probe is not getting called in i2c driver - linux-kernel

I am trying to learn to write a i2c driver on raspberry pi board and i have taken groove LCD back-light.Here driver.probe is not getting called whereas driver's inserted in system as i can see in dmesg.
Init code of driver is getting called, and code =>
static int lcd_probe(struct i2c_client *i2c_client, const struct i2c_device_id *i2c_id)
{
int ret = 0;
//struct lcd_data *lcd_data;
// struct device *dev = &i2c_client->dev;
// lcd_data->client = i2c_client;
pr_debug("lcd_probe : calling the probe\n");
pr_debug("lcd_probe : i2c_client->addr = %d, i2c_client_name = %s\n",
i2c_client->addr, i2c_client->name);
return ret;
}
static struct i2c_device_id lcd_id[] = {
{"lcd", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, lcd_id);
static struct i2c_driver lcd_driver = {
.driver = {
.name = "lcd",
.owner = THIS_MODULE,
},
.probe = lcd_probe,
// .remove = lcd_remove,
// .attach_adapter = lcd_attach,
.detect = lcd_detect,
.id_table = lcd_id,
};
static int __init lcd_init(void)
{
pr_debug("lcd_init : calling init\n");
return (i2c_add_driver(&lcd_driver));
}
and dmesg =>
[ 1.971009] lcd_init : calling init
But driver.probe is not registering in i2c subsystem.
board file initialization =>
Board init code =>
/** start aartyaa lcd i2c driver */
printk(KERN_INFO "board file registering i2c lcd device\n");
i2c_register_board_info_dt(1, lcd_i2c_devices, ARRAY_SIZE(lcd_i2c_devices));
i2c_board_info code =>
/** aaryaa i2c lcd struct */
static struct i2c_board_info __initdata lcd_i2c_devices[] = {
{
.type = "lcd",
.addr = 0x62,
},
};
i added debugs in i2c_register_device
and i found driver prove device is not getting called. dmesg i have linked
dmesg link
It seems that i need to register in platform also ..
How probe gets called in i2c ... ?
Any help will be appreciated.
Thank you...!!!

Related

->probe() function is not called while loading the Linux kernel driver

This is my first time writing a Linux kernel driver. After looking for examples online, I started to write my driver. The driver is getting initialized but the ->probe() function is not revoked. I have attached below my C code and the relevant device tree node code snippets.
Can you please help and let me know what changes should I make?
DTS file:
ubv#96002000 {
compatible = "ubv";
no-map;
reg = <0 0x96002000 0 0x0002000>;
};
Driver C code:
static int ubv_probe(struct platform_device *pdev)
{
printk (KERN_ALERT "%s\n", __FUNCTION__);
pr_info("---------------%s\n", __func__);
return 0;
}
static int ubv_remove(struct platform_device *pdev)
{
pr_info("------------------- %s\n", __func__);
return 0;
}
static struct of_device_id ubv_match_table[] = {
{ .compatible = "ubv" },
{}
};
static struct platform_device_id ubv_plat_device_ids[] = {
{ .name = "ubv" },
{}
};
static struct platform_driver ubv_platform_driver = {
.probe = ubv_probe,
.remove = ubv_remove,
.id_table = ubv_plat_device_ids,
.driver = {
.name = "ubv",
.owner = THIS_MODULE,
.of_match_table = ubv_match_table,
},
};
static int __init ubv_init(void)
{
int ret;
printk (KERN_ALERT "%s\n", __FUNCTION__);
ret = platform_driver_probe(&ubv_platform_driver, ubv_probe);
printk (KERN_ALERT "ret = %d\n", ret);
pr_info("ret = %d\n", ret);
return ret;
}
static void __exit ubv_exit(void)
{
platform_driver_unregister(&ubv_platform_driver);
}
module_init(ubv_init);
module_exit(ubv_exit);

