What's the time complexity of this algorithm (pseudo code)? - algorithm

Assume the tree T is a binary tree.
Algorithm computeDepths(node, depth)
Input: node and its depth. For all depths, call with computeDepths(T.root, 0)
Output: depths of all the nodes of T
if node != null
depth ← node.depth
computeDepths(node.left, depth + 1)
computeDepths(node.right, depth + 1)
return depth
end if
I ran it on paper with a full and complete binary tree containing 7 elements, but I still can't put my head around what time complexity it is. If I had to guess, I'd say it's O(n*log n).

It is O(n)
To get an idea on the time complexity, we need to find out the amount of work done by the algorithm, compared with the size of the input. In this algorithm, the work done per function call is constant (only assigning a given value to a variable). So let's count how many times the function is called.
The first time the function is called, it's called on the root.
Then for any subsequent calls, the function checks if the node is null, if it is not null, it set the depth accordingly and set the depths of its children. Then this is done recursively.
Now note that the function is called once per node in the tree, plus two times the number of leaves. In a binary tree, the number of leaves is n/2 (rounded up), so the total number of function calls is:
n + 2*(n/2) = 2n
So this is the amount of work done by the algorithm. And so the time complexity is O(n).

Related

Smallest missing number at any point in time in a stream of positive numbers

We are processing a stream of positive integers. At any point in time, we can be asked a query to which the answer is the smallest positive number that we have not seen yet.
One can assume two APIs.
void processNext(int val)
int getSmallestNotSeen()
We can assume the numbers to be bounded by the range [1,10^6]. Let this range be N.
Here is my solution.
Let's take an array of size 10^6. Whenever processNext(val) is called we mark the array[val] to be 1. We make a sum segment tree on this array. This will be a point update in the segment tree. Whenever getSmallestNotSeen() is called I find the smallest index j such that sum [1..j] is less than j. I find j using binary search. processNext(val) -> O(1) getSmallestNotSeen() -> O((logN)^2)
I was thinking maybe if there was something more optimal. Or the above solution can be improved.
Make a map of id - > node (nodes of a doubly-linked list) and initialize for 10^6 nodes, each pointing to its neighbors. Initialize the min to one.
processNext(val): check if the node exists. If it does, delete it and point its neighbors at each other. If the node you delete has no left neighbor (i.e. was smallest), update the min to be the right neighbor.
getSmallestNotSeen(): return the min
The preprocessing is linear time and linear memory. Everything after that is constant time.
In case the number of processNext calls (i.e. the length of the stream) is fairly small compared with the range of N, then space usage could be limited by storing consecutive ranges of numbers, instead of all possible individual numbers. This is also interesting when N could be a much larger range, like [1, 264-1]
Data structure
I would suggest a binary search tree with such [start, end] ranges as elements, and self-balancing (like AVL, red-black, ...).
Algorithm
Initialise the tree with one (root) node: [1, Infinity]
Whenever a new value val is pulled with processNext, find the range [start, end] that includes val, using binary search.
If the range has size 1 (and thus only contains val), perform a deletion of that node (according to the tree rules)
Else if val is a bounding value of the range, then just update the range in that node, excluding val.
Otherwise split the range into two. Update the node with one of the two ranges (decide by the balance information) and let the other range sift down to a new leaf (and rebalance if needed).
In the tree maintain a reference to the node having the least start value. Only when this node gets deleted during processNext it will need a traversal up or down the tree to find the next (in order) node. When the node splits (see above) and it is decided the put the lower part in a new leaf, the reference needs to be updated to that leaf.
The getSmallestNotSeen function will return the start-value from that least-range node.
Time & Space Complexity
The space complexity is O(S), where S is the length of the stream
The time complexity of processNext is O(log(S))
The time complexity of getSmallestNotSeen is O(1)
