Finding number representation in different bases - algorithm

I was recently solving a problem when I encountered this one: APAC Round E Q2
Basically the question asks to find the smallest base (>1) in which if the number (input) is written then the number would only consist of 1s. Like 3 if represented in base 2 would become 1 (consisting of only 1s).
Now, I tried to solve this the brute force way trying out all bases from 2 till the number to find such a base. But the constraints required a more efficient one.
Can anyone provide some help on how to approach this?

Here is one suggestion: A number x that can be represented as all 1s in a base b can be written as x = b^n + b^(n-1) + b^(n-2) + ... + b^1 + 1
If you subtract 1 from this number you end up with a number divisble by b:
b^n + b^(n-1) + b^(n-2) + ... + b^1 which has the representation 111...110. Dividing by b means shifting it right once so the resulting number is now b^(n-1) + b^(n-2) + ... + b^1 or 111...111 with one digit less than before. Now you can repeat the process until you reach 0.
For example 13 which is 111 in base 3:
13 - 1 = 12 --> 110
12 / 3 = 4 --> 11
4 - 1 = 3 --> 10
3 / 3 = 1 --> 1
1 - 1 = 0 --> 0
Done => 13 can be represented as all 1s in base 3
So in order to check if a given number can be written with all 1s in a base b you can check if that number is divisble by b after subtracting 1. If not you can immediately start with the next base.
This is also pretty brute-forcey but it doesn't do any base conversions, only one subtraction, one divisions and one mod operation per iteration.

We can solve this in O( (log2 n)^2 ) complexity by recognizing that the highest power attainable in the sequence would correspond with the smallest base, 2, and using the formula for geometric sum:
1 + r + r^2 + r^3 ... + r^(n-1) = (1 - r^n) / (1 - r)
Renaming the variables, we get:
n = (1 - base^power) / (1 - base)
Now we only need to check power's from (floor(log2 n) + 1) down to 2, and for each given power, use a binary search for the base. For example:
n = 13:
p = floor(log2 13) + 1 = 4:
Binary search for base:
(1 - 13^4) / (1 - 13) = 2380
...
No match for power = 4.
Try power = 3:
(1 - 13^3) / (1 - 13) = 183
(1 - 6^3) / (1 - 6) = 43
(1 - 3^3) / (1 - 3) = 13 # match
For n around 10^18 we may need up to (floor(log2 (10^18)) + 1)^2 = 3600 iterations.

