFT convolution algorithm (e.g. scipy's fftconvolve). Can you share your attempt at getting convolution to work?
from numba import njit
#njit
def sum_cubes(a,b,w,r):
for x in range(0,w*2):
#print(x)
for y in range(0,w*2):
for z in range(0,w*2):
if x >= r:
x1 = x - r
else:
x1 = 0
if x < w*2-r:
x2 = x + r
else:
x2 = w*2 - 1
if y >= r:
y1 = y - r
else:
y1 = 0
if y < w*2-r:
y2 = y + r
else:
y2 = w*2 - 1
if z >= r:
z1 = z - r
else:
z1 = 0
if z < w*2-r:
z2 = z + r
else:
z2 = w*2 - 1
b[x,y,z] = np.sum(a[x1:x2,y1:y2,z1:z2])
return b
EDIT: Your original code has a small bug in it. The way numpy indexing works, the final line should be
b[x,y,z] = np.sum(a[x1:x2+1,y1:y2+1,z1:z2+1])
unless you want the cube to be off-centre.
Assuming you do want the cube to be centred, then a much faster way to do this calculation is using scipy's uniform filter:
from scipy.ndimage import uniform_filter
def sum_cubes_quickly(a,b,w,r):
b = uniform_filter(a,mode='constant',cval=0,size=2*r+1)*(2*r+1)**3
return b
A few quick runtime comparisons for randomly generated data with w = 50, r = 10:
Original raw numpy code - 15.1 sec
Numba'd numpy code - 8.1 sec
uniform_filter - 13.1 ms

Image rotation in matlab using bilinear-interpolation

clear
I = imread('256.jpg');
%imshow(I);
center = 128;
[x, y] = size(I); % declare image size array
Original = [x, y];
Rotated_I = zeros(x,y); %declare size of array to store pixel
theta = 90;
for row = 1:y
for column = 1:x
x_original = (column - 128) * cos(theta) - (row - 128)*sin(theta);
y_original = (column - 128) * sin(theta) + (row - 128)*cos(theta); % reverse rotate
p = floor(x_original);
q = floor(y_original);
a = y_original - p;
b = x_original - q; %
Rotated_I(column, row) = (1-a)*((1-b)*Original(p,q)+b*Original(p,q+1))+a*((q-b)*Original(p+1,q)+b*Original(p+1,q+1)); % Find pixel using bilinear interpolation
end
end
imshow(Rotated_I);
I tried to rotate image using reverse rotate and bilinear interpolation, but only i see is error message. It says "the first index exceeds array". Is there anything wrong in my code?
Here is a working version with a number of changes. The main difference is that it checks whether a coordinate exists in the original image before adding that to the rotate image. This allows for arbitrary rotations, like 45 degrees. Also, images in MATLAB have y as the first dimension and x as the second, so are accessed as I(y, x) or I(row, column).
clear
I = imread('256.jpg');
% imshow(I);
center = 128;
[y, x] = size(I); % in MATLAB, images are y-by-x in size (ie. y is dimension 1)
Original = I; % Original needs to be the image I
Rotated_I = zeros(y, x);
theta = 90;
for row = 1:y
for column = 1:x
x_original = (column - center) * cosd(theta) - (row - center)*sind(theta) + center; % theta is in degrees so use cosd and sind
y_original = (column - center) * sind(theta) + (row - center)*cosd(theta) + center; % also add center back on
p = floor(y_original); % x_original and y_original were swapped here
q = floor(x_original); % x_original and y_original were swapped here
a = y_original - p;
b = x_original - q;
% check if the coordinate is in the original image to prevent errors
if p > 0 && p <= y && q > 0 && q <= x
Rotated_I(row, column) = Rotated_I(row, column) + (1-a)*(1-b)*Original(p,q);
end
if p > 0 && p <= y && q+1 > 0 && q+1 <= x
Rotated_I(row, column) = Rotated_I(row, column) + (1-a)*b*Original(p,q+1);
end
if p+1 > 0 && p+1 <= y && q > 0 && q <= x
Rotated_I(row, column) = Rotated_I(row, column) + a*(1-b)*Original(p+1,q);
end
if p+1 > 0 && p+1 <= y && q+1 > 0 && q+1 <= x
Rotated_I(row, column) = Rotated_I(row, column) + a*b*Original(p+1,q+1);
end
end
end
% convert to uint image so it displays properly (double expects values from 0 to 1)
imshow(uint8(Rotated_I));
I do not know if you necessarily want to have your own implementation or not. But if not, you could always use imrotate:
Rotated_I = imrotate(I, 90, 'bilinear', 'crop');
90 => Degrees of rotation
'bilinear' => Bilinear interpolation (alternatives: nearest, bicubic)
'crop' => Maintain the pixel size of the rotated image the same as the input image
imrotate is part of the Image Processing Toolbox.

