Number of areas overlapped by exactly 3 circles - algorithm

I have a task where i have any number of circles. All I know about one is its centre and radius. Now I need to find the number of areas which are overlapped by exactly 3 circles. I tried to solve it knowing that circles overlap when distance between their centres is shorter than sum of radiuses, but it got me nowhere.

A sweep-line algorithm should do the job.
Read about sweep-line algorithms in general here, about one particular (very important) algorithm here. The overall structure of an algorithm for this problem would be similar to that of Bentley–Ottmann algorithm. Below are some details (not a full description but rather a sketch; a full description
Take all the leftmost (min X) and rightmost (max X) points on each circle. Sort all these points by their X coordinate. Put them to a priority queue.
Run a vertical sweep line along the X axis. The line contains a collection of Y coordinates of points where it intersects with the circles at the current X coordinate, sorted by Y.
Once the sweep line hits a leftmost circle point, add it to the the collection twice — once for the upper semicircle and once for the lower semicircle. Once the sweep line hits a rightmost circle point, remove the corresponding points from the collection. Keep track of the number of times each interval between two successive points is covered by circles. Keep track of identity of these areas. Whenever two points that belong to different circles appear next to each other, calculate their intersection points, and insert them to the point queue. Every time the sweep line hits an intersection point, swap the corresponding points in the collection and adjust area identities and overlap counts.
It's easy to visualise the algorithm by drawing some circles on a piece of paper, coloring each area differently, and slowly moving a ruler across the drawing, noting how it intersects with circles and areas.
Also google "line sweep algorithm" "circles".

Related

How to compute the set of polygons from a set of overlapping circles?

This question is an extension on some computation details of this question.
Suppose one has a set of (potentially overlapping) circles, and one wishes to compute the area this set of circles covers. (For simplicity, one can assume some precomputation steps have been made, such as getting rid of circles included entirely in other circles, as well as that the circles induce one connected component.)
One way to do this is mentioned in Ants Aasma's and Timothy's Shields' answers, being that the area of overlapping circles is just a collection of circle slices and polygons, both of which the area is easy to compute.
The trouble I'm encountering however is the computation of these polygons. The nodes of the polygons (consisting of circle centers and "outer" intersection points) are easy enough to compute:
And at first I thought a simple algorithm of picking a random node and visiting neighbors in clockwise order would be sufficient, but this can result in the following "outer" polygon to be constructed, which is not part of the correct polygons.
So I thought of different approaches. A Breadth First Search to compute minimal cycles, but I think the previous counterexample can easily be modified so that this approach results in the "inner" polygon containing the hole (and which is thus not a correct polygon).
I was thinking of maybe running a Las Vegas style algorithm, taking random points and if said point is in an intersection of circles, try to compute the corresponding polygon. If such a polygon exists, remove circle centers and intersection points composing said polygon. Repeat until no circle centers or intersection points remain.
This would avoid ending up computing the "outer" polygon or the "inner" polygon, but would introduce new problems (outside of the potentially high running time) e.g. more than 2 circles intersecting in a single intersection point could remove said intersection point when computing one polygon, but would be necessary still for the next.
Ultimately, my question is: How to compute such polygons?
PS: As a bonus question for after having computed the polygons, how to know which angle to consider when computing the area of some circle slice, between theta and 2PI - theta?
Once we have the points of the polygons in the right order, computing the area is a not too difficult.
The way to achieve that is by exploiting planar duality. See the Wikipedia article on the doubly connected edge list representation for diagrams, but the gist is, given an oriented edge whose right face is inside a polygon, the next oriented edge in that polygon is the reverse direction of the previous oriented edge with the same head in clockwise order.
Hence we've reduced the problem to finding the oriented edges of the polygonal union and determining the correct order with respect to each head. We actually solve the latter problem first. Each intersection of disks gives rise to a quadrilateral. Let's call the centers C and D and the intersections A and B. Assume without loss of generality that the disk centered at C is not smaller than the disk centered at D. The interior angle formed by A→C←B is less than 180 degrees, so the signed area of that triangle is negative if and only if A→C precedes B→C in clockwise order around C, in turn if and only if B→D precedes A→D in clockwise order around D.
Now we determine which edges are actually polygon boundaries. For a particular disk, we have a bunch of angle intervals around its center from before (each sweeping out the clockwise sector from the first endpoint to the second). What we need amounts to a more complicated version of the common interview question of computing the union of segments. The usual sweep line algorithm that increases the cover count whenever it scans an opening endpoint and decreases the cover count whenever it scans a closing endpoint can be made to work here, with the adjustment that we need to initialize the count not to 0 but to the proper cover count of the starting angle.
There's a way to do all of this with no trigonometry, just subtraction and determinants and comparisons.