The best case space and time complexity is O(1). Such a best case occurs when the stream has consecutive integers (increasing or decreasing)
bool array[10^6] = {false, false, ... }
int min = 1
void processNext(int val) {
array[val] = true // A
while (array[min]) // B
min++ // C
}
int getSmallestNotSeen() {
return min
}
Time complexity:
processNext: amortised O(1)
getSmallestNotSeen: O(1)
Analysis:
If processNext is invoked k times and n is the highest value stored in min (which could be returned in getSmallestNotSeen), then:
the line A will be executed exactly k times,
the line B will be executed exactly k + n times, and
the line C will be executed exactly n times.
Additionally, n will never be greater than k, because for min to reach n there needs to be a continous range of n true's in the array, and there can be only k true's in the array in total. Therefore, line B can be executed at most 2 * k times and line C at most k times.
Space complexity:
Instead of an array it is possible to use a HashMap without any additional changes in the pseudocode (non-existing keys in the HashMap should evaluate to false). Then the space complexity is O(k). Additionally, you can prune keys smaller than min, thus saving space in some cases:
HashMap<int,bool> map
int min = 1
void processNext(int val) {
if (val < min)
return
map.put(val, true)
while (map.get(min) = true)
map.remove(min)
min++
}
int getSmallestNotSeen() {
return min
}
This pruning technique might be most effective if the stream values increase steadily.
Your solution takes O(N) space to hold the array and the sum segment tree, and O(N) time to initialise them; then O(1) and O(log² N) for the two queries. It seems pretty clear that you can't do better than O(N) space in the long run to keep track of which numbers are "seen" so far, if there are going to be a lot of queries.
However, a different data structure can improve on the query times. Here are three ideas:
Self-balancing binary search tree
Initialise the tree to contain every number from 1 to N; this can be done in O(N) time by building the tree from the leaves up; the leaves have all the odd numbers, then they're joined by all the numbers which are 2 mod 4, then those are joined by the numbers which are 4 mod 8, and so on. The tree takes O(N) space.
processNext is implemented by removing the number from the tree in O(log N) time.
getSmallestNotSeen is implemented by finding the left-most node in O(log N) time.
This is an improvement if getSmallestNotSeen is called many times, but if getSmallestNotSeen is rarely called then your solution is better because it does processNext in O(1) rather than O(log N).
Doubly-linked list
Initialise a doubly-linked list containing the numbers 1 to N in order, and create an array of size N holding pointers to each node. This takes O(N) space and is done in O(N) time. Initialise a variable holding a cached minimum value to be 1.
processNext is implemented by looking up the corresponding list node in the array, and deleting it from the list. If the deleted node has no predecessor, update the cached minimum value to be the value held by the successor node. This is O(1) time.
getSmallestNotSeen is implemented by returning the cached minimum, in O(1) time.
This is also an improvement, and is strictly better asymptotically, although the constants involved might be higher; there's a lot of overhead to hold an array of size N and also a doubly-linked list of size N.
Hash-set
The time requirements for the other solutions are largely determined by their initialisation stages, which take O(N) time. Initialising an empty hash-set, on the other hand, is O(1). As before, we also initialise a variable holding a current minimum value to be 1.
processNext is implemented by inserting the number into the set, in O(1) amortised time.
getSmallestNotSeen updates the current minimum by incrementing it until it's no longer in the set, and then returns it. Membership tests on a hash-set are O(1), and the number of increments over all queries is limited by the number of times processNext is called, so this is also O(1) amortised time.
Asymptotically, this solution takes O(1) time for initialisation and queries, and it uses O(min(Q,N)) space where Q is the number of queries, while the other solutions use O(N) space regardless.
I think it should be straightforward to prove that O(min(Q,N)) space is asymptotically optimal, so the hash-set turns out to be the best option. Credit goes to Dave for combining the hash-set with a current-minimum variable to do getSmallestNotSeen in O(1) amortised time.