Find area of two overlapping circles using monte carlo method

Actually i have two intersecting circles as specified in the figure
i want to find the area of each part separately using Monte carlo method in Matlab .
The code doesn't draw the rectangle or the circles correctly so
i guess what is wrong is my calculation for the x and y and i am not much aware about the geometry equations for solving it so i need help about the equations.
this is my code so far :
n=1000;
%supposing that a rectangle will contain both circles so :
% the mid point of the distance between 2 circles will be (0,6)
% then by adding the radius of the left and right circles the total distance
% will be 27 , 11 from the left and 16 from the right
% width of rectangle = 24
x=27.*rand(n-1)-11;
y=24.*rand(n-1)+2;
count=0;
for i=1:n
if((x(i))^2+(y(i))^2<=25 && (x(i))^2+(y(i)-12)^2<=100)
count=count+1;
figure(2);
plot(x(i),y(i),'b+')
hold on
elseif(~(x(i))^2+(y(i))^2<=25 &&(x(i))^2+(y(i)-12)^2<=100)
figure(2);
plot(x(i),y(i),'y+')
hold on
else
figure(2);
plot(x(i),y(i),'r+')
end
end
Here are the errors I found:
x = 27*rand(n,1)-5
y = 24*rand(n,1)-12
The rectangle extents were incorrect, and if you use rand(n-1) will give you a (n-1) by (n-1) matrix.
and
first If:
(x(i))^2+(y(i))^2<=25 && (x(i)-12)^2+(y(i))^2<=100
the center of the large circle is at x=12 not y=12
Second If:
~(x(i))^2+(y(i))^2<=25 &&(x(i)-12)^2+(y(i))^2<=100
This code can be improved by using logical indexing.
For example, using R, you could do (Matlab code is left as an excercise):
n = 10000
x = 27*runif(n)-5
y = 24*runif(n)-12
plot(x,y)
r = (x^2 + y^2)<=25 & ((x-12)^2 + y^2)<=100
g = (x^2 + y^2)<=25
b = ((x-12)^2 + y^2)<=100
points(x[g],y[g],col="green")
points(x[b],y[b],col="blue")
points(x[r],y[r],col="red")
which gives:
Here is my generic solution for any two circles (without any hardcoded value):
function [ P ] = circles_intersection_area( k1, k2, N )
%CIRCLES_INTERSECTION_AREA Summary...
% Adnan A.
x1 = k1(1);
y1 = k1(2);
r1 = k1(3);
x2 = k2(1);
y2 = k2(2);
r2 = k2(3);
if sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)) >= (r1 + r2)
% no intersection
P = 0;
return
end
% Wrapper rectangle config
a_min = x1 - r1 - 2*r2;
a_max = x1 + r1 + 2*r2;
b_min = y1 - r1 - 2*r2;
b_max = y1 + r1 + 2*r2;
% Monte Carlo algorithm
n = 0;
for i = 1:N
rand_x = unifrnd(a_min, a_max);
rand_y = unifrnd(b_min, b_max);
if sqrt((rand_x - x1)^2 + (rand_y - y1)^2) < r1 && sqrt((rand_x - x2)^2 + (rand_y - y2)^2) < r2
% is a point in the both of circles
n = n + 1;
plot(rand_x,rand_y, 'go-');
hold on;
else
plot(rand_x,rand_y, 'ko-');
hold on;
end
end
P = (a_max - a_min) * (b_max - b_min) * n / N;
end
Call it like: circles_intersection_area([-0.4,0,1], [0.4,0,1], 10000) where the first param is the first circle (x,y,r) and the second param is the second circle.
Without using For loop.
n = 100000;
data = rand(2,n);
data = data*2*30 - 30;
x = data(1,:);
y = data(2,:);
plot(x,y,'ro');
inside5 = find(x.^2 + y.^2 <=25);
hold on
plot (x(inside5),y(inside5),'bo');
hold on
inside12 = find(x.^2 + (y-12).^2<=144);
plot (x(inside12),y(inside12),'g');
hold on
insidefinal1 = find(x.^2 + y.^2 <=25 & x.^2 + (y-12).^2>=144);
insidefinal2 = find(x.^2 + y.^2 >=25 & x.^2 + (y-12).^2<=144);
% plot(x(insidefinal1),y(insidefinal1),'bo');
hold on
% plot(x(insidefinal2),y(insidefinal2),'ro');
insidefinal3 = find(x.^2 + y.^2 <=25 & x.^2 + (y-12).^2<=144);
% plot(x(insidefinal3),y(insidefinal3),'ro');
area1=(60^2)*(length(insidefinal1)/n);
area3=(60^2)*(length(insidefinal2)/n);
area2= (60^2)*(length(insidefinal3)/n);

finding max width of blob

I'm trying to find the maximum width of the blob by counting the number of white pixels of each line in the blob I wrote the code, however, it never stops. how it can be fixed?
For y = 0 To bmp.ScaleHeight - 1
sum = 0
For x = 0 To bmp.ScaleWidth - 1
pixel1 = bmp.Point(x, y)
If pixel1 = vbWhite Then
sum = sum + 1
If bmp.Point(x + 1, y) = vbBlack Then
If sum > max Then
Lmax = sum
y1 = y
x2 = x
x1 = x2 - sum
End If
End If
End If
Next x
Next y

Resources