Approximate a curve with a limited number of line segments and arcs of circles

Is there any algorithm that would allow to approximate a path on the x-y plane (i.e. an ordered suite of points defined by x and y) with a limited number of line segments and arcs of circles (constant curvature)? The resulting curve needs to be C1 (continuity of slope).
The maximum number or segments and arcs could be a parameter. An additional interesting constraint would be to prevent two consecutive circles of arcs without an intermediate line segment joining them.
I do not see any way to do this, and I do not think that there exists a method for it, but any hint towards this objective is welcome.
Example:
Sample file available here
Consider this path. It looks like a line, but is actually an ordered suite of very close points. There is no noise and the order of the sequence of points is well known.
I would like to approximate this curve with a minimum number of succession of line segments and circular arcs (let's say 10 line segments and 10 circular arcs) and a C1 continuity. The number of segments/arcs is not an objective itself but I need any parameter which would allow to reduce/increase this number to attain a certain simplicity of the parametrization, at the cost of accuracy loss.
Solution:
Here is my solution, based on Spektre's answer. Red curve is original data. Black lines are segments and blue curves are circle arcs. Green crosses are arc centers with radii shown and blue ones are points where segments potentially join.
Detect line segments, based on slope max deviation and segment minimal length as parameters. The slope of the new segment step is compared with the average step of the existing segment. I would prefer an optimization-based method, but I do not think that it exists for disjoint segments with unknown number, position and length.
Join segments with tangent arcs. To close the system, the radius is chosen such that the segments extremities are the least possible moved. A minimum radius constraint has been added for my purposes. I believe that there will be some special cases to treat in the inflexion points are far away when (e.g. lines are nearly parallel) and interact with neigboring segments.
so you got a point cloud ... for such Usually points close together are considered connected so:
you need to add info about what points are close to which ones
points close only to 2 neighbors signaling interior of curve/line. Only one neighbor means endpoint of curve/lines and more then 2 means intersection or too close almost or parallel lines/curves. No neighbors means either noise or just a dot.
group path segments together
This is called connected component analysis. So you need to form polylines from your neighbor info table.
detect linear path chunks
these have the same slope among neighboring segments so you can join them to single line.
fit the rest with curves
Here related QAs:
Finding holes in 2d point sets?
Algorithms: Ellipse matching
How approximation search works see the sublinks there are quite a bit of examples of fitting
Trace a shape into a polygon of max n sides
[Edit1] simple line detection from #3 on your data
I used 5.0 deg angle change as threshold for lines and also minimal size fo detected line as 50 samples (too lazy to compute length assuming constant point density). The result looks like this:
dots are detected line endpoints, green lines are the detected lines and white "lines" are the curves so I do not see any problem with this approach for now.
Now the problem is with the points left (curves) I think there should be also geometric approach for this as it is just circular arcs so something like this
Formula to draw arcs ending in straight lines, Y as a function of X, starting slope, ending slope, starting point and arc radius?
And this might help too:
Circular approximation of polygon (or its part)
the C1 requirement demands the you must have alternating straights and arcs. Also realize if you permit a sufficient number of segments you can trivially fit every pair of points with a straight and use a tiny arc to satisfy slope continuity.
I'd suggest this algorithm,
1 best fit with a set of (specified N) straight segments. (surely there are well developed algorithms for that.)
2 consider the straight segments fixed and at each joint place an arc. Treating each joint individually i think you have a tractable problem to find the optimum arc center/radius to satisfy continuity and improve the fit.
3 now that you are pretty close attempt to consider all arc centers and radii (segments being defined by tangency) as a global optimization problem. This of course blows up if N is large.
A typical constraint when approximating a given curve by some other curve is to bound the approximate curve to an epsilon-hose within the original curve (in terms if Minkowski sum with a disk of fixed radius epsilon).
For G1- or C2-continuous approximation (which people from CNC/CAD like) with biarcs (and a straight-line segment could be seen as an arc with infinite radius) former colleagues of mine developed an algorithm that gives solutions like this [click to enlarge]:
The above picture is taken from the project website: https://www.cosy.sbg.ac.at/~held/projects/apx/apx.html
The algorithm is fast, that is, it runs in O(n log n) time and is based on the generalized Voronoi diagram. However, it does not give an approximation with the exact minimum number of elements. If you look for the theoretical optimum I would refer to a paper by Drysdale et al., Approximation of an Open Polygonal Curve with
a Minimum Number of Circular Arcs and Biarcs, CGTA, 2008.

