The problem statement is as follows:
Imagine you are reading in a stream of integers. Periodically, you
wish to be able to look up the rank of a number x (the number of
values less than or equal to x). Implement the data structures and
algorithms to support these operations.That is, implement the method
track (in t x), which is called when each number is generated, and the
method getRankOfNumber(int x) , which returns the number of values
less than or equal to X (not including x itself).
EXAMPLE: Stream(in order of appearance): 5, 1, 4, 4, 5, 9, 7, 13, 3
getRankOfNumber(1) = 0 getRankOfNumber(3) = 1 getRankOfNumber(4) = 3
The suggested solution uses a modified Binary Search Tree, where each node stores stores the number of nodes to the left of that node. The time complexity for both methods is is O(logN) for balanced tree and O(N) for unbalanced tree, where N is the number of nodes.
But how can we construct a balanced BST from a stream of random integers? Won't the tree become unbalanced in due time if we keep on adding to the same tree and the root is not the median? Shouldn't the worst case complexity be O(N) for this solution (in which case a HashMap with O(1) and O(N) for track() and getRankOfNumber() respectively would be better)?
you just need to build an AVL or Red-Black Tree to have the O(lg n) complexities you desire.
about the rank, its kind of simple. Let's call count(T) the number of elements of a tree with root T.
the rank of a node N will be:
firstly there will be count(N's left subtree) nodes before N (elements smaller than N)
let A = N's father. If N is right son of A, then there will be 1 + count(A's left subtree) nodes before N
if A is right son of some B, then there will be 1 + count(B's left subtree) nodes before N
recursively, run all the way up until you reach the root or until the node you are in isn't someone's right son.
as the height of a balanced tree is at most lg(n), this method will take O(lg n) to return you someone's rank ( O(lg n) to find + O(lg n) to run back and measure the rank ), but this taking in consideration that all nodes store the sizes of their left and right subtrees.
hope that helps :)
Building a Binary Search Tree (BST) using the stream of numbers should be easier to imagine. All the values less than the node, goes to the left and all the values greater than the node, goes to the right.
Then Rank of any x will be number of nodes in left subtree of that node with value x.
Operations to be done: Find the node with Value x O(logN) + Count Nodes of left Subtree of node found O(logN) = Total O(logN + logN) = O(logN)
In case to optimize searching of counts of node of left subtree from O(logN) to O(1), you can keep another class variable 'leftSubTreeSize' in Node class, and populate it during insertion of a node.
Assume the tree T is a binary tree.
Algorithm computeDepths(node, depth)
Input: node and its depth. For all depths, call with computeDepths(T.root, 0)
Output: depths of all the nodes of T
if node != null
depth ← node.depth
computeDepths(node.left, depth + 1)
computeDepths(node.right, depth + 1)
return depth
end if
I ran it on paper with a full and complete binary tree containing 7 elements, but I still can't put my head around what time complexity it is. If I had to guess, I'd say it's O(n*log n).
It is O(n)
To get an idea on the time complexity, we need to find out the amount of work done by the algorithm, compared with the size of the input. In this algorithm, the work done per function call is constant (only assigning a given value to a variable). So let's count how many times the function is called.
The first time the function is called, it's called on the root.
Then for any subsequent calls, the function checks if the node is null, if it is not null, it set the depth accordingly and set the depths of its children. Then this is done recursively.
Now note that the function is called once per node in the tree, plus two times the number of leaves. In a binary tree, the number of leaves is n/2 (rounded up), so the total number of function calls is:
n + 2*(n/2) = 2n
So this is the amount of work done by the algorithm. And so the time complexity is O(n).
We implement Disjoint Data structure with tree. in this data structure makeset() create a set with one element, merge(i, j) merge two tree of set i and j in such a way that tree with lower height become a child of root of the second tree. if we do n makeset() operation and n-1 merge() operations in random manner, and then do one find operation. what is the cost of this find operation in worst case?
I) O(n)
II) O(1)
III) O(n log n)
IV) O(log n)
Answer: IV.