writing an acpi driver in Linux

I need to write a kernel module that uses an acpi method to communicate to a hardware device.
At this point I just want to load the driver and enumerate the devices on the bus.
I found a fairly old but reasonable example on line, below is the basic outline. I pretty much took the example verbatim just changing names, I used acpidump to find the dsdt table get the correct device ID etc.
The driver loads fine, but my add functions are not being called. My suspicion is that I am missing a step to stimulate scanning the bus after I register it. The example assumes the driver is loaded on boot. Is there a way to request the bus be scanned after registering it such that any devices attached to a registered bus will be added? Understand that my suspicion may be wrong so if my assumptions are wrong please correct me.
below is the source:
static int viking_acpi_add(struct acpi_device *device);
static int viking_acpi_remove(struct acpi_device *device);
static void viking_acpi_notify(struct acpi_device *adev, u32 event);
static const struct acpi_device_id nv_device_ids[] = {
{ "ACPI0012", 0},
{ "", 0},
};
MODULE_DEVICE_TABLE(acpi, nv_device_ids);
static struct acpi_driver nv_acpi_driver = {
.name = "NV NVDR",
.class = "NV",
.ids = nv_device_ids,
.ops = {
.add = nv_acpi_add,
.remove = nv_acpi_remove,
.notify = nv_acpi_notify,
},
.owner = THIS_MODULE,
};
//static struct acpi_device acpi_dev;
static int nv_acpi_add(struct acpi_device *device)
{
printk("NV: acpi bus add\n");
return 0;
}
static int nv_remove(struct acpi_device *device)
{
printk("NV: acpi bus remove\n");
return 0;
}
static void nv_acpi_notify(struct acpi_device *adev, u32 event)
{
device_lock(&adev->dev);
printk("notification detected\n");
device_unlock(&adev->dev);
}
static int __init nv_init(void)
{
int result = 0;
result = acpi_bus_register_driver(&nvt_driver);
if (result < 0) {
printk("Error registering driver\n");
return -ENODEV;
}
return 0;
}
static void __exit nv_exit(void)
{
acpi_bus_unregister_driver(&nv_driver);
}
module_init(nv_init);
module_exit(nv_exit);
Well it turns out that another acpi bus driver was registered for the acpi device ID I was using and the kernel did not call my add routine as a consequence. When I ran it with a different kernel, my add routine was called as expected.

