How is IBM Watson Tradeoff Analytics any different from simple constrained decision making? - algorithm

I am continuously astounded by the technological genius of the IBM Watson package. The tools do things from recognizing the subjects in images to extracting the emotion in a letter, and they're amazing. And then there's Tradeoff Analytics. In their Nests demo, you select a state and then a series of constraints (price must be between W and X, square footage must be between Y and Z, there must be Insured Escrow financing available, etc.) and they rank the houses based on how well they fit your constraints.
It would seem that all Tradeoff Analytics does is run a simple query on the order of:
SELECT * FROM House WHERE price >= W AND price <= X AND square_footage >= Y
AND square_footage <= Z AND ...
Am I not understanding Tradeoff Analytics correctly? I have tremendous respect for the people over at IBM that built all of these amazing tools, but Tradeoff Analytics seems like simple constrained decision making, which appears in any Intro to Programming course as you're learning if statements. What am I missing?

As #GuyGreer pointed out the service indeed uses Pareo Optimization which is much different than simple constraints.
For example:
Say you have three houses
Sqr Footage Price
HouseA 6000 1000K
HouseB 9000 750K
HouseC 8000 800K
Now say your constraints are Sqr Footage > 5000 and Price < 900K
then you are left with House B and House C
Tradeoff Analytics will return to you only houseB.
Since according to Pareto, give your objectives of Price and Footage,
HouseB dominates House C as it has larger footage and is cheaper.
Obviously, this is a made up example, and in real life there are more objecitves (attributes) on which you take into account when you buy a house.
The idea with Pareto, is to find the Pareto Frontier.
Tradeoff Analytics add to Pareto Optimization additional home-grown algorithms to give you more insights on the tradeoff.
Finally the service, is accompanied with a client-side widget that uses novel method for visualizing Pareto Frontiers. In its own a sophisticated problems, given that such frontier is multi-diemnsional.

The page you link to says they use Pareto Optimisation that tries to optimise all the parameters to come to a pareto-optimal solution - a solution or set of solutions for when you can't optimise each individual parameter, so have to settle for some sub-optimal ones.
Rather than just find anything that matches the criteria they are trying to find some sort of optimal solution(s) given the constraints. That's how it's different than simple constrained decision-making.
Note I'm basing this answer completely off of their statement:
The service uses a mathematical filtering technique called “Pareto Optimization,”...
and what I've read about Pareto problems. I have no experience with this technology or Pareto problems myself.

Related

Algorithm for picking orders from warehouses

I'll explain My Problem With an example.
Let's say we have:
An Order from a certain store for five products, We will name those products A,B,C,D, & E, with their quantities In the Order A(19),B(25),C(6),D(33),E(40).
A single Truck that can fit different amount of each product:A(30), B(40), C(25), D(50), E(30).
Ex: Transporting A & B together, I loaded the the Truck with A(19) so that's two thirds of what my Truck can handle, So that leaves one third for B, Which means i can only transport 1/3 of B's maximum Truck capacity which is (40/3 ≈ 13).
A Set of Warehouses which contains different amounts of each product.
I made an Excel spreadsheet which contains more useful info regarding those Warehouses like( Quantities, Distance from Each other, Distance from store ).
I want to Deliver this order to the store with the least amount of trips and distance traveled.
Is there an Algorithm for this kind of problem, Or something close i can modify on?
EDIT: Updated Links.
I would advise not to reinvent a wheel as a very first step of your work. Developing/adopting a custom algorithm for such a problem would be a very painful venture in my opinion. I would suggest using either a constraint satisfaction programming (CSP) toolkit or a direct mixed integer programming (MIP) solver.
My point is that it would be much easier to encode your problem using such tools. If performance/accuracy won't be enough for you - you could design a custom solution based on your preliminary results.
For CSP I would suggest Minizinc which has decent documentation and examples.
You could start your MIP research with GLPK. It's not very powerful, but it's definitely capable of dealing with some toy examples.