Related

Efficient algorithm to find the n-th digit in the string 112123123412345

What is an efficient algorithm for finding the digit in nth position in the following string
112123123412345123456 ... 123456789101112 ...
Storing the entire string in memory is not feasible for very large n, so I am looking for an algorithm that can find the nth digit in the above string which works if n is very large (i.e. an alternative to just generating the first n digits of the string).
There are several levels here: the digit is part of a number x, the number x is part of a sequence 1,2,3...x...y and that sequence is part of a block of sequences that lead up to numbers like y that have z digits. We'll tackle these levels one by one.
There are 9 numbers with 1 digit:
first: 1 (sequence length: 1 * 1)
last: 9 (sequence length: 9 * 1)
average sequence length: (1 + 9) / 2 = 5
1-digit block length: 9 * 5 = 45
There are 90 numbers with 2 digits:
first: 10 (sequence length: 9 * 1 + 1 * 2)
last: 99 (sequence length: 9 * 1 + 90 * 2)
average sequence length: 9 + (2 + 180) / 2 = 100
2-digit block length: 90 * 100 = 9000
There are 900 numbers with 3 digits:
first: 100 (sequence length: 9 * 1 + 90 * 2 + 1 * 3)
last: 999 (sequence length: 9 * 1 + 90 * 2 + 900 * 3)
average sequence length: 9 + 180 + (3 + 2,700) / 2 = 1,540.5
3-digit block length: 900 * 1,540.5 = 1,386,450
If you continue to calculate these values, you'll find which block (of sequences up to how many digits) the digit you're looking for is in, and you'll know the start and end point of this block.
Say you want the millionth digit. You find that it's in the 3-digit block, and that this block is located in the total sequence at:
start of 3-digit block: 45 + 9,000 + = 9,045
start of 4-digit block: 45 + 9,000 + 1,386,450 = 1,395,495
So in this block we're looking for digit number:
1,000,000 - 9,045 = 990,955
Now you can use e.g. a binary search to find which sequence the 990,955th digit is in; you start with the 3-digit number halfway in the 3-digit block:
first: 100 (sequence length: 9 + 180 + 1 * 3)
number: 550 (sequence length: 9 + 180 + 550 * 3)
average sequence length: 9 + 180 + (3 + 1650) / 2 = 1,015.5
total sequence length: 550 * 1,015.5 = 558,525
Which is too small; so we try 550 * 3/4 = 825, see if that is too small or large, and go up or down in increasingly smaller steps until we know which sequence the 990,995th digit is in.
Say it's in the sequence for the number n; then we calculate the total length of all 3-digit sequences up to n-1, and this will give us the location of the digit we're looking for in the sequence for the number n. Then we can use the numbers 9*1, 90*2, 900*3 ... to find which number the digit is in, and then what the digit is.
We have three types of structures that we would like to be able to search on, (1) the sequence of concatenating d-digit numbers, for example, single digit:
123456...
or 3-digit:
100101102103
(2) the rows in a section,
where each section builds on the previous section added to a prefix. For example, section 1:
1
12
123
...
or section 3:
1234...10111213...100
1234...10111213...100102
1234...10111213...100102103
<----- prefix ----->
and (3) the full sections, although the latter we can just enumerate since they grow exponentially and help build our section prefixes. For (1), we can use simple division if we know the digit count; for (2), we can binary search.
Here's Python code that also answers the big ones:
def getGreatest(n, d, prefix):
rows = 9 * 10**(d - 1)
triangle = rows * (d + rows * d) // 2
l = 0
r = triangle
while l < r:
mid = l + ((r - l) >> 1)
triangle = mid * prefix + mid * (d + mid * d) // 2
prevTriangle = (mid-1) * prefix + (mid-1) * (d + (mid-1) * d) // 2
nextTriangle = (mid+1) * prefix + (mid+1) * (d + (mid+1) * d) // 2
if triangle >= n:
if prevTriangle < n:
return prevTriangle
else:
r = mid - 1
else:
if nextTriangle >= n:
return triangle
else:
l = mid
return l * prefix + l * (d + l * d) // 2
def solve(n):
debug = 1
d = 0
p = 0.1
prefixes = [0]
sections = [0]
while sections[d] < n:
d += 1
p *= 10
rows = int(9 * p)
triangle = rows * (d + rows * d) // 2
section = rows * prefixes[d-1] + triangle
sections.append(sections[d-1] + section)
prefixes.append(prefixes[d-1] + rows * d)
section = sections[d - 1]
if debug:
print("section: %s" % section)
n = n - section
rows = getGreatest(n, d, prefixes[d - 1])
if debug:
print("rows: %s" % rows)
n = n - rows
d = 1
while prefixes[d] < n:
d += 1;
if prefixes[d] == n:
return 9;
prefix = prefixes[d - 1]
if debug:
print("prefix: %s" % prefix)
n -= prefix
if debug:
print((n, d, prefixes, sections))
countDDigitNums = n // d
remainder = n % d
prev = 10**(d - 1) - 1
num = prev + countDDigitNums
if debug:
print("num: %s" % num)
if remainder:
return int(str(num + 1)[remainder - 1])
else:
s = str(num);
return int(s[len(s) - 1])
ns = [
1, # 1
2, # 1
3, # 2
100, # 1
2100, # 2
31000, # 2
999999999999999999, # 4
1000000000000000000, # 1
999999999999999993, # 7
]
for n in ns:
print(n)
print(solve(n))
print('')
Well, you have a series of sequences each increasing by a single number.
If you have "x" of them, then the sequences up to that point occupy x * (x + 1) / 2 character positions. Or, another way of saying this is that the "x"s sequence starts at x * (x - 1) / 2 (assuming zero-based indexing). These are called triangular numbers.
So, all you need to do is to find the "x" value where the cumulative amount is closest to a given "n". Here are three ways:
Search for a closed from solution. This exists, but the formula is rather complicated. (Here is one reference for the sum of triangular numbers.)
Pre-calculate a table in memory with values up to, say, 1,000,000. that will get you to 10^10 sizes.
Use a "binary" search and the formula. So, generate the sequence of values for 1, 2, 4, 8, and so on and then do a binary search to find the exact sequence.
Once you know the sequence where the value lies, determining the value is simply a matter of arithmetic.