Big O Time Complexity for Recursive Pattern

I have question on runtime for recursive pattern.
Example 1
int f(int n) {
if(n <= 1) {
return 1;
}
return f(n - 1) + f(n - 1);
}
I can understand that the runtime for the above code is O(2^N) because if I pass 5, it calls 4 twice then each 4 calls 3 twice and follows till it reaches 1 i.e., something like O(branches^depth).
Example 2
Balanced Binary Tree
int sum(Node node) {
if(node == null) {
return 0;
}
return sum(node.left) + node.value + sum(node.right);
}
I read that the runtime for the above code is O(2^log N) since it is balanced but I still see it as O(2^N). Can anyone explain it?
When the number of element gets halved each time, the runtime is log N. But how a binary tree works here?
Is it 2^log N just because it is balanced?
What if it is not balanced?
Edit:
We can solve O(2^log N) = O(N) but I am seeing it as O(2^N).
Thanks!
Binary tree will have complexity O(n) like any other tree here because you are ultimately traversing all of the elements of the tree. By halving we are not doing anything special other than calculating sum for the corresponding children separately.
The term comes this way because if it is balanced then 2^(log_2(n)) is the number of elements in the tree (leaf+non-leaf).(log2(n) levels)
Again if it is not balanced it doesn't matter. We are doing an operation for which every element needs to be consideredmaking the runtime to be O(n).
Where it could have mattered? If it was searching an element then it would have mattered (whether it is balanced or not).
I'll take a stab at this.
In a balanced binary tree, you should have half the child nodes to the left and half to the right of each parent node. The first layer of the tree is the root, with 1 element, then 2 elements in the next layer, then 4 elements in the next, then 8, and so on. So for a tree with L layers, you have 2^L - 1 nodes in the tree.
Reversing this, if you have N elements to insert into a tree, you end up with a balanced binary tree of depth L = log_2(N), so you only ever need to call your recursive algorithm for log_2(N) layers. At each layer, you are doubling the number of calls to your algorithm, so in your case you end up with 2^log_2(N) calls and O(2^log_2(N)) run time. Note that 2^log_2(N) = N, so it's the same either way, but we'll get to the advantage of a binary tree in a second.
If the tree is not balanced, you end up with depth greater than log_2(N), so you have more recursive calls. In the extreme case, when all of your children are to the left (or right) of their parent, you have N recursive calls, but each call returns immediately from one of its branches (no child on one side). Thus you would have O(N) run time, which is the same as before. Every node is visited once.
An advantage of a balanced tree is in cases like search. If the left-hand child is always less than the parent, and the right-hand child is always greater than, then you can search for an element n among N nodes in O(log_2(N)) time (not 2^log_2(N)!). If, however, your tree is severely imbalanced, this search becomes a linear traversal of all of the values and your search is O(N). If N is extremely large, or you perform this search a ton, this can be the difference between a tractable and an intractable algorithm.

Understanding Big O notation - Cracking the coding interview example 9

I got stuck with this two codes.
Code 1
int f(int n){
if (n <= 1){
return 1;
}
return f(n-1) + f(n-1);
}
Code 2 (Balanced binary search tree)
int sum(Node node){
if(node == null){
return 0;
}
return sum(node.left) + node.value + sum(node.right);
}
the author says the runtime of Code 1 is O(2^n) and space complexity is O(n)
And Code 2 is O(N)
I have no idea what's different between those two codes. it looks like both are the same binary trees
Well there's a mistake because the first snippet runs in O(2^n) not O(n^2).
The explanation is:
In every step we decrement n but create twice the number of calls, so for n we'll call twice with f(n-1) and for each one of the calls of n-1 we'll call twice with f(n-2) - which is 4 calls, and if we'll go another level down we'll call 8 times with f(n-3): so the number of calls is: 2^1, then 2^2, then 2^3, 2^4, ..., 2^n.
The second snippet is doing one pass on a binary tree and reaches every node exactly once, so it's O(n).
First of all, it's important to understand what N is in both cases.
In the first example it's pretty obvious, because you see it directly in the code. For your first case, if you build the tree of f(i) calls, you'll see that it contains O(2^N) elements. Indeed,
f(N) // 1 node
/ \
f(N-1) f(N-1) // 2 nodes
/ \ / \
f(N-2) f(N-2) f(N-2) f(N-2) // 2^2 nodes
...
f(1) ........ f(1) // 2^(N-1) nodes
In the second case, N is (most likely) a number of elements in the tree. As you may see from the code, we walk through every element exactly once - you may realize it as you see that node.value is invoked once for each tree node. Hence O(N).
Note that in such tasks N normally means the size of the input, while what the input is depends on your problem. It can be just a number (like in your first problem), a one-dimensional array, a binary tree (like in your second problem), or even a matrix (although in the latter case you may expect to see explicit statement like "a matrix with a size M*N").
So your confusion probably comes from the fact that the "definition of N" differs between those two problems. In other words, I might say that n2 = 2^n1.
The first code is indeed O(2^n).
But the second code cannot be O(n), because there is no n there. That's a thing which many forget and usually they assume what n is without clarifying it.
In fact you can estimate growth speed of anything based on anything. Sometimes it's a size of input (which in the first code is O(1) or O(log n) depending on usage of big numbers), sometimes just on argument if it's numeric.
So when we start thinking about what time and memory depend on in the second code we can get these things:
time=O(number_of_nodes_in_tree)
time=O(2^height_of_tree)
additional_space=O(height_of_tree)
additional_space=O(log(number_of_nodes)) (if the tree is balanced)
All of them are correct at the same time - they just relate something to different things.
You’re confused between the “N” of the two cases. In the first case, the N refers to the input given. So for instance, if N=4, then the number of the functions being called is 2^4=16. You can draw the recursive map to illustrate. Hence O(2^N).
In the second case, the N refers to the number of nodes in the binary tree. So this N has no relation with the input but the amount of nodes that already exists in the binary tree. So when user calls the function, it visits every node exactly once. Hence O(N).
Code 1:
The if() statement runs n times according to whatever is passed into the parameter, but the the function call itself n-1 times. To simplify:
n * (n-1) = n^2 - n = O(n^2 - n) = O(n^2)
Code 2:
The search traverses every element of the tree only once, and the function itself doesn't have any for(). Since there are n items and they are visited only once, it is O(n).
For Code 2, to determine the Big O of a function, didn't we have to consider the cost of the recurrence and also how many times the recurrence was run?
If we use two approach to estimate the Big O using recursive tree and master theorem:
Recursive tree:
total cost in each level will be cn for each level as the number of recursive call and the fraction of input are equal, and the level of tree is lg(n) since it's a balanced binary search tree. So the run time should be nlg(n)?
Master Theorem:
This should be a case 2 since f(n) = n^logbase a (b). So according to the master theorem, it should be nlg(n) running time?
We can think of it as O(2^Depth).
In the first example: The depth is N, which happens to be the input of the problem mentioned in the book.
In the second example: It is a balanced binary search tree, hence, it has Log(N) levels (depth). Note: N is the number of elements in the tree.
=> Let's apply our O(2^Depth).. O(2^(Log(N)) = O(N) leaving us with O(N) complexity.
Reminder:
In computer science we usually refer to Log2(n) as Log(n).
The logarithm of x in base b is the exponent you put on b to get x as a result.
In the above complexity: O(2^(Log(N), we're raising the base 2 to Log2(N) which gives us N. (Check the two reminders)
This link can be useful.