User space netlink socket receives empty messages from kernel space

Disclaimer - I have to admit that it's the 1'st time I'm using this kernel interface (socket).
I'm currently working on a design of a kernel module that is based on a netlink socket .
I'm using Ubuntu14.04 and linux kernel 4.
As a starter, I wanted to make sure that I can use the netlink socket in both directions.
I've written an application that does the following:
1) User send a message to kernel via the netlink socket.
2) Kernel, upon receiving the message – sends "ABCD" string message to a workqueue.
3) When the "ABCD" message is received by the workqueue, it calls a function (named - my_wq_function) which send it back to the user space via netlink socket.
4) In the user space I'm using a recvmsg function (blocking until a message is received) and displays the "ABCD" message.
My problem is that the return value from the recvmsg function is 20 (instead of 4), and the data itself (i.e. NLMSG_DATA) is empty.
During the debug I tried to change the message to "ABCD1234" and got a return value of 24 bytes, however the data is still empty.
I also verified that my entire path until the point of sending the "ABCD" from kernel to the socket is OK.
Not sure what I'm doing wrong here & will highly appreciate your help.
Thanks in advance, MotiC.
my code example can be found below:
User space code:
printf("netlink receiver thread started...\n");
nlh_rcv = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_PAYLOAD));
while(true) //endless loop on netlink socket
{
memset(nlh_rcv, 0, NLMSG_SPACE(MAX_PAYLOAD));
iov_rcv.iov_base = (void *)nlh_rcv;
iov_rcv.iov_len = nlh_rcv->nlmsg_len;
msg_rcv.msg_name = (void *)&dest_addr;
msg_rcv.msg_namelen = sizeof(dest_addr);
msg_rcv.msg_iov = &iov;
msg_rcv.msg_iovlen = 1;
ret=recvmsg(sock_fd, &msg_rcv, 0);
printf("errno=%i bytes=%i message from kernel: %s\n",errno, ret, (char*)NLMSG_DATA(nlh_rcv));
uint8_t mymsg[100];
memcpy(mymsg, NLMSG_DATA(nlh_rcv), 100);
printf("message from kernel: %s\n",mymsg);
}
Kernel space code:
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/init.h> /* Needed for the macros */
#include <net/sock.h>
#include <linux/socket.h>
#include <linux/net.h>
#include <asm/types.h>
#include <linux/netlink.h>
#include <linux/skbuff.h>
#include <linux/workqueue.h>
MODULE_LICENSE("GPL");
#include "rf_Kdriver_main.h"
//------ definitions ------------------------------------------------------------------------------------------------------------
#define NETLINK_USER 31
#define MAX_PAYLOAD 1024 /* maximum payload size*/
struct sock *nl_sk = NULL;
struct nlmsghdr *nlh;
struct nlmsghdr *nlh_out;
struct sk_buff *skb_out;
char buf_to_user[100];
int pid;
//------------------------------------------------------------------------------------------------------------------------------
struct workqueue_struct *my_wq;
typedef struct {
struct work_struct my_work;
uint8_t msg_to_pc[128];
uint8_t msg_len;
} my_work_t;
my_work_t *work, *work2;
//-----------------------------------------------------------------------------------------------------------------------------
static void my_wq_function( struct work_struct *work)
{
int res;
my_work_t *my_work = (my_work_t *)work;
skb_out = nlmsg_new(my_work->msg_len,0);
if (!skb_out)
{
printk("Failed to allocate new skb\n");
return;
}
nlh_out = nlmsg_put(skb_out, 0, 0, NLMSG_DONE,my_work->msg_len, 0);
NETLINK_CB(skb_out).dst_group = 0;
memcpy((char*)NLMSG_DATA(nlh_out), my_work->msg_to_pc , my_work->msg_len);
printk( "dequeue message to pc=%s len=%i\n", (char*)NLMSG_DATA(nlh_out), (int)strlen((char*)NLMSG_DATA(nlh_out)));
res = nlmsg_unicast(nl_sk, skb_out, pid);
if (res<0)
printk("Failed to send message from kernel to user\n");
kfree( (void *)work );
return;
}
//-----------------------------------------------------------------------------------------------------------------------------
int send_up_msg_to_workque(uint8_t msg_to_pc[], uint8_t msg_len)
{
int ret=0;
work = (my_work_t *)kmalloc(sizeof(my_work_t), GFP_KERNEL);
if (work) {
INIT_WORK( (struct work_struct *)work, my_wq_function );
memcpy(work->msg_to_pc, msg_to_pc, msg_len);
work->msg_len = msg_len;
ret = queue_work( my_wq, /*(struct work_struct *)RR*/work );
printk("kuku ret=%i msg=%s\n",ret,work->msg_to_pc);
}
return ret;
}
//------------------------------------------------------------------------------------------------------------------------------
static void netlink_recv_msg(struct sk_buff *skb)
{
char *msg = "ABCD1234";
printk(KERN_INFO "Entering: %s\n", __FUNCTION__);
nlh=(struct nlmsghdr*)skb->data;
printk(KERN_INFO "Netlink at kernel received msg payload: %s\n",(char*)NLMSG_DATA(nlh));
//rr
pid = nlh->nlmsg_pid;
send_up_msg_to_workque((uint8_t*) msg, strlen(msg));
}
//-------------------------------------------------------------------------------------------------------------------------------------
struct netlink_kernel_cfg cfg = {
.input = netlink_recv_msg,
};
static int __init rf_driver_start(void)
{
printk(KERN_INFO "Loading RF Driver module1...\n");
my_wq = create_workqueue("my_queue");
if (!my_wq)
{
printk("Failed to create work queue\n");
}
printk("Entering: %s\n",__FUNCTION__);
nl_sk = netlink_kernel_create(&init_net, NETLINK_USER, &cfg);
if(!nl_sk)
{
printk(KERN_ALERT "Error creating socket.\n");
return -10;
}
return 0;
}
//--------------------------------------------------------------------------------------------------------------
static void __exit rf_driver_end(void)
{
netlink_kernel_release(nl_sk);
flush_workqueue(my_wq);
destroy_workqueue(my_wq);
printk(KERN_INFO "RF Driver exit...\n");
}
module_init(rf_driver_start);
module_exit(rf_driver_end);
Update,
I changed my user space function to:
char buf[100];
ret=recv(sock_fd, buf, 100, 0);
instead of:
ret=recvmsg(sock_fd, &msg_rcv, 0);
and it works...
does anyone have an idea regarding this strange behavior ?
Thanks.
Can you please paste complete userspace code.
I guess 'len' int this code is the issue:
memset(nlh_rcv, 0, NLMSG_SPACE(MAX_PAYLOAD));
iov_rcv.iov_len = nlh_rcv->nlmsg_len; << check to what value is it getting initialized.