Collaborative or structured recommendation?

I am building a Rails app that recommends tutors to students and vise versa. I need to match them based on multiple dimensions, such as their majors (Math, Biology etc.), experience (junior etc.), class (Math 201 etc.), preference (self-described keywords) and ratings.
I checked out some Rails collaborative recommendation engines (recommendable, recommendify) and Mahout. It seems that collaborative recommendation is not the best choice in my case, since I have much more structured data, which allows a more structured query. For example, I can have a recommendation logic for a student like:
if student looks for a Math tutor in Math 201:
if there's a tutor in Math major offering tutoring in Math 201 then return
else if there's a tutor in Math major then sort by experience then return
else if there's a tutor in quantitative major then sort by experience then return
...
My questions are:
What are the benefits of a collaborative recommendation algorithm given that my recommendation system will be preference-based?
If it does provide significant benefits, how I can combine it with a preference-based recommendation as mentioned above?
Since my approach will involve querying multiple tables, it might not be efficient. What should I do about this?
Thanks a lot.
It sounds like your measurement of compatibility could be profitably reformulated as a metric. What you should do is try to interpret your `columns' as being different components of the dimension of your data. The idea is that you ultimately should produce a binary function which returns a measurement of compatibility between students and tutors (and also students/students and tutors/tutors). The motivation for extending this metric to all types of data is that you can then use this idea to reformulate your matching criteria as a nearest-neighbor search:
http://en.wikipedia.org/wiki/Nearest_neighbor_search
There are plenty of data structures and solutions to this problem as it has been very well studied. For example, you could try out the following library which is often used with point cloud data:
http://www.cs.umd.edu/~mount/ANN/
To optimize things a bit, you could also try prefiltering your data by running principal component analysis on your data set. This would let you reduce the dimension of the space in which you do nearest neighbor searches, and usually has the added benefit of reducing some amount of noise.
http://en.wikipedia.org/wiki/Principal_component_analysis
Good luck!
Personally, I think collaborative filtering (cf) would work well for you. Note that a central idea of cf is serendipity. In other words, adding too many constraints might potentially result in a lukewarm recommendations to users. The whole point of cf is to provide exciting and relevant recommendations based on similar users. You need not impose such tight constraints.
If you might decide on implementing a custom cf algorithm, I would recommend reading this article published by Amazon [pdf], which discusses Amazon's recommendation system. Briefly, the algorithm they use is as follows:
for each item I1
for each customer C who bought I1
for each I2 bought by a customer
record purchase C{I1, I2}
for each item I2
calculate sim(I1, I2)
//this could use your own similarity measure, e.g., cosine based
//similarity, sim(A, B) = cos(A, B) = (A . B) / (|A| |B|) where A
//and B are vectors(items, or courses in your case) and the dimensions
//are customers
return table
Note that the creation of this table would be done offline. The online algorithm would be quick to return recommendations. Apparently, the recommendation quality is excellent.
In any case, if you want to get a better idea about cf in general (e.g., various cf strategies) and why it might be suited to you, go through that article (don't worry, it is very readable). Implementing a simple cf recommender is not difficult. Optimizations can be made later.