Time complexity for finding the diameter of a binary tree

I have seen various posts here that computes the diameter of a binary tree. One such solution can be found here (Look at the accepted solution, NOT the code highlighted in the problem).
I'm confused why the time complexity of the code would be O(n^2). I don't see how traversing the nodes of a tree twice (once for the height (via getHeight()) and once for the diameter (via getDiameter()) would be n^2 instead of n+n which is 2n. Any help would be appreciated.
As you mentioned, the time complexity of getHeight() is O(n).
For each node, the function getHeight() is called. So the complexity for a single node is O(n). Hence the complexity for the entire algorithm (for all nodes) is O(n*n).
It should be O(N) to calculate the height of every subtree rooted at every node, you only have to traverse the tree one time using an in-order traversal.
int treeHeight(root)
{
if(root == null) return -1;
root->height = max(treeHeight(root->rChild),treeHeight(root->lChild)) + 1;
return root->height;
}
This will visit each node 1 time, so has order O(N).
Combine this with the result from the linked source, and you will be able to determine which 2 nodes have the longest path between in at worst another traversal.
Indeed this describes the way to do it in O(N)
The different between this solution (the optimized one) and the referenced one is that the referenced solution re-computes tree height every time after shrinking the search size by only 1 node (the root node). Thus from above the complexity will be O(N + (N - 1) + ... + 1).
The sum
1 + 2 + ... + N
is equal to
= N(N + 1)/2
And so the complexity of sum of all the operations from the repeated calls to getHeight will be O(N^2)
For completeness sake, conversely, the optimized solution getHeight() will have complexity O(1) after the pre computation because each node will store the value as a data member of the node.
All subtree heights may be precalculated (using O(n) time), so what total time complexity of finding the diameter would be O(n).

