finding max width of blob - algorithm

I'm trying to find the maximum width of the blob by counting the number of white pixels of each line in the blob I wrote the code, however, it never stops. how it can be fixed?
For y = 0 To bmp.ScaleHeight - 1
sum = 0
For x = 0 To bmp.ScaleWidth - 1
pixel1 = bmp.Point(x, y)
If pixel1 = vbWhite Then
sum = sum + 1
If bmp.Point(x + 1, y) = vbBlack Then
If sum > max Then
Lmax = sum
y1 = y
x2 = x
x1 = x2 - sum
End If
End If
End If
Next x
Next y

Related

Algorithm for expressing given number as a sum of two squares

My problem is as follows:
I'm given a natural number n and I want to find all natural numbers x and y such that
n = x² + y²
Since this is addition order does not matter so I count (x,y) and (y,x) as one solution.
My initial algorithm is to assume that y>x, for all x compute y²=n-x² and check if y is a natural number using binary search on y².
for(x=1;2*x*x<n;x++)
{
y_squared=n-x*x;
if(isSquare(y_squared)==false)
continue;
//rest of the code
}
Is there any improvement for my algorithm? I already checked if n can have solutions using two squares theorem, but I want to know how many there are.
My algorithm is O(sqrt(n) * log(n) )
Thanks in advance.
You can reduce this to O(sqrt(n)) this way:
all_solutions(n):
x = 0
y = floor(sqrt(n))
while x <= y
if x * x + y * y < n
x++
else if x * x + y * y > n
y--
else
// found a match
print(x, y)
x++
y--
This algorithm will find and print all possible solutions and will always terminate for x <= sqrt(n / 2) and y >= sqrt(n / 2), leading to at most sqrt(n / 2) + (sqrt(n) - sqrt(n / 2)) = sqrt(n) iterations being performed.
A variation of Paul's, keeping track of the sum of squares and adjusting it just with additions/subtractions:
Pseudo-code: (evaluate x++ + x and y-- + y left-to-right, or do it like in the Python code below)
x = 0
y = floor(sqrt(n))
sum = y * y
while x <= y
if sum < n
sum += x++ + x
else if sum > n
sum -= y-- + y
else
print(x, y)
sum += 2 * (++x - y--)
Java:
static void allSolutions(int n) {
int x = 0, y = (int) Math.sqrt(n), sum = y * y;
while (x <= y) {
if (sum < n) {
sum += x++ + x;
} else if (sum > n) {
sum -= y-- + y;
} else {
System.out.println(x + " " + y);
sum += 2 * (++x - y--);
}
}
}
Python:
from math import isqrt
def all_solutions(n):
x = 0
y = isqrt(n)
sum = y ** 2
while x <= y:
if sum < n:
x += 1
sum += 2 * x - 1
elif sum > n:
sum -= 2 * y - 1
y -= 1
else:
# found a match
print(x, y)
x += 1
sum += 2 * (x - y)
y -= 1
Demo:
>>> all_solutions(5525)
7 74
14 73
22 71
25 70
41 62
50 55

