I am building a Rails app that recommends tutors to students and vise versa. I need to match them based on multiple dimensions, such as their majors (Math, Biology etc.), experience (junior etc.), class (Math 201 etc.), preference (self-described keywords) and ratings.
I checked out some Rails collaborative recommendation engines (recommendable, recommendify) and Mahout. It seems that collaborative recommendation is not the best choice in my case, since I have much more structured data, which allows a more structured query. For example, I can have a recommendation logic for a student like:
if student looks for a Math tutor in Math 201:
if there's a tutor in Math major offering tutoring in Math 201 then return
else if there's a tutor in Math major then sort by experience then return
else if there's a tutor in quantitative major then sort by experience then return
...
My questions are:
What are the benefits of a collaborative recommendation algorithm given that my recommendation system will be preference-based?
If it does provide significant benefits, how I can combine it with a preference-based recommendation as mentioned above?
Since my approach will involve querying multiple tables, it might not be efficient. What should I do about this?
Thanks a lot.
It sounds like your measurement of compatibility could be profitably reformulated as a metric. What you should do is try to interpret your `columns' as being different components of the dimension of your data. The idea is that you ultimately should produce a binary function which returns a measurement of compatibility between students and tutors (and also students/students and tutors/tutors). The motivation for extending this metric to all types of data is that you can then use this idea to reformulate your matching criteria as a nearest-neighbor search:
http://en.wikipedia.org/wiki/Nearest_neighbor_search
There are plenty of data structures and solutions to this problem as it has been very well studied. For example, you could try out the following library which is often used with point cloud data:
http://www.cs.umd.edu/~mount/ANN/
To optimize things a bit, you could also try prefiltering your data by running principal component analysis on your data set. This would let you reduce the dimension of the space in which you do nearest neighbor searches, and usually has the added benefit of reducing some amount of noise.
http://en.wikipedia.org/wiki/Principal_component_analysis
Good luck!
Personally, I think collaborative filtering (cf) would work well for you. Note that a central idea of cf is serendipity. In other words, adding too many constraints might potentially result in a lukewarm recommendations to users. The whole point of cf is to provide exciting and relevant recommendations based on similar users. You need not impose such tight constraints.
If you might decide on implementing a custom cf algorithm, I would recommend reading this article published by Amazon [pdf], which discusses Amazon's recommendation system. Briefly, the algorithm they use is as follows:
for each item I1
for each customer C who bought I1
for each I2 bought by a customer
record purchase C{I1, I2}
for each item I2
calculate sim(I1, I2)
//this could use your own similarity measure, e.g., cosine based
//similarity, sim(A, B) = cos(A, B) = (A . B) / (|A| |B|) where A
//and B are vectors(items, or courses in your case) and the dimensions
//are customers
return table
Note that the creation of this table would be done offline. The online algorithm would be quick to return recommendations. Apparently, the recommendation quality is excellent.
In any case, if you want to get a better idea about cf in general (e.g., various cf strategies) and why it might be suited to you, go through that article (don't worry, it is very readable). Implementing a simple cf recommender is not difficult. Optimizations can be made later.
Related
I'm attempting to write some code for item based collaborative filtering for product recommendations. The input has buyers as rows and products as columns, with a simple 0/1 flag to indicate whether or not a buyer has bought an item. The output is a list similar items for a given purchased, ranked by cosine similarities.
I am attempting to measure the accuracy of a few different implementations, but I am not sure of the best approach. Most of the literature I find mentions using some form of mean square error, but this really seems more applicable when your collaborative filtering algorithm predicts a rating (e.g. 4 out of 5 stars) instead of recommending which items a user will purchase.
One approach I was considering was as follows...
split data into training/holdout sets, train on training data
For each item (A) in the set, select data from the holdout set where users bought A
Determine which percentage of A-buyers bought one of the top 3 recommendations for A-buyers
The above seems kind of arbitrary, but I think it could be useful for comparing two different algorithms when trained on the same data.
Actually your approach is quiet similar with the literature but I think you should consider to use recall and precision as most of the papers do.
http://en.wikipedia.org/wiki/Precision_and_recall
Moreover if you will use Apache Mahout there is an implementation for recall and precision in this class; GenericRecommenderIRStatsEvaluator
Best way to test a recommender is always to manually verify that the results. However some kind of automatic verification is also good.
In the spirit of a recommendation system, you should split your data in time, and see if you algorithm can predict what future buys the user does. this should be done for all users.
Don't expect that it can predict everything, a 100% correctness is usually a sign of over-fitting.