Associate existing Linux device structure with device file

I'm developing with a PowerPC 405 embedded in a Virtex4 FPGA with Linux kernel 2.6.33.
Up until now, I've been writing drivers for platform devices implemented in the FPGA in the form of kernel loadable modules. The devices are registered using the flat Open Firmware Device Tree file. To create a device file, I use the OF functions to get the device node, and then register a new miscdevice which then automatically registers a minor device number and creates the device file for me. This also creates a device that is embedded in the miscdevice (i.e. miscdevice.this_device)
The problem is now I need to perform DMA operations. I tried to call the dma_alloc_coherent() function using the miscdevice.this_device, but this device isn't associated with any bus and always returns an error. I did some digging around and it turns out that the struct of_device also has a struct device embedded in it (i.e. of_device.dev). When I tried using this with dma_alloc_coherent(), it worked just fine.
So now I have two different struct device structures, one to manage my character device file, and one to manage the underlying Open Firmware system calls, the bus and DMA transactions. These devices are not associated with each other in the sysfs of course.
My question is, is it possible to somehow request that a device file be created for the device structure I get from the OF layer and not create a new device with the Misc Device API? That way everything will be associated with a single device structure.
I think your fix about dma_alloc_coherent() is correct.
But I don't think it's not right to use the device structure embedded in structure of_device to replace the miscdevice you created. The of_device is description of objects in Open Firmware database. And according to Linux device driver model, device structure is embedded in various device objects in Linux Kernel. And I think you registe miscdevice as one character device, there should be file_operations structure associated.
In one word, they are different views, and they can not replace each other.
I wrote some experimental dma driver using miscdevice.this_device for raspberry pi
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/miscdevice.h>
#include "gpio.h"
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include "DMA.h"
#include <linux/of_irq.h>
static int my_open(struct inode *i, struct file *f)
{
printk(KERN_INFO "Driver: open() %d\n", current->pid);
return 0;
}
static int my_close(struct inode *i, struct file *f)
{
printk(KERN_INFO "Driver: close()\n");
return 0;
}
static ssize_t my_read(struct file *f, char __user *buf, size_t len, loff_t *off)
{
printk(KERN_INFO "Driver: read()\n");
return 0;
}
char databuf[100];
static ssize_t my_write(struct file *f, const char __user *buf, size_t len, loff_t *off)
{
if(copy_from_user(databuf, buf, 100) != 0) return 0;
printk("Data from the user: %s\n", databuf);
return len;
}
static struct file_operations sample_fops =
{
.owner = THIS_MODULE,
.open = my_open,
.release = my_close,
.read = my_read,
.write = my_write
};
struct miscdevice sample_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = "ledButton",
.fops = &sample_fops,
.mode = 0666,
};
//static struct dmadata_s *cpu_addr;
//dma_addr_t dma_addr;
struct dma_cb *virt_cb;
dma_addr_t phys_cb;
uint32_t *virt_src;
dma_addr_t phys_src;
uint32_t *virt_dst;
dma_addr_t phys_dst;