Genetic Algorithms in games

I have to do a term project on Genetic Algorithms, and I had the idea of tuning the traits (i.e. weapons to be used , etc) of a first person shooter bot. For example, I would represent the traits in the form of a string, with first 10 bits representing probability of choosing weapon1, next 10 bits representing probability of choosing weapon2, etc. I would thus get the optimal string and thus be able to figure out what should be the optimal set of weapons i should use.
The obvious problem that I am facing is how to find the fitness values. My idea would be that if I want to find the fitness of a string, I force the bot to use the corresponding weapons and play a game against it and use the final score of the bot as the fitness. The problem is that I would need to play a LARGE no of games.
Is there some sort of simulation that I can do? For example, can i somehow get a function f where I would feed in the bot's traits (ex : weapons, etc) and it would return the corresponding fitness values? Do open source FPS games provide such a library?
The other option would be to go into the source code of the game and then keep on simulating various scenarios and noting the score in each scenario. I would prefer not to have the added complexity of going into the source of the game, since this is a short(1 month) project.
Thanks.
I think your project is very complex for a one month project.
It's not quite so exciting but perhaps you could look at playing strategies for a board game or card game instead. This is a much simpler situation and and many games can easily and quickly be simulated allowing you to use a genetic algorithm to find a good playing strategy. It will teach you the principles of genetic algorithms without requiring you to understand the huge body of source code that would be necessary to simulate a first person shooter.
I agree with Mark Byers, it's a bit too ambitious for a 1-month project.
Anyways, you may want to check out NERO (Neuro-Evolving Robotic Operatives), which is a game based on Ken Stanley's algorithm NEAT (NeuroEvolution of Augmenting Topologies).
You may also want to have a look at Stanley's papers:
Evolving Neural Networks Through Augmenting Topologies (PDF)
Efficient Reinforcement Learning Through Evolving Neural Network Topologies (PDF)
Real-Time Learning in the NERO Video Game (PDF)
Several implementations of NEAT exist for different languages, so that may be a start.
You could use an already existing bot to generate data, if one is available and if this is possible.
Alternatively, you could use Autohotkey (search google) to generate a sequence of key&mouse presses and make the bot somehow play automatically in a dumb way.
Your fitness function can be how much DPS a given bot deals against a sitting duck opponent. E.g. have the bot attack the player, and don't fight back.
You can memoize the fitness, so duplicate individuals don't have to be retested.
Alternatively, you can make survival of the fittest be literal by putting 2 individuals on opposite teams and seeing who kills who.
Because technically you don't need a fitness function, just a way to compare individuals.
In order to reduce the number of comparisons, the individuals from each generation can be compared via a tournament, like
A
}-> A
B
}-> C
C
}-> C
D
which shows that the top two individuals are C, then A.