Finding natural numbers having n Trailing Zeroes in Factorial

I need help with the following problem.
Given an integer m, I need to find the number of positive integers n and the integers, such that the factorial of n ends with exactly m zeroes.
I wrote this code it works fine and i get the right output, but it take way too much time as the numbers increase.
a = input()
while a:
x = []
m, n, fact, c, j = input(), 0, 1, 0, 0
z = 10*m
t = 10**m
while z - 1:
fact = 1
n = n + 1
for i in range(1, n + 1):
fact = fact * i
if fact % t == 0 and ((fact / t) % 10) != 0:
x.append(int(n))
c = c + 1
z = z - 1
for p in range(c):
print x[p],
a -= 1
print c
Could someone suggest me a more efficient way to do this. Presently, it takes 30 seconds for a test case asking for numbers with 250 trailing zeros in its factorial.
Thanks
To get number of trailing zeroes of n! efficiently you can put
def zeroes(value):
result = 0;
d = 5;
while (d <= value):
result += value // d; # integer division
d *= 5;
return result;
...
# 305: 1234! has exactly 305 trailing zeroes
print zeroes(1234)
In order to solve the problem (what numbers have n trailing zeroes in n!) you can use these facts:
number of zeroes is a monotonous function: f(x + a) >= f(x) if a >= 0.
if f(x) = y then x <= y * 5 (we count only 5 factors).
if f(x) = y then x >= y * 4 (let me leave this for you to prove)
Then implement binary search (on monotonous function).
E.g. in case of 250 zeroes we have the initial range to test [4*250..5*250] == [1000..1250]. Binary search narrows the range down into [1005..1009].
1005, 1006, 1007, 1008, 1009 are all numbers such that they have exactly 250 trainling zeroes in factorial
Edit I hope I don't spoil the fun if I (after 2 years) prove the last conjecture (see comments below):
Each 5**n within facrtorial when multiplied by 2**n produces 10**n and thus n zeroes; that's why f(x) is
f(x) = [x / 5] + [x / 25] + [x / 125] + ... + [x / 5**n] + ...
where [...] stands for floor or integer part (e.g. [3.1415926] == 3). Let's perform easy manipulations:
f(x) = [x / 5] + [x / 25] + [x / 125] + ... + [x / 5**n] + ... <= # removing [...]
x / 5 + x / 25 + x / 125 + ... + x / 5**n + ... =
x * (1/5 + 1/25 + 1/125 + ... + 1/5**n + ...) =
x * (1/5 * 1/(1 - 1/5)) =
x * 1/5 * 5/4 =
x / 4
So far so good
f(x) <= x / 4
Or if y = f(x) then x >= 4 * y Q.E.D.
Focus on the number of 2s and 5s that makes up a number. e.g. 150 is made up of 2*3*5*5, there 1 pair of 2&5 so there's one trailing zero. Each time you increase the tested number, try figuring out how much 2 and 5s are in the number. From that, adding up previous results you can easily know how much zeros its factorial contains.
For example, 15!=15*...*5*4*3*2*1, starting from 2:
Number 2s 5s trailing zeros of factorial
2 1 0 0
3 1 0 0
4 2 0 0
5 2 1 1
6 3 1 1
...
10 5 2 2
...
15 7 3 3
..
24 12 6 6
25 12 8 8 <- 25 counts for two 5-s: 25 == 5 * 5 == 5**2
26 13 8 8
..
Refer to Peter de Rivaz's and Dmitry Bychenko's comments, they have got some good advices.

Arithmetic operation on sequence on integers

I have N integers numbers: 1,2,3...N
The task is to use +,-,*,/ to make expression 0.
For example -1*2+3+4-5=0
How can I do it?
May be some code on C/C++ ?
If N % 4 == 0, for every four consecutive integers a, b, c, d, take a - b - c + d
If N % 4 == 1, use 1 * 2 to start, then proceed as before. (i.e., 1*2 - 3 - 4 + 5 + 6 - 8 - 8 + 9 ...)
If N % 4 == 2, start with 1 - 2 + 3 * 4 - 5 - 6, then proceed as in the N % 4 == 0 example.
If N % 4 == 3, start with 1 + 2 - 3, then proceed as in the N%4 == 0 example.
All of these find a way to get zero out of the first few integers, leaving a multiple of four integers to work on, then take advantage of the fact that the pattern a - b - c + d = 0 for any four consecutive integers.
This is essentially SAT, or do you know that the numbers are a sequence (e.g. 2 1 8 is forbidden). What about negative numbers?
If the sequence is not too large, i would recommend to simply bootforce it. A greedy solution would be to reduce the problem by finding subsets which can be evaluated to zero.