I want to build a recommendation system, and the target is to deal with really big data set, like 1 TB data.
And each user has really huge amount of items, however the number of user is small, like thousands or 10 thousands.
I have search from google, I found there is some open-source recommendation engine based on hadoop like Mahout, I guess it may have ability to deal with such big data, however I'm not sure.
I also find some engine write in C++ python, even php, I don't think script languages can deal with such big data, cause memory can't contain the whole dataset.
Or I'm wrong? Could some give me some recommendation?
Your question title is:
Which opensource recommendation system should I choose to deal with
big dataset?
and in the first line you say
I want to build a recommendation system, and the target is to deal with really big data set, > like 1 TB data.
And you are asking for an recommendation as an answer.
To answer your second question first. In my experience of building recommender systems I would advise you do not "build" a recommender system from the ground up if you can avoid it. Recommender Systems are complex and can use a wide range of techniques to provide a user with a recommendation. So my recommendation is unless you are really committed, and have a team of people with a range of experience and knowledge in recommender systems, statistics, and software engineering then look to implement an existing recommender system rather than building your own.
In terms of which open source recommender system you should choose, this is actually pretty difficult to answer with great accuracy. Let me try to answer this by breaking it down.
Consider the open source license, its restrictions and your requirements.
Consider which algorithm you want to use to make recommendations
Consider the environment you will be running your recommender system on.
I recommend you look more into the algorithm side as it will be the determining factor as to which tool you can use, or whether you will need to roll your own. Start reading here http://www.ibm.com/developerworks/library/os-recommender1/ for a very brief insight in to the different approaches that recommender systems use. In summary the different approaches are:
Content based
Neighbourhood / Collaborative filtering based
Constraint based
Graph-based
In your case to keep things relatively straightforward it sounds like you should consider a user-user collaborative filtering algorithm for this. The reasons being:
Neighbourhood Collaborative Filtering is quite intuitive to understand and it can be relatively easy to implement.
With this method you can also justify your recommendations to your users in a basic way
There is no requirement to build a model for training, and the processing of neighbours can be done "offline", to provide quick recommendations to the end user.
Storing neighbours is actually quite memory efficient, which means better scalability. Something it sounds like you will need lots of.
The user-based part of my suggestion is because it sounds like you have less users than you do items. In a user-based nearest neighbourhood a predicted rating of a new item I for user U is calculated by looking at the other users who have also rated item I and are most similar to user U. Because you have fewer users than items in your system it will be faster to compute user-based collaborative filtering compared with item-based collaborative filtering.
Within the user-based collaborative filtering you need to consider what rating normalisation (mean-centering vs z-score) you want to use, the similarity weight computation method (e.g. Cosine vs Pearsons correlation vs other similarity measures) you want to use, neighbourhood selection criteria (pre-filtering of neighbours, number of neighbours involved in the prediction), and any Dimensionality Reduction methods (SVD, SVD++) you want to implement (with a large dataset like yours you will want to seriously consider DM).
So really instead of looking for an open source that will be able to process your data set you should consider your algorithm choice first, then look to find a tool that has an implementation of this algorithm, and then assess whether it can process your the volume involved in your dataset.
In saying all of that, if you do choose to go down the user-based collaborative filtering route then I am confident that Apache Mahout will be able to solve your problem, and if not it will certainly help you understand the complexity involved in building your own (just look at their source code).
Please note the advice is really consider the algorithm choice. "Good" recommender systems are so much more than just being able to process a large dataset. You need to think about accuracy, coverage, confidence, novelty, serendipity, diversity, robustness, privacy, risk user trust, and finally scalability. You should also consider how you are going to perform experiments and evaluate your recommendations, remember if the recommendations you are churning out are rubbish and it is turning your users off then there is no point to have a recommender system!
It is such a big area with lots to think about, there is probably no one single tool that is going to help you with everything, so be prepared to do a lot of reading and research as well as implementing lots of different open source tools to help you.
In saying that, start looking at Apache Mahout. Going back to the break-down of the 3 areas I said you should think about.
It has a commercial-friendly open-source license,
it has really great implementation of the algorithms you are likely going to need to use, and
it can work on distributed environments (read scalable).
Hope that helps, and good luck.