Anyone could mentioned a good tips that the author get this solution?
The O(log n) find is only true when you use union by rank (also known as weighted union). When we use this optimisation, we always place the tree with lower rank under the root of the tree with higher rank. If both have the same rank, we choose arbitrarily, but increase the rank of the resulting tree by one. This gives an O(log n) bound on the depth of the tree. We can prove this by showing that a node that is i levels below the root (equivalent to being in a tree of rank >= i) is in a tree of at least 2i nodes (this is the same as showing a tree of size n has log n depth). This is easily done with induction.
Induction hypothesis: tree size is >= 2^j for j < i.
Case i == 0: the node is the root, size is 1 = 2^0.
Case i + 1: the length of a path is i + 1 if it was i and the tree was then placed underneath
another tree. By the induction hypothesis, it was in a tree of size >= 2^i at
that time. It is being placed under another tree, which by our merge rules means
it has at least rank i as well, and therefore also had >= 2^i nodes. The new tree
therefor has >= 2^i + 2^i = 2^(i + 1) nodes.
I have seen various posts here that computes the diameter of a binary tree. One such solution can be found here (Look at the accepted solution, NOT the code highlighted in the problem).
I'm confused why the time complexity of the code would be O(n^2). I don't see how traversing the nodes of a tree twice (once for the height (via getHeight()) and once for the diameter (via getDiameter()) would be n^2 instead of n+n which is 2n. Any help would be appreciated.
As you mentioned, the time complexity of getHeight() is O(n).
For each node, the function getHeight() is called. So the complexity for a single node is O(n). Hence the complexity for the entire algorithm (for all nodes) is O(n*n).
It should be O(N) to calculate the height of every subtree rooted at every node, you only have to traverse the tree one time using an in-order traversal.
int treeHeight(root)
{
if(root == null) return -1;
root->height = max(treeHeight(root->rChild),treeHeight(root->lChild)) + 1;
return root->height;
}
This will visit each node 1 time, so has order O(N).
Combine this with the result from the linked source, and you will be able to determine which 2 nodes have the longest path between in at worst another traversal.
Indeed this describes the way to do it in O(N)
The different between this solution (the optimized one) and the referenced one is that the referenced solution re-computes tree height every time after shrinking the search size by only 1 node (the root node). Thus from above the complexity will be O(N + (N - 1) + ... + 1).
The sum
1 + 2 + ... + N
is equal to
= N(N + 1)/2
And so the complexity of sum of all the operations from the repeated calls to getHeight will be O(N^2)
For completeness sake, conversely, the optimized solution getHeight() will have complexity O(1) after the pre computation because each node will store the value as a data member of the node.
All subtree heights may be precalculated (using O(n) time), so what total time complexity of finding the diameter would be O(n).
quoting Wikipedia:
It is perfectly acceptable to use a
traditional binary tree data structure
to implement a binary heap. There is
an issue with finding the adjacent
element on the last level on the
binary heap when adding an element
which can be resolved
algorithmically...
Any ideas on how such an algorithm might work?
I was not able to find any information about this issue, for most binary heaps are implemented using arrays.
Any help appreciated.
Recently, I have registered an OpenID account and am not able to edit my initial post nor comment answers. That's why I am responding via this answer. Sorry for this.
quoting Mitch Wheat:
#Yse: is your question "How do I find
the last element of a binary heap"?
Yes, it is.
Or to be more precise, my question is: "How do I find the last element of a non-array-based binary heap?".
quoting Suppressingfire:
Is there some context in which you're
asking this question? (i.e., is there
some concrete problem you're trying to
solve?)
As stated above, I would like to know a good way to "find the last element of a non-array-based binary heap" which is necessary for insertion and deletion of nodes.
quoting Roy:
It seems most understandable to me to
just use a normal binary tree
structure (using a pRoot and Node
defined as [data, pLeftChild,
pRightChild]) and add two additional
pointers (pInsertionNode and
pLastNode). pInsertionNode and
pLastNode will both be updated during
the insertion and deletion subroutines
to keep them current when the data
within the structure changes. This
gives O(1) access to both insertion
point and last node of the structure.