How to check divisibility of a number not in base 10 without converting?

Let's say I have a number of base 3, 1211. How could I check this number is divisible by 2 without converting it back to base 10?
Update
The original problem is from TopCoder
The digits 3 and 9 share an interesting property. If you take any multiple of 3 and sum its digits, you get another multiple of 3. For example, 118*3 = 354 and 3+5+4 = 12, which is a multiple of 3. Similarly, if you take any multiple of 9 and sum its digits, you get another multiple of 9. For example, 75*9 = 675 and 6+7+5 = 18, which is a multiple of 9. Call any digit for which this property holds interesting, except for 0 and 1, for which the property holds trivially.
A digit that is interesting in one base is not necessarily interesting in another base. For example, 3 is interesting in base 10 but uninteresting in base 5. Given an int base, your task is to return all the interesting digits for that base in increasing order. To determine whether a particular digit is interesting or not, you need not consider all multiples of the digit. You can be certain that, if the property holds for all multiples of the digit with fewer than four digits, then it also holds for multiples with more digits. For example, in base 10, you would not need to consider any multiples greater than 999.
Notes
- When base is greater than 10, digits may have a numeric value greater than 9. Because integers are displayed in base 10 by default, do not be alarmed when such digits appear on your screen as more than one decimal digit. For example, one of the interesting digits in base 16 is 15.
Constraints
- base is between 3 and 30, inclusive.
This is my solution:
class InterestingDigits {
public:
vector<int> digits( int base ) {
vector<int> temp;
for( int i = 2; i <= base; ++i )
if( base % i == 1 )
temp.push_back( i );
return temp;
}
};
The trick was well explained here : https://math.stackexchange.com/questions/17242/how-does-base-of-a-number-relate-to-modulos-of-its-each-individual-digit
Thanks,
Chan
If your number k is in base three, then you can write it as
k = a0 3^n + a1 3^{n-1} + a2 3^{n-2} + ... + an 3^0
where a0, a1, ..., an are the digits in the base-three representation.
To see if the number is divisible by two, you're interested in whether the number, modulo 2, is equal to zero. Well, k mod 2 is given by
k mod 2 = (a0 3^n + a1 3^{n-1} + a2 3^{n-2} + ... + an 3^0) mod 2
= (a0 3^n) mod 2 + (a1 3^{n-1}) mod 2 + ... + an (3^0) mod 2
= (a0 mod 2) (3^n mod 2) + ... + (an mod 2) (3^0 mod 2)
The trick here is that 3^i = 1 (mod 2), so this expression is
k mod 2 = (a0 mod 2) + (a1 mod 2) + ... + (an mod 2)
In other words, if you sum up the digits of the ternary representation and get that this value is divisible by two, then the number itself must be divisible by two. To make this even cooler, since the only ternary digits are 0, 1, and 2, this is equivalent to asking whether the number of 1s in the ternary representation is even!
More generally, though, if you have a number in base m, then that number is divisible by m - 1 iff the sum of the digits is divisible by m. This is why you can check if a number in base 10 is divisible by 9 by summing the digits and seeing if that value is divisible by nine.
You can always build a finite automaton for any base and any divisor:
Normally to compute the value n of a string of digits in base b
you iterate over the digits and do
n = (n * b) + d
for each digit d.
Now if you are interested in divisibility you do this modulo m instead:
n = ((n * b) + d) % m
Here n can take at most m different values. Take these as states of a finite automaton, and compute the transitions depending on the digit d according to that formula. The accepting state is the one where the remainder is 0.
For your specific case we have
n == 0, d == 0: n = ((0 * 3) + 0) % 2 = 0
n == 0, d == 1: n = ((0 * 3) + 1) % 2 = 1
n == 0, d == 2: n = ((0 * 3) + 2) % 2 = 0
n == 1, d == 0: n = ((1 * 3) + 0) % 2 = 1
n == 1, d == 1: n = ((1 * 3) + 1) % 2 = 0
n == 1, d == 2: n = ((1 * 3) + 2) % 2 = 1
which shows that you can just sum the digits 1 modulo 2 and ignore any digits 0 or 2.
Add all the digits together (or even just count the ones) - if the answer is odd, the number is odd; if it's even, the nmber is even.
How does that work? Each digit from the number contributes 0, 1 or 2 times (1, 3, 9, 27, ...). A 0 or a 2 adds an even number, so no effect on the oddness/evenness (parity) of the number as a whole. A 1 adds one of the powers of 3, which is always odd, and so flips the parity). And we start from 0 (even). So by counting whether the number of flips is odd or even we can tell whether the number itself is.
I'm not sure on what CPU you have a number in base-3, but the normal way to do this is to perform a modulus/remainder operation.
if (n % 2 == 0) {
// divisible by 2, so even
} else {
// odd
}
How to implement the modulus operator is going to depend on how you're storing your base-3 number. The simplest to code will probably be to implement normal pencil-and-paper long division, and get the remainder from that.
0 2 2 0
_______
2 ⟌ 1 2 1 1
0
---
1 2
1 1
-----
1 1
1 1
-----
0 1 <--- remainder = 1 (so odd)
(This works regardless of base, there are "tricks" for base-3 as others have mentioned)
Same as in base 10, for your example:
1. Find the multiple of 2 that's <= 1211, that's 1210 (see below how to achieve it)
2. Substract 1210 from 1211, you get 1
3. 1 is < 10, thus 1211 isn't divisible by 2
how to achieve 1210:
1. starts with 2
2. 2 + 2 = 11
3. 11 + 2 = 20
4. 20 + 2 = 22
5. 22 + 2 = 101
6. 101 + 2 = 110
7. 110 + 2 = 112
8. 112 + 2 = 121
9. 121 + 2 = 200
10. 200 + 2 = 202
... // repeat until you get the biggest number <= 1211
it's basically the same as base 10 it's just the round up happens on 3 instead of 10.