Fast summing of subarrays in Python

I have a data cube a of radius w and for every element of that cube, I would like to add the element and all surrounding values within a cube of radius r, where r < w. The result should be returned in an array of the same shape, b.
As a simple example, suppose:
a = numpy.ones(shape=(2*w,2*w,2*w),dtype='float32')
kernel = numpy.ones(shape=(2*r,2*r,2*r),dtype='float32')
b = convolve(a,kernel,mode='constant',cval=0)
then b would have the value (2r)(2r)(2r) for all the indices not on the edge.
Currently I am using a loop to do this and it is very slow, especially for larger w and r. I tried scipy convolution but got little speedup over the loop. I am now looking at numba's parallel computation feature but cannot figure out how to rewrite the code to work with numba. I have a Nvidia RTX card so CUDA GPU calculations are also possible.
Suggestions are welcome.
Here is my current code:
for x in range(0,w*2):
print(x)
for y in range(0,w*2):
for z in range(0,w*2):
if x >= r:
x1 = x - r
else:
x1 = 0
if x < w*2-r:
x2 = x + r
else:
x2 = w*2 - 1
if y >= r:
y1 = y - r
else:
y1 = 0
if y < w*2-r:
y2 = y + r
else:
y2 = w*2 - 1
if z >= r:
z1 = z - r
else:
z1 = 0
if z < w*2-r:
z2 = z + r
else:
z2 = w*2 - 1
b[x][y][z] = numpy.sum(a[x1:x2,y1:y2,z1:z2])
return b
Here is a very simple version of your code so that it works with numba. I was finding speed-ups of a factor of 10 relative to the pure numpy code. However, you should be able to get even greater speed-ups using a FFT convolution algorithm (e.g. scipy's fftconvolve). Can you share your attempt at getting convolution to work?
from numba import njit
#njit
def sum_cubes(a,b,w,r):
for x in range(0,w*2):
#print(x)
for y in range(0,w*2):
for z in range(0,w*2):
if x >= r:
x1 = x - r
else:
x1 = 0
if x < w*2-r:
x2 = x + r
else:
x2 = w*2 - 1
if y >= r:
y1 = y - r
else:
y1 = 0
if y < w*2-r:
y2 = y + r
else:
y2 = w*2 - 1
if z >= r:
z1 = z - r
else:
z1 = 0
if z < w*2-r:
z2 = z + r
else:
z2 = w*2 - 1
b[x,y,z] = np.sum(a[x1:x2,y1:y2,z1:z2])
return b
EDIT: Your original code has a small bug in it. The way numpy indexing works, the final line should be
b[x,y,z] = np.sum(a[x1:x2+1,y1:y2+1,z1:z2+1])
unless you want the cube to be off-centre.
Assuming you do want the cube to be centred, then a much faster way to do this calculation is using scipy's uniform filter:
from scipy.ndimage import uniform_filter
def sum_cubes_quickly(a,b,w,r):
b = uniform_filter(a,mode='constant',cval=0,size=2*r+1)*(2*r+1)**3
return b
A few quick runtime comparisons for randomly generated data with w = 50, r = 10:
Original raw numpy code - 15.1 sec
Numba'd numpy code - 8.1 sec
uniform_filter - 13.1 ms

Image rotation in matlab using bilinear-interpolation

clear
I = imread('256.jpg');
%imshow(I);
center = 128;
[x, y] = size(I); % declare image size array
Original = [x, y];
Rotated_I = zeros(x,y); %declare size of array to store pixel
theta = 90;
for row = 1:y
for column = 1:x
x_original = (column - 128) * cos(theta) - (row - 128)*sin(theta);
y_original = (column - 128) * sin(theta) + (row - 128)*cos(theta); % reverse rotate
p = floor(x_original);
q = floor(y_original);
a = y_original - p;
b = x_original - q; %
Rotated_I(column, row) = (1-a)*((1-b)*Original(p,q)+b*Original(p,q+1))+a*((q-b)*Original(p+1,q)+b*Original(p+1,q+1)); % Find pixel using bilinear interpolation
end
end
imshow(Rotated_I);
I tried to rotate image using reverse rotate and bilinear interpolation, but only i see is error message. It says "the first index exceeds array". Is there anything wrong in my code?
Here is a working version with a number of changes. The main difference is that it checks whether a coordinate exists in the original image before adding that to the rotate image. This allows for arbitrary rotations, like 45 degrees. Also, images in MATLAB have y as the first dimension and x as the second, so are accessed as I(y, x) or I(row, column).
clear
I = imread('256.jpg');
% imshow(I);
center = 128;
[y, x] = size(I); % in MATLAB, images are y-by-x in size (ie. y is dimension 1)
Original = I; % Original needs to be the image I
Rotated_I = zeros(y, x);
theta = 90;
for row = 1:y
for column = 1:x
x_original = (column - center) * cosd(theta) - (row - center)*sind(theta) + center; % theta is in degrees so use cosd and sind
y_original = (column - center) * sind(theta) + (row - center)*cosd(theta) + center; % also add center back on
p = floor(y_original); % x_original and y_original were swapped here
q = floor(x_original); % x_original and y_original were swapped here
a = y_original - p;
b = x_original - q;
% check if the coordinate is in the original image to prevent errors
if p > 0 && p <= y && q > 0 && q <= x
Rotated_I(row, column) = Rotated_I(row, column) + (1-a)*(1-b)*Original(p,q);
end
if p > 0 && p <= y && q+1 > 0 && q+1 <= x
Rotated_I(row, column) = Rotated_I(row, column) + (1-a)*b*Original(p,q+1);
end
if p+1 > 0 && p+1 <= y && q > 0 && q <= x
Rotated_I(row, column) = Rotated_I(row, column) + a*(1-b)*Original(p+1,q);
end
if p+1 > 0 && p+1 <= y && q+1 > 0 && q+1 <= x
Rotated_I(row, column) = Rotated_I(row, column) + a*b*Original(p+1,q+1);
end
end
end
% convert to uint image so it displays properly (double expects values from 0 to 1)
imshow(uint8(Rotated_I));
I do not know if you necessarily want to have your own implementation or not. But if not, you could always use imrotate:
Rotated_I = imrotate(I, 90, 'bilinear', 'crop');
90 => Degrees of rotation
'bilinear' => Bilinear interpolation (alternatives: nearest, bicubic)
'crop' => Maintain the pixel size of the rotated image the same as the input image
imrotate is part of the Image Processing Toolbox.