Find median value from a growing set

I came across an interesting algorithm question in an interview. I gave my answer but not sure whether there is any better idea. So I welcome everyone to write something about his/her ideas.
You have an empty set. Now elements are put into the set one by one. We assume all the elements are integers and they are distinct (according to the definition of set, we don't consider two elements with the same value).
Every time a new element is added to the set, the set's median value is asked. The median value is defined the same as in math: the middle element in a sorted list. Here, specially, when the size of set is even, assuming size of set = 2*x, the median element is the x-th element of the set.
An example:
Start with an empty set,
when 12 is added, the median is 12,
when 7 is added, the median is 7,
when 8 is added, the median is 8,
when 11 is added, the median is 8,
when 5 is added, the median is 8,
when 16 is added, the median is 8,
...
Notice that, first, elements are added to set one by one and second, we don't know the elements going to be added.
My answer.
Since it is a question about finding median, sorting is needed. The easiest solution is to use a normal array and keep the array sorted. When a new element comes, use binary search to find the position for the element (log_n) and add the element to the array. Since it is a normal array so shifting the rest of the array is needed, whose time complexity is n. When the element is inserted, we can immediately get the median, using instance time.
The WORST time complexity is: log_n + n + 1.
Another solution is to use link list. The reason for using link list is to remove the need of shifting the array. But finding the location of the new element requires a linear search. Adding the element takes instant time and then we need to find the median by going through half of the array, which always takes n/2 time.
The WORST time complexity is: n + 1 + n/2.
The third solution is to use a binary search tree. Using a tree, we avoid shifting array. But using the binary search tree to find the median is not very attractive. So I change the binary search tree in a way that it is always the case that the left subtree and the right subtree are balanced. This means that at any time, either the left subtree and the right subtree have the same number of nodes or the right subtree has one node more than in the left subtree. In other words, it is ensured that at any time, the root element is the median. Of course this requires changes in the way the tree is built. The technical detail is similar to rotating a red-black tree.
If the tree is maintained properly, it is ensured that the WORST time complexity is O(n).
So the three algorithms are all linear to the size of the set. If no sub-linear algorithm exists, the three algorithms can be thought as the optimal solutions. Since they don't differ from each other much, the best is the easiest to implement, which is the second one, using link list.
So what I really wonder is, will there be a sub-linear algorithm for this problem and if so what will it be like. Any ideas guys?
Steve.
Your complexity analysis is confusing. Let's say that n items total are added; we want to output the stream of n medians (where the ith in the stream is the median of the first i items) efficiently.
I believe this can be done in O(n*lg n) time using two priority queues (e.g. binary or fibonacci heap); one queue for the items below the current median (so the largest element is at the top), and the other for items above it (in this heap, the smallest is at the bottom). Note that in fibonacci (and other) heaps, insertion is O(1) amortized; it's only popping an element that's O(lg n).
This would be called an "online median selection" algorithm, although Wikipedia only talks about online min/max selection. Here's an approximate algorithm, and a lower bound on deterministic and approximate online median selection (a lower bound means no faster algorithm is possible!)
If there are a small number of possible values compared to n, you can probably break the comparison-based lower bound just like you can for sorting.
I received the same interview question and came up with the two-heap solution in wrang-wrang's post. As he says, the time per operation is O(log n) worst-case. The expected time is also O(log n) because you have to "pop an element" 1/4 of the time assuming random inputs.
I subsequently thought about it further and figured out how to get constant expected time; indeed, the expected number of comparisons per element becomes 2+o(1). You can see my writeup at http://denenberg.com/omf.pdf .
BTW, the solutions discussed here all require space O(n), since you must save all the elements. A completely different approach, requiring only O(log n) space, gives you an approximation to the median (not the exact median). Sorry I can't post a link (I'm limited to one link per post) but my paper has pointers.
Although wrang-wrang already answered, I wish to describe a modification of your binary search tree method that is sub-linear.
We use a binary search tree that is balanced (AVL/Red-Black/etc), but not super-balanced like you described. So adding an item is O(log n)