Algorithm for creating a school timetable

I've been wondering if there are known solutions for algorithm of creating a school timetable. Basically, it's about optimizing "hour-dispersion" (both in teachers and classes case) for given class-subject-teacher associations. We can assume that we have sets of classes, lesson subjects and teachers associated with each other at the input and that timetable should fit between 8AM and 4PM.
I guess that there is probably no accurate algorithm for that, but maybe someone knows a good approximation or hints for developing it.
This problem is NP-Complete!
In a nutshell one needs to explore all possible combinations to find the list of acceptable solutions. Because of the variations in the circumstances in which the problem appears at various schools (for example: Are there constraints with regards to classrooms?, Are some of the classes split in sub-groups some of the time?, Is this a weekly schedule? etc.) there isn't a well known problem class which corresponds to all the scheduling problems. Maybe, the Knapsack problem has many elements of similarity with these problems at large.
A confirmation that this is both a hard problem and one for which people perennially seek a solution, is to check this (long) list of (mostly commercial) software scheduling tools
Because of the big number of variables involved, the biggest source of which are, typically, the faculty member's desires ;-)..., it is typically impractical to consider enumerating all possible combinations. Instead we need to choose an approach which visits a subset of the problem/solution spaces.
- Genetic Algorithms, cited in another answer is (or, IMHO, seems) well equipped to perform this kind of semi-guided search (The problem being to find a good evaluation function for the candidates to be kept for the next generation)
- Graph Rewriting approaches are also of use with this type of combinatorial optimization problems.
Rather than focusing on particular implementations of an automatic schedule generator program, I'd like to suggest a few strategies which can be applied, at the level of the definition of the problem.
The general rationale is that in most real world scheduling problems, some compromises will be required, not all constraints, expressed and implied: will be satisfied fully. Therefore we help ourselves by:
Defining and ranking all known constraints
Reducing the problem space, by manually, providing a set of additional constraints.This may seem counter-intuitive but for example by providing an initial, partially filled schedule (say roughly 30% of the time-slots), in a way that fully satisfies all constraints, and by considering this partial schedule immutable, we significantly reduce the time/space needed to produce candidate solutions. Another way additional constraints help is for example "artificially" adding a constraint which prevent teaching some subjects on some days of the week (if this is a weekly schedule...); this type of constraints results in reducing the problem/solution spaces, without, typically, excluding a significant number of good candidates.
Ensuring that some of the constraints of the problem can be quickly computed. This is often associated with the choice of data model used to represent the problem; the idea is to be able to quickly opt-for (or prune-out) some of the options.
Redefining the problem and allowing some of the constraints to be broken, a few times, (typically towards the end nodes of the graph). The idea here is to either remove some of constraints for filling-in the last few slots in the schedule, or to have the automatic schedule generator program stop shy of completing the whole schedule, instead providing us with a list of a dozen or so plausible candidates. A human is often in a better position to complete the puzzle, as indicated, possibly breaking a few of the contraints, using information which is not typically shared with the automated logic (eg "No mathematics in the afternoon" rule can be broken on occasion for the "advanced math and physics" class; or "It is better to break one of Mr Jones requirements than one of Ms Smith ... ;-) )
In proof-reading this answer , I realize it is quite shy of providing a definite response, but it none the less full of practical suggestions. I hope this help, with what is, after all, a "hard problem".
It's a mess. a royal mess. To add to the answers, already very complete, I want to point out my family experience. My mother was a teacher and used to be involved in the process.
Turns out that having a computer to do so is not only difficult to code per-se, it is also difficult because there are conditions that are difficult to specify to a pre-baked computer program. Examples:
a teacher teaches both at your school and at another institute. Clearly, if he ends the lesson there at 10.30, he cannot start at your premises at 10.30, because he needs some time to commute between the institutes.
two teachers are married. In general, it's considered good practice not to have two married teachers on the same class. These two teachers must therefore have two different classes
two teachers are married, and their child attends the same school. Again, you have to prevent the two teachers to teach in the specific class where their child is.
the school has separate facilities, like one day the class is in one institute, and another day the class is in another.
the school has shared laboratories, but these laboratories are available only on certain weekdays (for security reasons, for example, where additional personnel is required).