Find area of two overlapping circles using monte carlo method

Actually i have two intersecting circles as specified in the figure
i want to find the area of each part separately using Monte carlo method in Matlab .
The code doesn't draw the rectangle or the circles correctly so
i guess what is wrong is my calculation for the x and y and i am not much aware about the geometry equations for solving it so i need help about the equations.
this is my code so far :
n=1000;
%supposing that a rectangle will contain both circles so :
% the mid point of the distance between 2 circles will be (0,6)
% then by adding the radius of the left and right circles the total distance
% will be 27 , 11 from the left and 16 from the right
% width of rectangle = 24
x=27.*rand(n-1)-11;
y=24.*rand(n-1)+2;
count=0;
for i=1:n
if((x(i))^2+(y(i))^2<=25 && (x(i))^2+(y(i)-12)^2<=100)
count=count+1;
figure(2);
plot(x(i),y(i),'b+')
hold on
elseif(~(x(i))^2+(y(i))^2<=25 &&(x(i))^2+(y(i)-12)^2<=100)
figure(2);
plot(x(i),y(i),'y+')
hold on
else
figure(2);
plot(x(i),y(i),'r+')
end
end
Here are the errors I found:
x = 27*rand(n,1)-5
y = 24*rand(n,1)-12
The rectangle extents were incorrect, and if you use rand(n-1) will give you a (n-1) by (n-1) matrix.
and
first If:
(x(i))^2+(y(i))^2<=25 && (x(i)-12)^2+(y(i))^2<=100
the center of the large circle is at x=12 not y=12
Second If:
~(x(i))^2+(y(i))^2<=25 &&(x(i)-12)^2+(y(i))^2<=100
This code can be improved by using logical indexing.
For example, using R, you could do (Matlab code is left as an excercise):
n = 10000
x = 27*runif(n)-5
y = 24*runif(n)-12
plot(x,y)
r = (x^2 + y^2)<=25 & ((x-12)^2 + y^2)<=100
g = (x^2 + y^2)<=25
b = ((x-12)^2 + y^2)<=100
points(x[g],y[g],col="green")
points(x[b],y[b],col="blue")
points(x[r],y[r],col="red")
which gives:
Here is my generic solution for any two circles (without any hardcoded value):
function [ P ] = circles_intersection_area( k1, k2, N )
%CIRCLES_INTERSECTION_AREA Summary...
% Adnan A.
x1 = k1(1);
y1 = k1(2);
r1 = k1(3);
x2 = k2(1);
y2 = k2(2);
r2 = k2(3);
if sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2)) >= (r1 + r2)
% no intersection
P = 0;
return
end
% Wrapper rectangle config
a_min = x1 - r1 - 2*r2;
a_max = x1 + r1 + 2*r2;
b_min = y1 - r1 - 2*r2;
b_max = y1 + r1 + 2*r2;
% Monte Carlo algorithm
n = 0;
for i = 1:N
rand_x = unifrnd(a_min, a_max);
rand_y = unifrnd(b_min, b_max);
if sqrt((rand_x - x1)^2 + (rand_y - y1)^2) < r1 && sqrt((rand_x - x2)^2 + (rand_y - y2)^2) < r2
% is a point in the both of circles
n = n + 1;
plot(rand_x,rand_y, 'go-');
hold on;
else
plot(rand_x,rand_y, 'ko-');
hold on;
end
end
P = (a_max - a_min) * (b_max - b_min) * n / N;
end
Call it like: circles_intersection_area([-0.4,0,1], [0.4,0,1], 10000) where the first param is the first circle (x,y,r) and the second param is the second circle.
Without using For loop.
n = 100000;
data = rand(2,n);
data = data*2*30 - 30;
x = data(1,:);
y = data(2,:);
plot(x,y,'ro');
inside5 = find(x.^2 + y.^2 <=25);
hold on
plot (x(inside5),y(inside5),'bo');
hold on
inside12 = find(x.^2 + (y-12).^2<=144);
plot (x(inside12),y(inside12),'g');
hold on
insidefinal1 = find(x.^2 + y.^2 <=25 & x.^2 + (y-12).^2>=144);
insidefinal2 = find(x.^2 + y.^2 >=25 & x.^2 + (y-12).^2<=144);
% plot(x(insidefinal1),y(insidefinal1),'bo');
hold on
% plot(x(insidefinal2),y(insidefinal2),'ro');
insidefinal3 = find(x.^2 + y.^2 <=25 & x.^2 + (y-12).^2<=144);
% plot(x(insidefinal3),y(insidefinal3),'ro');
area1=(60^2)*(length(insidefinal1)/n);
area3=(60^2)*(length(insidefinal2)/n);
area2= (60^2)*(length(insidefinal3)/n);