Simple item-to-item recommendation systems are well-known and frequently implemented. An example is the Slope One algorithm. This is fine if the user hasn't rated many items yet, but once they have, I want to offer more finely-grained recommendations. Let's take a music recommendation system as an example, since they are quite popular. If a user is viewing a piece by Mozart, a suggestion for another Mozart piece or Beethoven might be given. But if the user has made many ratings on classical music, we might be able to make a correlation between the items and see that the user dislikes vocals or certain instruments. I'm assuming this would be a two-part process, first part is to find correlations between each users' ratings, the second would be to build the recommendation matrix from these extra data. So the question is, are they any open-source implementations or papers that can be used for each of these steps?
Taste may have something useful. It's moved to the Mahout project:
http://taste.sourceforge.net/
In general, the idea is that given a user's past preferences, you want to predict what they'll select next and recommend it. You build a machine-learning model in which the inputs are what a user has picked in the past and the attributes of each pick. The output is the item(s) they'll pick. You create training data by holding back some of their choices, and using their history to predict the data you held back.
Lots of different machine learning models you can use. Decision trees are common.
One answer is that any recommender system ought to have some of the properties you describe. Initially, recommendations aren't so good and are all over the place. As it learns tastes, the recommendations will come from the area the user likes.
But, the collaborative filtering process you describe is fundamentally not trying to solve the problem you are trying to solve. It is based on user ratings, and two songs aren't rated similarly because they are similar songs -- they're rated similarly just because similar people like them.
What you really need is to define your notion of song-song similarity. Is it based on how the song sounds? the composer? Because it sounds like the notion is not based on ratings, actually. That is 80% of the problem you are trying to solve.
I think the question you are really answering is, what items are most similar to a given item? Given your item similarity, that's an easier problem than recommendation.
Mahout can help with all of these things, except song-song similarity based on its audio -- or at least provide a start and framework for your solution.
There are two techniques that I can think of:
Train a feed-forward artificial neural net using Backpropagation or one of it's successors (e.g. Resilient Propagation).
Use version space learning. This starts with the most general and the most specific hypotheses about what the user likes and narrows them down when new examples are integrated. You can use a hierarchy of terms to describe concepts.
Common characteristics of these methods are:
You need a different function for
each user. This pretty much rules
out efficient database queries when
searching for recommendations.
The function can be updated on the fly
when the user votes for an item.
The dimensions along which you classify
the input data (e.g. has vocals, beats
per minute, musical scales,
whatever) are very critical to the
quality of the classification.
Please note that these suggestions come from university courses in knowledge based systems and artificial neural nets, not from practical experience.
Please be patient with my writing, as my English is not proficient.
As a programmer, I wanna learn about the algorithm, or the machine learning intelligence, that are implemented underneath recommendation systems or related-based systems. For instance, the most obvious example would be from Amazon. They have a really good recommendation system. They get to know: if you like this, you might also like that, or something else like: What percentage of people like this and that together.
Of course I know Amazon is a big website and they invested a lot of brain and money into these systems. But, on the very basic core, how can we implement something like that within our database? How can we identify how one object relates to other? How can we build a statistic unit that handles this kind of thing?
I'd appreciate if someone can point out some algorithms. Or, basically, point out some good direct references/ books that we can all learn from. Thank you all!
The are 2 different types of recommendation engines.
The simplest is item-based ie "customers that bought product A also bought product B". This is easy to implement. Store a sparse symmetrical matrix nxn (where n is the number of items). Each element (m[a][b]) is the number of times anyone has bought item 'a' along with item 'b'.
The other is user-based. That is "people like you often like things like this". A possible solution to this problem is k-means clustering. ie construct a set of clusters where users of similar taste are placed in the same cluster and make suggestions based on users in the same cluster.
A better solution, but an even more complicated one is a technique called Restricted Boltzmann Machines. There's an introduction to them here
A first attempt could look like this:
//First Calculate how often any product pair was bought together
//The time/memory should be about Sum over all Customers of Customer.BoughtProducts^2
Dictionary<Pair<ProductID,ProductID>> boughtTogether=new Dictionary<Pair<ProductID,ProductID>>();
foreach(Customer in Customers)
{
foreach(product1 in Customer.BoughtProducts)
foreach(product2 in Customer.BoughtProducts)
{
int counter=boughtTogether[Pair(product1,product2)] or 0 if missing;
counter++;
boughtTogether[Pair(product1,product2)]=counter;
}
}
boughtTogether.GroupBy(entry.Key.First).Select(group.OrderByDescending(entry=>entry.Value).Take(10).Select(new{key.Second as ProductID,Value as Count}));
First I calculate how often each pair of products was bought together, and then I group them by the product and select the top 20 other products bought with it. The result should be put into some kind of dictionary keyed by product ID.
This might get too slow or cost too much memory for large databases.