some teachers have preferences for the free day: some prefer on Monday, some on Friday, some on Wednesday. Some prefer to come early in the morning, some prefer to come later.
you should not have situations where you have a lesson of say, history at the first hour, then three hours of math, then another hour of history. It does not make sense for the students, nor for the teacher.
you should spread the arguments evenly. It does not make sense to have the first days in the week only math, and then the rest of the week only literature.
you should give some teachers two consecutive hours to do evaluation tests.
As you can see, the problem is not NP-complete, it's NP-insane.
So what they do is that they have a large table with small plastic insets, and they move the insets around until a satisfying result is obtained. They never start from scratch: they normally start from the previous year timetable and make adjustments.
The International Timetabling Competition 2007 had a lesson scheduling track and exam scheduling track. Many researchers participated in that competition. Lots of heuristics and metaheuristics were tried, but in the end the local search metaheuristics (such as Tabu Search and Simulated Annealing) clearly beat other algorithms (such as genetic algorithms).
Take a look at the 2 open source frameworks used by some of the finalists:
JBoss OptaPlanner (Java, open source)
Unitime (Java, open source) - more for universities
One of my half-term assignments was an genetic-algorithm school table generation.
Whole table is one "organism". There were some changes and caveats to the generic genetic algorithms approach:
Rules were made for "illegal tables": two classes in the same classroom, one teacher teaching two groups at the same time etc. These mutations were deemed lethal immediately and a new "organism" was sprouted in place of the "deceased" immediately. The initial one was generated by a series of random tries to get a legal (if senseless) one. Lethal mutation wasn't counted towards count of mutations in iteration.
"Exchange" mutations were much more common than "Modify" mutations. Changes were only between parts of the gene that made sense - no substituting a teacher with a classroom.
Small bonuses were assigned for bundling certain 2 hours together, for assigning same generic classroom in sequence for the same group, for keeping teacher's work hours and class' load continuous. Moderate bonuses were assigned for giving correct classrooms for given subject, keeping class hours within bonds (morning or afternoon), and such. Big bonuses were for assigning correct number of given subject, given workload for a teacher etc.
Teachers could create their workload schedules of "want to work then", "okay to work then", "doesn't like to work then", "can't work then", with proper weights assigned. Whole 24h were legal work hours except night time was very undesired.
The weight function... oh yeah. The weight function was huge, monstrous product (as in multiplication) of weights assigned to selected features and properties. It was extremely steep, one property easily able to change it by an order of magnitude up or down - and there were hundreds or thousands of properties in one organism. This resulted in absolutely HUGE numbers as the weights, and as a direct result, need to use a bignum library (gmp) to perform the calculations. For a small testcase of some 10 groups, 10 teachers and 10 classrooms, the initial set started with note of 10^-200something and finished with 10^+300something. It was totally inefficient when it was more flat. Also, the values grew a lot wider distance with bigger "schools".
Computation time wise, there was little difference between a small population (100) over a long time and a big population (10k+) over less generations. The computation over the same time produced about the same quality.
The calculation (on some 1GHz CPU) would take some 1h to stabilize near 10^+300, generating schedules that looked quite nice, for said 10x10x10 test case.
The problem is easily paralellizable by providing networking facility that would exchange best specimens between computers running the computation.
The resulting program never saw daylight outside getting me a good grade for the semester. It showed some promise but I never got enough motivation to add any GUI and make it usable to general public.
This problem is tougher than it seems.
As others have alluded to, this is a NP-complete problem, but let's analyse what that means.
Basically, it means you have to look at all possible combinations.
But "look at" doesn't tell you much what you need to do.
Generating all possible combinations is easy. It might produce a huge amount of data, but you shouldn't have much problems understanding the concepts of this part of the problem.
The second problem is the one of judging whether a given possible combination is good, bad, or better than the previous "good" solution.
For this you need more than just "is it a possible solution".
For instance, is the same teacher working 5 days a week for X weeks straight? Even if that is a working solution, it might not be a better solution than alternating between two people so that each teacher does one week each. Oh, you didn't think about that? Remember, this is people you're dealing with, not just a resource allocation problem.
Even if one teacher could work full-time for 16 weeks straight, that might be a sub-optimal solution compared to a solution where you try to alternate between teachers, and this kind of balancing is very hard to build into software.