split rectangle in cells / random coordinates / store in array in FORTRAN

I would like to split a rectangle in cells. In each cell it should be create a random coordinate (y, z).
The wide and height of the rectangle are known (initialW / initalH).
The size of the cells are calculated (dy / dz).
The numbers, in how many cells the rectangle to be part, are known. (numberCellsY / numberCellsZ)
Here my Code in Fortran to split the rectangle in Cells:
yRVEMin = 0.0
yRVEMax = initialW
dy = ( yRVEMax - yRVEMin ) / numberCellsY
zRVEMin = 0.0
zRVEMax = initialH
dz = ( zRVEMax - zRVEMin ) / numberCellsZ
do i = 1, numberCellsY
yMin(i) = (i-1)*dy
yMax(i) = i*dy
end do
do j = 1, numberCellsZ
zMin(j) = (j-1)*dz
zMax(j) = j*dz
end do
Now I would like to produce a random coordinate in each cell. The problem for me is, to store the coodinates in an array. It does not necessarily all be stored in one array, but as least as possible.
To fill the cells with coordinates it should start at the bottom left cell, go through the rows (y-direction), and after the last cell (numberCellsY) jump a column higher (z-dicrection) and start again by the first cell of the new row at left side. That should be made so long until a prescribed number (nfibers) is reached.
Here a deplorable try to do it:
call random_seed
l = 0
do k = 1 , nfibers
if (l < numberCellsY) then
l = l + 1
else
l = 1
end if
call random_number(y)
fiberCoordY(k) = yMin(l) + y * (yMax(l) - yMin(l))
end do
n = 0
do m = 1 , nfibers
if (n < numberCellsZ) then
n = n + 1
else
n = 1
end if
call random_number(z)
fiberCoordZ(m) = zMin(n) + z * (zMax(n) - zMin(n))
end do
The output is not what I want! fiberCoordZ should be stay on (zMin(1) / zMax(1) as long as numberCellsY-steps are reached.
The output for following settings:
nfibers = 9
numberCellsY = 3
numberCellsZ = 3
initialW = 9.0
initialH = 9.0
My random output for fiberCoordY is:
1.768946 3.362770 8.667685 1.898700 5.796713 8.770239 2.463412 3.546694 7.074708
and for fiberCoordZ is:
2.234807 5.213032 6.762228 2.948657 5.937295 8.649946 0.6795220 4.340364 8.352566
In this case the first 3 numbers of fiberCoordz should have a value between 0.0 and 3.0. Than number 4 - 6 a value between 3.0 and 6.0. And number 7 - 9 a value bewtween 6.0 - 9.0.
How can I solve this? If somebody has a solution with a better approach, please post it!
Thanks
Looking at
n = 0
do m = 1 , nfibers
if (n < numberCellsZ) then
n = n + 1
else
n = 1
end if
call random_number(z)
fiberCoordZ(m) = zMin(n) + z * (zMax(n) - zMin(n))
end do
we see that the z coordinate offset (the bottom cell boundary of interest) is being incremented inappropriately: for each consecutive nfibers/numberCellsZ coordinates n should be constant.
n should be incremented only every numberCellsY iterations, so perhaps a condition like
if (MOD(m, numberCellsY).eq.1) n=n+1
would be better.
Thanks francescalus! It works fine.
I added a little more for the case that nfibers > numberCellsY*numberCellsZ
n=0
do m = 1 , nfibers
if (MOD(m, numberCellsY).eq.1 .and. (n < numberCellsY)) then
n=n+1
end if
if (MOD(m, numberCellsY*numberCellsZ).eq.1 ) then
n = 1
end if
call random_number(z)
fiberCoordZ(m) = zMin(n) + z * (zMax(n) - zMin(n))
end do

Resources