How many total gifts in the twelve days of christmas if we extend 12 to any number?

I got this question today in an interview: write a function to calculate the total number of gifts received for any day in the 12 days of christmas song. I wrote a simple function using a for() loop in c#'ish code that worked. Then the interviewer asked me to extend it to any number of days. The conversation then turned to how to optimize the loop. Apparently there's a cool math trick that will do this within the limits of whatever your integer is. Anyone know what it is and what it's called? Any language is ok and a reference to the algorithm would be fabuloso.
Answers that use recursion are NOT what I'm looking for.
EDIT: Answer for day 2 is 4 gifts total, not 3 since I will have 2 Trees (1 from today, 1 from yesterday) and 2 partridges. On day 12 I'll have received a total of 364. I want the formula that lets me input 12 and get 364.
On the first day, you get 1.
On the second day, you get 1 + 2.
On the third day, you get 1 + 2 + 3.
...
On nth day, you get 1 + 2 + 3 + ... + n.
The sum 1 + 2 + ... + n is n(n+1)/2. So the total number, T(N) is the sum of n(n+1)/2 for n in 1..N, where N is the number of days.
Now, n(n+1)/2 = n^2 / 2 + n / 2, and sum of n^2 for n in 1..N is N(N+1)(2N+1)/6, so you get:
T(N) = N(N+1)(2N+1)/12 + N(N+1)/4
= N(N^2 + 3N + 2) / 6
No loops. No recursion.
The $P$-th type of present (where the $1$st is partridges, the $2$nd is turtle doves, etc.) comes in quantities of $P = \sum_{X = 1}^{P} 1$.
On day $D$, you receive presents of type $1$ through $D$, for a total of $\sum_{P = 1}^{D} \sum_{X = 1}^{P} 1$ many presents on that day.
And so, if the days run from $1$ through $N$ (canonically, $N$ is 12, but our interest now is in allowing it to vary), you receive overall $\sum_{D = 1}^{N} \sum_{P = 1}^{D} \sum_{X = 1}^{P} 1$.
This counts the number of non-decreasing triples $1 \leq X \leq P \leq D \leq N$.
This is the same as the number of increasing triples $1 \leq X < P + 1 < D + 2 \leq N + 2$.
So the answer is $\binom{N + 2}{3} = \frac{(N + 2)(N + 1)N}{6}$.
On the n th day, we get 1 + 2 + 3 + ... + n gifts.
Or ... (1 + n) + (2 + n-1) + ...
In other words, (n + 1) * n/2.
You receive 364 gifts.
1
2+1=3
3+2+1=6
4+3+2+1=10
5+4+3+2+1=15
6+5+4+3+2+1=21
7+6+5+4+3=2+1=28
8+7+6+5+4+3+2+=36
9+8+7+6+5+4+3+2+1=45
10+9+8+7+6+5+4+3+2+1=55
11+10+9+8+7+6+5+4+3+2+1=66
12+11+10+9+8+7+6+5+4+3+2+1=78
If you add all of them up you’ll get 364.

Resources