One modification to the tree: for every node we also store the number of nodes in its subtree. This doesn't change the complexity. (For a leaf this count would be 1, for a node with two leaf children this would be 3, etc)
We can now access the Kth smallest element in O(log n) using these counts:
def get_kth_item(subtree, k):
left_size = 0 if subtree.left is None else subtree.left.size
if k < left_size:
return get_kth_item(subtree.left, k)
elif k == left_size:
return subtree.value
else: # k > left_size
return get_kth_item(subtree.right, k-1-left_size)
A median is a special case of Kth smallest element (given that you know the size of the set).
So all in all this is another O(log n) solution.
We can difine a min and max heap to store numbers. Additionally, we define a class DynamicArray for the number set, with two functions: Insert and Getmedian. Time to insert a new number is O(lgn), while time to get median is O(1).
This solution is implemented in C++ as the following:
template<typename T> class DynamicArray
{
public:
void Insert(T num)
{
if(((minHeap.size() + maxHeap.size()) & 1) == 0)
{
if(maxHeap.size() > 0 && num < maxHeap[0])
{
maxHeap.push_back(num);
push_heap(maxHeap.begin(), maxHeap.end(), less<T>());
num = maxHeap[0];
pop_heap(maxHeap.begin(), maxHeap.end(), less<T>());
maxHeap.pop_back();
}
minHeap.push_back(num);
push_heap(minHeap.begin(), minHeap.end(), greater<T>());
}
else
{
if(minHeap.size() > 0 && minHeap[0] < num)
{
minHeap.push_back(num);
push_heap(minHeap.begin(), minHeap.end(), greater<T>());
num = minHeap[0];
pop_heap(minHeap.begin(), minHeap.end(), greater<T>());
minHeap.pop_back();
}
maxHeap.push_back(num);
push_heap(maxHeap.begin(), maxHeap.end(), less<T>());
}
}
int GetMedian()
{
int size = minHeap.size() + maxHeap.size();
if(size == 0)
throw exception("No numbers are available");
T median = 0;
if(size & 1 == 1)
median = minHeap[0];
else
median = (minHeap[0] + maxHeap[0]) / 2;
return median;
}
private:
vector<T> minHeap;
vector<T> maxHeap;
};
For more detailed analysis, please refer to my blog: http://codercareer.blogspot.com/2012/01/no-30-median-in-stream.html.
1) As with the previous suggestions, keep two heaps and cache their respective sizes. The left heap keeps values below the median, the right heap keeps values above the median. If you simply negate the values in the right heap the smallest value will be at the root so there is no need to create a special data structure.
2) When you add a new number, you determine the new median from the size of your two heaps, the current median, and the two roots of the L&R heaps, which just takes constant time.
3) Call a private threaded method to perform the actual work to perform the insert and update, but return immediately with the new median value. You only need to block until the heap roots are updated. Then, the thread doing the insert just needs to maintain a lock on the traversing grandparent node as it traverses the tree; this will ensue that you can insert and rebalance without blocking other inserting threads working on other sub-branches.
Getting the median becomes a constant time procedure, of course now you may have to wait on synchronization from further adds.
Rob
A balanced tree (e.g. R/B tree) with augmented size field should find the median in lg(n) time in the worst case. I think it is in Chapter 14 of the classic Algorithm text book.
To keep the explanation brief, you can efficiently augment a BST to select a key of a specified rank in O(h) by having each node store the number of nodes in its left subtree. If you can guarantee that the tree is balanced, you can reduce this to O(log(n)). Consider using an AVL which is height-balanced (or red-black tree which is roughly balanced), then you can select any key in O(log(n)). When you insert or delete a node into the AVL you can increment or decrement a variable that keeps track of the total number of nodes in the tree to determine the rank of the median which you can then select in O(log(n)).
In order to find the median in linear time you can try this (it just came to my mind). You need to store some values every time you add number to your set, and you won't need sorting. Here it goes.
typedef struct
{
int number;
int lesser;
int greater;
} record;
int median(record numbers[], int count, int n)
{
int i;
int m = VERY_BIG_NUMBER;
int a, b;
numbers[count + 1].number = n:
for (i = 0; i < count + 1; i++)
{
if (n < numbers[i].number)
{
numbers[i].lesser++;
numbers[count + 1].greater++;
}
else
{
numbers[i].greater++;
numbers[count + 1].lesser++;
}
if (numbers[i].greater - numbers[i].lesser == 0)
m = numbers[i].number;
}
if (m == VERY_BIG_NUMBER)
for (i = 0; i < count + 1; i++)
{
if (numbers[i].greater - numbers[i].lesser == -1)
a = numbers[i].number;
if (numbers[i].greater - numbers[i].lesser == 1)
b = numbers[i].number;
m = (a + b) / 2;
}
return m;
}
What this does is, each time you add a number to the set, you must now how many "lesser than your number" numbers have, and how many "greater than your number" numbers have. So, if you have a number with the same "lesser than" and "greater than" it means your number is in the very middle of the set, without having to sort it. In the case that you have an even amount of numbers you may have two choices for a median, so you just return the mean of those two. BTW, this is C code, I hope this helps.

Resources