Algorithm for bisecting a set of points using a circle of fixed radius

Suppose I have a set of points in the Cartesian plane, defined by an array/vector of (X,Y) coordinates. This set of points will be "contiguous" in the coordinate plane, if any set of discontinuous points can be contiguous. That is, these points originated as a rectangular grid in which regions of points were eliminated by a prior algorithm. The shape outlined by the points is arbitrary, but it will tend to have arcs for edges.
Suppose further that I can create circles of fixed radius r.
I would like an algorithm that will find me the center X,Y for a circle that will enclose as close to exactly half of the given points as possible.
OK, try this (sorry if I have very bad wording: I didn't learn my Maths in english)
Step 1: Find axis
For all pairs of points, that are less than 2r apart calculate how many points lie on either side of the connecting line
Chose the pair with the worst balance
Calculate the line, that bisects these two points as an axis ("Axis of biggest concavity")
Step 2: Find center
Start on the axis far (>2r) away on the side, that had the lower point count in step 1 (The concave side)
Move the center on the axis, until you reach the desired point. This can be done by moving up with a step of sqrt(delta), where delta is the smallest distance between 2 points in the set, if overreaching move back halfing the step, etc.
You might want to look into the algorithm for smallest enclosing circle of a point set.
A somewhat greedy algorithm would be to simply remove points 1 at a time until the circle radius is less or equal to r.

Laying out circles in a rect

I'm trying to workout how to efficiently calculate the layout of a dynamic/random view.
The view will contain a number of circles. Each circle has a predetermined size. These sizes are all between a given maximum and minimum size.
I'm trying to find an efficient way of laying out the circles within a rect with a couple of conditions.
The circles mustn't overlap with the edge of the rect and the circles must have a minimum "spacing" between them.
The first method I came up with is to randomly generate coordinate pairs and place the biggest circle. Then randomly generate more coordinate pairs until a suitable one is generated for the next circle. And the next, and the next, and so on until all are drawn.
The problems with this are that it could potentially take a long time to complete. Each subsequent circle will take longer to place as there are fewer places that it can go.
Another problem is that it could be impossible to layout the view.
I'm sure there must be more efficient ways of doing this but I'm not sure where to begin.
The Formula must deal between the smallest possible square they need or from a other point of view, with an arrangement with the smallest possible density between the edgepoints. But your problem could be solved by sorting the circles by size and then start with the largest and arrange them step by step to the smallest because the larger are more bulky and the smaller fit easier in small corners by there nature.
Build triangles of circles, where 3 circles have a discribing space they use together. This triangle has 3 corners right? :) so messure/calc the angle of that corners and the corner with the nearest 90degree angle should be placed in a square corner, better to say the three circles should be places mirrored so that the circle with the fittest 90degree corner behind is the one who goes in the corner. If a 4th circle fits into the rest of this triangle, wonderful, if not you place exact this circle in it which is taken minimum outerspace of that triangle. because its not said that the next smaller circle is the one who fit's perfect, which also means you have a stack of not placed circles until one is found who fits better. after you find one you go upwards your circle-stack again and try to fit the next of it in one of the corners or you try to build the next triangle. and here you see how complex this is, damn! http://en.wikipedia.org/wiki/Malfatti_circles
But anyway, the more one of this triangles corners is 90° the less space it would take with this 3 circles in it.
An other concept could be to think about larger circles like space who leftover a triangle in one of its corners in relation to the rectangle. This triangle has a maximum space availible for a smaller circle. If there is no perfectly fitting circle your taken square-space grows up. So as far as i think about to handle this problem with imagined triangles to compare with fitting circles in it or taking triangle ranges from the square is the solutions base.