To summarize, producing a good solution to this problem will be worth a lot, to many many people. Hence, it's not an easy problem to break down and solve. Be prepared to stake out some goals that aren't 100% and calling them "good enough".
My timetabling algorithm, implemented in FET (Free Timetabling Software, http://lalescu.ro/liviu/fet/ , a successful application):
The algorithm is heuristic. I named it "recursive swapping".
Input: a set of activities A_1...A_n and the constraints.
Output: a set of times TA_1...TA_n (the time slot of each activity. Rooms are excluded here, for simplicity). The algorithm must put each activity at a time slot, respecting constraints. Each TA_i is between 0 (T_1) and max_time_slots-1 (T_m).
Constraints:
C1) Basic: a list of pairs of activities which cannot be simultaneous (for instance, A_1 and A_2, because they have the same teacher or the same students);
C2) Lots of other constraints (excluded here, for simplicity).
The timetabling algorithm (which I named "recursive swapping"):
Sort activities, most difficult first. Not critical step, but speeds up the algorithm maybe 10 times or more.
Try to place each activity (A_i) in an allowed time slot, following the above order, one at a time. Search for an available slot (T_j) for A_i, in which this activity can be placed respecting the constraints. If more slots are available, choose a random one. If none is available, do recursive swapping:
a. For each time slot T_j, consider what happens if you put A_i into T_j. There will be a list of other activities which don't agree with this move (for instance, activity A_k is on the same slot T_j and has the same teacher or same students as A_i). Keep a list of conflicting activities for each time slot T_j.
b. Choose a slot (T_j) with lowest number of conflicting activities. Say the list of activities in this slot contains 3 activities: A_p, A_q, A_r.
c. Place A_i at T_j and make A_p, A_q, A_r unallocated.
d. Recursively try to place A_p, A_q, A_r (if the level of recursion is not too large, say 14, and if the total number of recursive calls counted since step 2) on A_i began is not too large, say 2*n), as in step 2).
e. If successfully placed A_p, A_q, A_r, return with success, otherwise try other time slots (go to step 2 b) and choose the next best time slot).
f. If all (or a reasonable number of) time slots were tried unsuccessfully, return without success.
g. If we are at level 0, and we had no success in placing A_i, place it like in steps 2 b) and 2 c), but without recursion. We have now 3 - 1 = 2 more activities to place. Go to step 2) (some methods to avoid cycling are used here).
UPDATE: from comments ... should have heuristics too!
I'd go with Prolog ... then use Ruby or Perl or something to cleanup your solution into a prettier form.
teaches(Jill,math).
teaches(Joe,history).
involves(MA101,math).
involves(SS104,history).
myHeuristic(D,A,B) :- [test_case]->D='<';D='>'.
createSchedule :- findall(Class,involves(Class,Subject),Classes),
predsort(myHeuristic,Classes,ClassesNew),
createSchedule(ClassesNew,[]).
createSchedule(Classes,Scheduled) :- [the actual recursive algorithm].
I am (still) in the process of doing something similar to this problem but using the same path as I just mentioned. Prolog (as a functional language) really makes solving NP-Hard problems easier.
Genetic algorithms are often used for such scheduling.
Found this example (Making Class Schedule Using Genetic Algorithm) which matches your requirement pretty well.
Here are a few links I found:
School timetable - Lists some problems involved
A Hybrid Genetic Algorithm for School Timetabling
Scheduling Utilities and Tools
This paper describes the school timetable problem and their approach to the algorithm pretty well: "The Development of SYLLABUS—An Interactive, Constraint-Based Scheduler for Schools and Colleges."[PDF]
The author informs me the SYLLABUS software is still being used/developed here: http://www.scientia.com/uk/
I work on a widely-used scheduling engine which does exactly this. Yes, it is NP-Complete; the best approaches seek to approximate an optimal solution. And, of course there are a lot of different ways to say which one is the "best" solution - is it more important that your teachers are happy with their schedules, or that students get into all their classes, for instance?
The absolute most important question you need to resolve early on is what makes one way of scheduling this system better than another? That is, if I have a schedule with Mrs Jones teaching Math at 8 and Mr Smith teaching Math at 9, is that better or worse than one with both of them teaching Math at 10? Is it better or worse than one with Mrs Jones teaching at 8 and Mr Jones teaching at 2? Why?
The main advice I'd give here is to divide the problem up as much as possible - maybe course by course, maybe teacher by teacher, maybe room by room - and work on solving the sub-problem first. There you should end up with multiple solutions to choose from, and need to pick one as the most likely optimal. Then, work on making the "earlier" sub-problems take into account the needs of later sub-problems in scoring their potential solutions. Then, maybe work on how to get yourself out of painted-into-the-corner situations (assuming you can't anticipate those situations in earlier sub-problems) when you get to a "no valid solutions" state.
A local-search optimization pass is often used to "polish" the end answer for better results.