I think, you talk about knowledge base systems. I don't remember the programming language (maybe LISP), but there is implementations. Also, look at OWL.
There's also prediction.io if you're looking for an open source solution or SaaS solutions like mag3llan.com.
I have a database, consisting of a whole bunch of records (around 600,000) where some of the records have certain fields missing. My goal is to find a way to predict what the missing data values should be (so I can fill them in) based on the existing data.
One option I am looking at is clustering - i.e. representing the records that are all complete as points in some space, looking for clusters of points, and then when given a record with missing data values try to find out if there are any clusters that could belong in that are consistent with the existing data values. However this may not be possible because some of the data fields are on a nominal scale (e.g. color) and thus can't be put in order.
Another idea I had is to create some sort of probabilistic model that would predict the data, train it on the existing data, and then use it to extrapolate.
What algorithms are available for doing the above, and is there any freely available software that implements those algorithms (This software is going to be in c# by the way).
This is less of an algorithmic and more of a philosophical and methodological question. There are a few different techniques available to tackle this kind of question. Acock (2005) gives a good introduction to some of the methods. Although it may seem that there is a lot of math/statistics involved (and may seem like a lot of effort), it's worth thinking what would happen if you messed up.
Andrew Gelman's blog is also a good resource, although the search functionality on his blog leaves something to be desired...
Hope this helps.
Acock (2005)
http://oregonstate.edu/~acock/growth-curves/working%20with%20missing%20values.pdf
Andrew Gelman's blog
http://www.stat.columbia.edu/~cook/movabletype/mlm/
Dealing with missing values is a methodical question that has to do with the actual meaning of the data.
Several methods you can use (detailed post on my blog):
Ignore the data row. This is usually done when the class label is missing (assuming you data mining goal is classification), or many attributes are missing from the row (not just one). However you'll obviously get poor performance if the percentage of such rows is high
Use a global constant to fill in for missing values. Like "unknown", "N/A" or minus infinity. This is used because sometimes is just doesnt make sense to try and predict the missing value. For example if you have a DB if, say, college candidates and state of residence is missing for some, filling it in doesn't make much sense...
Use attribute mean. For example if the average income of a US family is X you can use that value to replace missing income values.
Use attribute mean for all samples belonging to the same class. Lets say you have a cars pricing DB that, among other things, classifies cars to "Luxury" and "Low budget" and you're dealing with missing values in the cost field. Replacing missing cost of a luxury car with the average cost of all luxury cars is probably more accurate then the value you'd get if you factor in the low budget cars
Use data mining algorithm to predict the value. The value can be determined using regression, inference based tools using Baysian formalism , decision trees, clustering algorithms used to generate input for step method #4 (K-Mean\Median etc.)
I'd suggest looking into regression and decision trees first (ID3 tree generation) as they're relatively easy and there are plenty of examples on the net.
As for packages, if you can afford it and you're in the Microsoft world look at SQL Server Analysis Services (SSAS for short) that implement most of the mentioned above.
Here are some links to free data minning software packages:
WEKA - http://www.cs.waikato.ac.nz/ml/weka/index.html
ORANGE - http://www.ailab.si/orange
TANAGRA - http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html
Although not C# he's a pretty good intro to decision trees and baysian learning (using Ruby):
http://www.igvita.com/2007/04/16/decision-tree-learning-in-ruby/
http://www.igvita.com/2007/05/23/bayes-classification-in-ruby/
There's also this Ruby library that I find very useful (also for learning purposes):
http://ai4r.rubyforge.org/machineLearning.html
There should be plenty of samples for these algorithms online in any language so I'm sure you'll easily find C# stuff too...
Edited:
Forgot this in my original post. This is a definately MUST HAVE if you're playing with data mining...
Download Microsoft SQL Server 2008 Data Mining Add-ins for Microsoft Office 2007 (It requires SQL Server Analysis Services - SSAS - which isn't free but you can download a trial).
This will allow you to easily play and try out the different techniques in Excel before you go and implement this stuff yourself. Then again, since you're in the Microsoft ecosystem, you might even decide to go for an SSAS based solution and count on the SQL Server guys to do it for ya :)
Predicting missing values is generally considered to be part of data cleansing phase which needs to be done before the data is mined or analyzed further. This is quite prominent in real world data.
Please have a look at this algorithm http://arxiv.org/abs/math/0701152
Currently Microsoft SQL Server Analysis Services 2008 also comes with algorithms like these http://technet.microsoft.com/en-us/library/ms175312.aspx which help in predictive modelling of attributes.
cheers