Area of Intersection of Two Rotated Rectangles

I have two 2D rectangles, defined as an origin (x,y) a size (height, width) and an angle of rotation (0-360°). I can guarantee that both rectangles are the same size.
I need to calculate the approximate area of intersection of these two rectangles.
The calculation does not need to be exact, although it can be. I will be comparing the result with other areas of intersection to determine the largest area of intersection in a set of rectangles, so it only needs to be accurate relative to other computations of the same algorithm.
I thought about using the area of the bounding box of the intersected region, but I'm having trouble getting the vertices of the intersected region because of all of the different possible cases:
I'm writing this program in Objective-C in the Cocoa framework, for what it's worth, so if anyone knows any shortcuts using NSBezierPath or something you're welcome to suggest that too.
To supplement the other answers, your problem is an instance of line clipping, a topic heavily studied in computer graphics, and for which there are many algorithms available.
If you rotate your coordinate system so that one rectangle has a horizontal edge, then the problem is exactly line clipping from there on.
You could start at the Wikipedia article on the topic, and investigate from there.
A simple algorithm that will give an approximate answer is sampling.
Divide one of your rectangles up into grids of small squares. For each intersection point, check if that point is inside the other rectangle. The number of points that lie inside the other rectangle will be a fairly good approximation to the area of the overlapping region. Increasing the density of points will increase the accuracy of the calculation, at the cost of performance.
In any case, computing the exact intersection polygon of two convex polygons is an easy task, since any convex polygon can be seen as an intersection of half-planes. "Sequential cutting" does the job.
Choose one rectangle (any) as the cutting rectangle. Iterate through the sides of the cutting rectangle, one by one. Cut the second rectangle by the line that contains the current side of the cutting rectangle and discard everything that lies in the "outer" half-plane.
Once you finish iterating through all cutting sides, what remains of the other rectangle is the result.
You can actually compute the exact area.
Make one polygon out of the two rectangles. See this question (especially this answer), or use the gpc library.
Find the area of this polygon. See here.
The shared area is
area of rectangle 1 + area of rectangle 2 - area of aggregated polygon
Take each line segment of each rectangle and see if they intersect. There will be several possibilities:
If none intersect - shared area is zero - unless all points of one are inside the other. In that case the shared area is the area of the smaller one.
a If two consecutive edges of one rectactangle intersect with a single edge of another rectangle, this forms a triangle. Compute its area.
b. If the edges are not consequtive, this forms a quadrilateral. Compute a line from two opposite corners of the quadrilateral, this makes two triangles. Compute the area of each and sum.
If two edges of one intersect with two edges of another, then you will have a quadrilateral. Compute as in 2b.
If each edge of one intersects with each edge of the other, you will have an octagon. Break it up into triangles ( e.g. draw a ray from one vertex to each other vertex to make 4 triangles )
#edit: I have a more general solution.
Check the special case in 1.
Then start with any intersecting vertex, and follow the edges from there to any other intersection point until you are back to the first intersecting vertex. This forms a convex polygon. draw a ray from the first vertex to each opposite vetex ( e.g. skip the vertex to the left and right. ) This will divide it into a bunch of triangles. compute the area for each and sum.
A brute-force-ish way:
take all points from the set of [corners of
rectangles] + [points of intersection of edges]
remove the points that are not inside or on the edge of both rectangles.
Now You have corners of intersection. Note that the intersection is convex.
sort the remaining points by angle between arbitrary point from the set, arbitrary other point, and the given point.
Now You have the points of intersection in order.
calculate area the usual way (by cross product)
.

Resources