Note that typically we are dealing with highly resource-constrained systems in school scheduling. Schools don't go through the year with a lot of empty rooms or teachers sitting in the lounge 75% of the day. Approaches which work best in solution-rich environments aren't necessarily applicable in school scheduling.
Generally, constraint programming is a good approach to this type of scheduling problem. A search on "constraint programming" and scheduling or "constraint based scheduling" both within stack overflow and on Google will generate some good references. It's not impossible - it's just a little hard to think about when using traditional optimization methods like linear or integer optimization. One output would be - does a schedule exist that satisfies all the requirements? That, in itself, is obviously helpful.
Good luck !
I have designed commercial algorithms for both class timetabling and examination timetabling. For the first I used integer programming; for the second a heuristic based on maximizing an objective function by choosing slot swaps, very similar to the original manual process that had been evolved. They main things in getting such solutions accepted are the ability to represent all the real-world constraints; and for human timetablers to not be able to see ways to improve the solution. In the end the algorithmic part was quite straightforward and easy to implement compared with the preparation of the databases, the user interface, ability to report on statistics like room utilization, user education and so on.
You can takle it with genetic algorithms, yes. But you shouldn't :). It can be too slow and parameter tuning can be too timeconsuming etc.
There are successful other approaches. All implemented in open source projects:
Constraint based approach
Implemented in UniTime (not really for schools)
You could also go further and use Integer programming. Successfully done at Udine university and also at University Bayreuth (I was involved there) using the commercial software (ILOG CPLEX)
Rule based approach with heuristisc - See Drools planner
Different heuristics - FET and my own
See here for a timetabling software list
I think you should use genetic algorithm because:
It is best suited for large problem instances.
It yields reduced time complexity on the price of inaccurate answer(Not the ultimate best)
You can specify constraints & preferences easily by adjusting fitness punishments for not met ones.
You can specify time limit for program execution.
The quality of solution depends on how much time you intend to spend solving the program..
Genetic Algorithms Definition
Genetic Algorithms Tutorial
Class scheduling project with GA
Also take a look at :a similar question and another one
This problem is MASSIVE where I work - imagine 1800 subjects/modules, and 350 000 students, each doing 5 to 10 modules, and you want to build an exam in 10 weeks, where papers are 1 hour to 3 days long... one plus point - all exams are online, but bad again, cannot exceed the system's load of max 5k concurrent. So yes we are doing this now in cloud on scaling servers.
The "solution" we used was simply to order modules on how many other modules they "clash" with descending (where a student does both), and to "backpack" them, allowing for these long papers to actually overlap, else it simply cannot be done.
So when things get too large, I found this "heuristic" to be practical... at least.
I don't know any one will agree with this code but i developed this code with the help of my own algorithm and is working for me in ruby.Hope it will help them who are searching for it
in the following code the periodflag ,dayflag subjectflag and the teacherflag are the hash with the corresponding id and the flag value which is Boolean.
Any issue contact me.......(-_-)
periodflag.each do |k2,v2|
if(TimetableDefinition.find(k2).period.to_i != 0)
subjectflag.each do |k3,v3|
if (v3 == 0)
if(getflag_period(periodflag,k2))
#teachers=EmployeesSubject.where(subject_name: #subjects.find(k3).name, division_id: division.id).pluck(:employee_id)
#teacherlists=Employee.find(#teachers)
teacherflag=Hash[teacher_flag(#teacherlists,teacherflag,flag).to_a.shuffle]
teacherflag.each do |k4,v4|
if(v4 == 0)
if(getflag_subject(subjectflag,k3))
subjectperiod=TimetableAssign.where("timetable_definition_id = ? AND subject_id = ?",k2,k3)
if subjectperiod.blank?
issubjectpresent=TimetableAssign.where("section_id = ? AND subject_id = ?",section.id,k3)
if issubjectpresent.blank?
isteacherpresent=TimetableAssign.where("section_id = ? AND employee_id = ?",section.id,k4)
if isteacherpresent.blank?
#finaltt=TimetableAssign.new
#finaltt.timetable_struct_id=#timetable_struct.id
#finaltt.employee_id=k4
#finaltt.section_id=section.id
#finaltt.standard_id=standard.id
#finaltt.division_id=division.id
#finaltt.subject_id=k3
#finaltt.timetable_definition_id=k2
#finaltt.timetable_day_id=k1
set_school_id(#finaltt,current_user)
if(#finaltt.save)
setflag_sub(subjectflag,k3,1)
setflag_period(periodflag,k2,1)
setflag_teacher(teacherflag,k4,1)
end
end
else
#subjectdetail=TimetableAssign.find_by_section_id_and_subject_id(#section.id,k3)
#finaltt=TimetableAssign.new
#finaltt.timetable_struct_id=#subjectdetail.timetable_struct_id
#finaltt.employee_id=#subjectdetail.employee_id
#finaltt.section_id=section.id
#finaltt.standard_id=standard.id
#finaltt.division_id=division.id
#finaltt.subject_id=#subjectdetail.subject_id
#finaltt.timetable_definition_id=k2
#finaltt.timetable_day_id=k1
set_school_id(#finaltt,current_user)
if(#finaltt.save)
setflag_sub(subjectflag,k3,1)
setflag_period(periodflag,k2,1)
setflag_teacher(teacherflag,k4,1)
end
end
end
end
end
end
end
end
end
end
end