static irqreturn_t dma_irq_fn(int irq, void *dev_id)
{
printk("destAddr %u\n", *virt_dst);
dma_regs->CS.INT = 1;
return IRQ_HANDLED;
}
static struct device *dev;
int IRQ_DMA0;
static int __init ofcd_init(void) /* Constructor */
{
int error, mret;
struct device_node * np = NULL;
error = misc_register(&sample_device);
if (error) {
pr_err("can't misc_register :(\n");
return error;
}
dev = sample_device.this_device;
dev->coherent_dma_mask = ~0;
dev->dma_mask = &dev->coherent_dma_mask;
// dev_set_name(dev, "mydmadev");
// cpu_addr = (struct dmadata_s*)kmalloc(sizeof(struct dmadata_s), GFP_KERNEL | GFP_DMA);
//dma_addr = dma_map_single(dev, cpu_addr, sizeof(struct dmadata_s), DMA_BIDIRECTIONAL);
virt_cb = dma_alloc_coherent(dev, 32, &phys_cb, GFP_KERNEL | GFP_DMA);
if(virt_cb == 0 || phys_cb == 0){
printk("DMA cb error\n");
}
virt_src = dma_alloc_coherent(dev, 4, &phys_src, GFP_KERNEL | GFP_DMA);
if(virt_src == 0 || phys_src == 0){
printk("DMA src error\n");
}
virt_dst = dma_alloc_coherent(dev, 4, &phys_dst, GFP_KERNEL | GFP_DMA);
if(virt_dst == 0 || phys_dst == 0){
printk("DMA dst error\n");
}
memset(virt_cb, 0, sizeof(*virt_cb));
dma_regs = (struct dma_ch *)ioremap(DMA_BASE, sizeof(struct dma_ch));
// strcpy(cpu_addr->srcAddr, "DMA0");
*virt_src = 200;
virt_cb->TI.SRC_INC = 1;
virt_cb->TI.DEST_INC = 1;
virt_cb->TI.INTEN = 1;
virt_cb->SOURCE_AD = (uint32_t)phys_src;
virt_cb->DEST_AD = (uint32_t)phys_dst;
virt_cb->TXFR_LEN = 4;
virt_cb->reserved[0] = 0;
virt_cb->reserved[1] = 0;
printk("srcAddr %u\n", *virt_src);
printk("destAddr %u\n", *virt_dst);
//dma_regs->CS = (DMA_CS_t){.RESET = 1, .END = 1};
dma_regs->CS.RESET = 1;
udelay(10);
// dma_regs->CS = (DMA_CS_t){.END = 1, .INT = 1};
dma_regs->CS.INT = 1;
dma_regs->CS.END = 1;
dma_regs->CONBLK_AD = (uint32_t)phys_cb;
//dma_regs->DEBUG = (DMA_DEBUG_t){.READ_LAST_NOT_SET_ERROR = 1, .FIFO_ERROR = 1, .READ_ERROR = 1};
dma_regs->DEBUG.READ_LAST_NOT_SET_ERROR = 1;
dma_regs->DEBUG.FIFO_ERROR = 1;
dma_regs->DEBUG.READ_ERROR =1;
udelay(10);
// dma_regs->CS = (DMA_CS_t){.RESET = 1, .PRIORITY = 8, .PANIC_PRIORITY = 8, .ACTIVE = 1};
dma_regs->CS.RESET = 1;
udelay(10);
dma_regs->CS.PRIORITY = 8;
dma_regs->CS.PANIC_PRIORITY = 8;
dma_regs->CS.ACTIVE = 1;
if(dma_regs->CS.ERROR) printk("ERROR %d %d\n", dma_regs->CS.ACTIVE, dma_regs->CS.PANIC_PRIORITY);
//np = of_find_compatible_node(NULL,NULL,"brcm,bcm2835-system-timer");
np = of_find_node_by_path("/soc/dma#7e007000");
if (np == NULL){
printk("Error node not found\n");
}
// printk("node name %s\n", np->name);
IRQ_DMA0 = irq_of_parse_and_map(np, 0);
if (IRQ_DMA0 <= 0) {
printk("Can't parse IRQ\n");
}
mret = request_irq(IRQ_DMA0, dma_irq_fn, IRQF_SHARED, "dma", &dma_irq_fn);
if (mret < 0) printk(KERN_ALERT "%s: dma request_irg failed with %d\n", __func__, mret);
return 0;
}
static void __exit ofcd_exit(void) /* Destructor */
{
free_irq( IRQ_DMA0, &dma_irq_fn );
//dma_unmap_single(dev, dma_addr, sizeof(struct dmadata_s), DMA_BIDIRECTIONAL);
//kfree(cpu_addr);
dma_free_coherent(dev, 32, virt_cb, phys_cb);
dma_free_coherent(dev, 4, virt_src, phys_src);
dma_free_coherent(dev, 4, virt_dst, phys_dst);
iounmap(dma_regs);
// device_unregister(dev);
misc_deregister(&sample_device);
printk(KERN_INFO "Module unregistered\n");
}
module_init(ofcd_init);
module_exit(ofcd_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("MBajor>");
MODULE_DESCRIPTION("PiCNC driver");
MODULE_VERSION("0.1");
I hope this help.