Yes, this should work. If I am not mistaken, it could be a little bit tricky to find the insertion node and the last node, when their locations change to another subtree due to an deletion/insertion. But I'll give this a try.
quoting Zach Scrivena:
How about performing a depth-first
search...
Yes, this would be a good approach. I'll try that out, too.
Still I am wondering, if there is a way to "calculate" the locations of the last node and the insertion point. The height of a binary heap with N nodes can be calculated by taking the log (of base 2) of the smallest power of two that is larger than N. Perhaps it is possible to calculate the number of nodes on the deepest level, too. Then it was maybe possible to determine how the heap has to be traversed to reach the insertion point or the node for deletion.
Basically, the statement quoted refers to the problem of resolving the location for insertion and deletion of data elements into and from the heap. In order to maintain "the shape property" of a binary heap, the lowest level of the heap must always be filled from left to right leaving no empty nodes. To maintain the average O(1) insertion and deletion times for the binary heap, you must be able to determine the location for the next insertion and the location of the last node on the lowest level to use for deletion of the root node, both in constant time.
For a binary heap stored in an array (with its implicit, compacted data structure as explained in the Wikipedia entry), this is easy. Just insert the newest data member at the end of the array and then "bubble" it into position (following the heap rules). Or replace the root with the last element in the array "bubbling down" for deletions. For heaps in array storage, the number of elements in the heap is an implicit pointer to where the next data element is to be inserted and where to find the last element to use for deletion.
For a binary heap stored in a tree structure, this information is not as obvious, but because it's a complete binary tree, it can be calculated. For example, in a complete binary tree with 4 elements, the point of insertion will always be the right child of the left child of the root node. The node to use for deletion will always be the left child of the left child of the root node. And for any given arbitrary tree size, the tree will always have a specific shape with well defined insertion and deletion points. Because the tree is a "complete binary tree" with a specific structure for any given size, it is very possible to calculate the location of insertion/deletion in O(1) time. However, the catch is that even when you know where it is structurally, you have no idea where the node will be in memory. So, you have to traverse the tree to get to the given node which is an O(log n) process making all inserts and deletions a minimum of O(log n), breaking the usually desired O(1) behavior. Any search ("depth-first", or some other) will be at least O(log n) as well because of the traversal issue noted and usually O(n) because of the random nature of the semi-sorted heap.
The trick is to be able to both calculate and reference those insertion/deletion points in constant time either by augmenting the data structure ("threading" the tree, as mention in the Wikipedia article) or using additional pointers.
The implementation which seems to me to be the easiest to understand, with low memory and extra coding overhead, is to just use a normal simple binary tree structure (using a pRoot and Node defined as [data, pParent, pLeftChild, pRightChild]) and add two additional pointers (pInsert and pLastNode). pInsert and pLastNode will both be updated during the insertion and deletion subroutines to keep them current when the data within the structure changes. This implementation gives O(1) access to both insertion point and last node of the structure and should allow preservation of overall O(1) behavior in both insertion and deletions. The cost of the implementation is two extra pointers and some minor extra code in the insertion/deletion subroutines (aka, minimal).