What are some compact algorithms for generating interesting time series data?

The question sort of says it all.
Whether it's for code testing purposes, or you're modeling a real-world process, or you're trying to impress a loved one, what are some algorithms that folks use to generate interesting time series data? Are there any good resources out there with a consolidated list? No constraints on values (except plus or minus infinity) or dimensions, but I'm looking for examples that people have found useful or exciting in practice.
Bonus points for parsimonious and readable code samples.
There are a ton of PRN generators out there, and you can always get free random bits, or even buy them on CD or DVD.
I've used simple sine wave generators mixed together with some phase and amplitude noise thrown in to get signals that sound and look interesting to humans when put through speakers or lights, but I don't know what you mean by interesting.
There are ways to generate data that looks interesting in a chart form, but that would be different than data used on a stock chart, and neither would make a nice "static" image such as produced by an analog television tuned to a null channel.
You can use Conway's game of life as a PRN, and "listen" to cells (or run all the cells through a logic circuit) to get some interesting time based signals.
It would be interesting to look at the graph of DB updates/inserts for Stackoverflow over time, and you could mine that data.
There really are infinite ways to generate an "interesting" time series data. Can you narrow the scope of your question?
Don't have an answer for the algorithm part but you can see how "realistic" your data is with Benford's law
Try the kind of recurrences that can give variously simple or chaotic series based on the part of their phase spaces you explore: the simplest I can think of is the logistic map x(n+1) = r * x(n) * ( 1 - x(n) ). With r approx. 3.57 you get chaotic results that depend on the initial point.
If you graph this versus time you can get lots of different series just by manipulating that parameter r. If you were to graph it as x(n+1) v. x(n) without connecting dots, you see a simple parabola take shape over time.
This is one of the most basic functions from chaos theory and trying more interesting polynomials, graphing them as x(n+1) v. x(n) and watching a shape form, and then graphing x(n) v. n is a fun and interesting way to create series.
Graphing x(n+1) v. x(n) makes it quickly obvious if you're only visiting a small number of points. Deeper recurrences become more interesting as well, and using different values of x(0) to check on sensitivity to initial conditions is also of interest.
But for simplicity, control by a single parameter, and ability to find something to read about your recurrence, it'll be hard to beat the logistic map.
I recommend: http://en.wikipedia.org/wiki/Logistic_map. It has a nice description of what to expect from different values of r.

Resources