EDIT: added pseudocode for an O(1) insert()
Here is pseudo code for an insert subroutine which is O(1), on average:
define Node = [T data, *pParent, *pLeft, *pRight]
void insert(T data)
{
do_insertion( data ); // do insertion, update count of data items in tree
# assume: pInsert points node location of the tree that where insertion just took place
# (aka, either shuffle only data during the insertion or keep pInsert updated during the bubble process)
int N = this->CountOfDataItems + 1; # note: CountOfDataItems will always be > 0 (and pRoot != null) after an insertion
p = new Node( <null>, null, null, null); // new empty node for the next insertion
# update pInsert (three cases to handle)
if ( int(log2(N)) == log2(N) )
{# #1 - N is an exact power of two
# O(log2(N))
# tree is currently a full complete binary tree ("perfect")
# ... must start a new lower level
# traverse from pRoot down tree thru each pLeft until empty pLeft is found for insertion
pInsert = pRoot;
while (pInsert->pLeft != null) { pInsert = pInsert->pLeft; } # log2(N) iterations
p->pParent = pInsert;
pInsert->pLeft = p;
}
else if ( isEven(N) )
{# #2 - N is even (and NOT a power of 2)
# O(1)
p->pParent = pInsert->pParent;
pInsert->pParent->pRight = p;
}
else
{# #3 - N is odd
# O(1)
p->pParent = pInsert->pParent->pParent->pRight;
pInsert->pParent->pParent->pRight->pLeft = p;
}
pInsert = p;
// update pLastNode
// ... [similar process]
}
So, insert(T) is O(1) on average: exactly O(1) in all cases except when the tree must be increased by one level when it is O(log N), which happens every log N insertions (assuming no deletions). The addition of another pointer (pLeftmostLeaf) could make insert() O(1) for all cases and avoids the possible pathologic case of alternating insertion & deletion in a full complete binary tree. (Adding pLeftmost is left as an exercise [it's fairly easy].)
My first time to participate in stack overflow.
Yes, the above answer by Zach Scrivena (god I don't know how to properly refer to other people, sorry) is right. What I want to add is a simplified way if we are given the count of nodes.
The basic idea is:
Given the count N of nodes in this full binary tree, do "N % 2" calculation and push the results into a stack. Continue the calculation until N == 1. Then pop the results out. The result being 1 means right, 0 means left. The sequence is the route from root to target position.
Example:
The tree now have 10 nodes, I want insert another node at position 11. How to route it?
11 % 2 = 1 --> right (the quotient is 5, and push right into stack)
5 % 2 = 1 --> right (the quotient is 2, and push right into stack)
2 % 2 = 0 --> left (the quotient is 1, and push left into stack. End)
Then pop the stack: left -> right -> right. This is the path from the root.
You could use the binary representation of the size of the Binary Heap to find the location of the last node in O(log N). The size could be stored and incremented which would take O(1) time. The the fundamental concept behind this is the structure of the binary tree.
Suppose our heap size is 7. The binary representation of 7 is, "111". Now, remember to always omit the first bit. So, now we are left with "11". Read from left-to-right. The bit is '1', so, go to the right child of the root node. Then the string left is "1", the first bit is '1'. So, again go to the right child of the current node you are at. As you no longer have bits to process, this indicates that you have reached the last node. So, the raw working of the process is that, convert the size of the heap into bits. Omit the first bit. According to the leftmost bit, go to the right child of the current node if it is '1', and to the left child of the current node if it is '0'.
As you always to to the very end of the binary tree this operation always takes O(log N) time. This is a simple and accurate procedure to find the last node.
You may not understand it in the first reading. Try working this method on the paper for different values of Binary Heap, I'm sure you'll get the intuition behind it. I'm sure this knowledge is enough to solve your problem, if you want more explanation with figures, you can refer to my blog.
Hope my answer has helped you, if it did, let me know...! ☺
How about performing a depth-first search, visiting the left child before the right child, to determine the height of the tree. Thereafter, the first leaf you encounter with a shorter depth, or a parent with a missing child would indicate where you should place the new node before "bubbling up".
The depth-first search (DFS) approach above doesn't assume that you know the total number of nodes in the tree. If this information is available, then we can "zoom-in" quickly to the desired place, by making use of the properties of complete binary trees:
Let N be the total number of nodes in the tree, and H be the height of the tree.
Some values of (N,H) are (1,0), (2,1), (3,1), (4,2), ..., (7,2), (8, 3).
The general formula relating the two is H = ceil[log2(N+1)] - 1.
Now, given only N, we want to traverse from the root to the position for the new node, in the least number of steps, i.e. without any "backtracking".
We first compute the total number of nodes M in a perfect binary tree of height H = ceil[log2(N+1)] - 1, which is M = 2^(H+1) - 1.
If N == M, then our tree is perfect, and the new node should be added in a new level. This means that we can simply perform a DFS (left before right) until we hit the first leaf; the new node becomes the left child of this leaf. End of story.
However, if N < M, then there are still vacancies in the last level of our tree, and the new node should be added to the leftmost vacant spot.
The number of nodes that are already at the last level of our tree is just (N - 2^H + 1).
This means that the new node takes spot X = (N - 2^H + 2) from the left, at the last level.
Now, to get there from the root, you will need to make the correct turns (L vs R) at each level so that you end up at spot X at the last level. In practice, you would determine the turns with a little computation at each level. However, I think the following table shows the big picture and the relevant patterns without getting mired in the arithmetic (you may recognize this as a form of arithmetic coding for a uniform distribution):
0 0 0 0 0 X 0 0 <--- represents the last level in our tree, X marks the spot!
^
L L L L R R R R <--- at level 0, proceed to the R child
L L R R L L R R <--- at level 1, proceed to the L child
L R L R L R L R <--- at level 2, proceed to the R child
^ (which is the position of the new node)
this column tells us
if we should proceed to the L or R child at each level
EDIT: Added a description on how to get to the new node in the shortest number of steps assuming that we know the total number of nodes in the tree.
Solution in case you don't have reference to parent !!!
To find the right place for next node you have 3 cases to handle
case (1) Tree level is complete Log2(N)
case (2) Tree node count is even
case (3) Tree node count is odd
Insert:
void Insert(Node root,Node n)
{
Node parent = findRequiredParentToInsertNewNode (root);
if(parent.left == null)
parent.left = n;
else
parent.right = n;
}
Find the parent of the node in order to insert it
void findRequiredParentToInsertNewNode(Node root){
Node last = findLastNode(root);
//Case 1
if(2*Math.Pow(levelNumber) == NodeCount){
while(root.left != null)
root=root.left;
return root;
}
//Case 2
else if(Even(N)){
Node n =findParentOfLastNode(root ,findParentOfLastNode(root ,last));
return n.right;
}
//Case 3
else if(Odd(N)){
Node n =findParentOfLastNode(root ,last);
return n;
}
}
To find the last node you need to perform a BFS (breadth first search) and get the last element in the queue
Node findLastNode(Node root)
{
if (root.left == nil)
return root
Queue q = new Queue();
q.enqueue(root);
Node n = null;
while(!q.isEmpty()){
n = q.dequeue();
if ( n.left != null )
q.enqueue(n.left);
if ( n.right != null )
q.enqueue(n.right);
}
return n;
}
Find the parent of the last node in order to set the node to null in case replacing with the root in removal case
Node findParentOfLastNode(Node root ,Node lastNode)
{
if(root == null)
return root;
if( root.left == lastNode || root.right == lastNode )
return root;
Node n1= findParentOfLastNode(root.left,lastNode);
Node n2= findParentOfLastNode(root.left,lastNode);
return n1 != null ? n1 : n2;
}
I know this is an old thread but i was looking for a answer to the same question. But i could not afford to do an o(log n) solution as i had to find the last node thousands of times in a few seconds. I did have a O(log n) algorithm but my program was crawling because of the number of times it performed this operation. So after much thought I did finally find a fix for this. Not sure if anybody things this is interesting.
This solution is O(1) for search. For insertion it is definitely less than O(log n), although I cannot say it is O(1).
Just wanted to add that if there is interest, i can provide my solution as well.
The solution is to add the nodes in the binary heap to a queue. Every queue node has front and back pointers.We keep adding nodes to the end of this queue from left to right until we reach the last node in the binary heap. At this point, the last node in the binary heap will be in the rear of the queue.
Every time we need to find the last node, we dequeue from the rear,and the second-to-last now becomes the last node in the tree.
When we want to insert, we search backwards from the rear for the first node where we can insert and put it there. It is not exactly O(1) but reduces the running time dramatically.