Kernel panics : trying to write / read on tiny tty driver

I'm a beginner to the Linux programming and trying my hands on some device driver examples while practising.
The below code (a trimmed down version of tiny_tty.c) loads perfectly using insmod and I'm able to see it in /proc/tty/drivers , /proc/modules and device nodes are getting created under /dev. When I try to write to device file like echo "abcd" > /dev/ttyms0 (I hope this is fine) or read like cat /dev/ttyms0, the kernel panics with a call trace on the screen. I'm on kernel 3.5.0 under Ubuntu. Unfortunately I'm not able to capture the trace , as when it panics I'm left with no option but reboot using power button. I believe some issue with timer is here, as the trace shows a line on top saying :
"*kernel bug at /build/buildd/linux-3.5.0/kernel/timer.c:901*", then the call trace , followed by
"*EIP is at add_timer+0x18/0x20*"
Below is the full code. Any guidance is very much appreciated in anticipation.
10May2013 : I tried initializing the timer in open function and this time below is the call trace for "kernel panic - not syncing : fatal exception in interrupt panic occurred, switching back to text console":
update_sd_lb_stats+0xcd/0x4b0
find_busiest_group+0x2e/0x420
enqueue_entity+0xcb/0x510
load_balance+0x7e/0x5e0
rebalance_domains+0xed/0x150
__do_softirq+0xdb/0x180
local_bh_enable_ip+0x90/0x90
<IRQ>
copy_to_user0x41/0x60
sys_gettimeofday+0x2a/0x70
sysenter_do_call0x12/0x20
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/kdev_t.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/slab.h> /* kmalloc() */
#include <linux/tty_driver.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/mutex.h>
#include <linux/serial.h>
#include <linux/sched.h>
#include <asm/uaccess.h>
#include <asm/termios.h>
MODULE_LICENSE("GPL");
#define MS_TTY_MAJOR 250 //test value
#define MS_TTY_NUM_DEV 2
#define DELAY_TIME HZ * 2 /* 2 seconds per character */
#define TINY_DATA_CHARACTER 't'
static int major_num;
//static int minor_num=0;
//static int num_tty_dev=2;
/* Below structure is a wrapper for device specific fields */
struct ms_tty_serial {
struct tty_struct *tty; /* pointer to the tty for this device */
int open_count; /* number of times this port has been opened */
struct semaphore sem; /* locks this structure */
struct timer_list *timer;
};
static struct ms_tty_serial *ms_tty_table[MS_TTY_NUM_DEV]; /* initially all NULL */
static void ms_tty_timer(unsigned long timer_data)
{
struct ms_tty_serial *ms_ptr = (struct ms_tty_serial *)timer_data;
struct tty_struct *tty;
char data[1] = {TINY_DATA_CHARACTER};
int data_size = 1;
if (!ms_ptr)
return;
tty = ms_ptr->tty;
tty->low_latency=1;
/* send the data to the tty layer for users to read. This doesn't
* actually push the data through unless tty->low_latency is set */
tty_buffer_request_room (tty, data_size);
tty_insert_flip_string(tty, data, data_size);
tty_flip_buffer_push(tty);
/* resubmit the timer again */
ms_ptr->timer->expires = jiffies + DELAY_TIME;
add_timer(ms_ptr->timer);
}
//// Define the open function ////
static int tty_ms_open(struct tty_struct *tty_this, struct file *file_this)
{
printk(KERN_ALERT "tty_ms driver: OPENED ...\n");
struct ms_tty_serial *ms_ptr;
struct timer_list *timer;
int index;
/* initialize the pointer in case something fails */
tty_this->driver_data = NULL;
/* get the serial object associated with this tty pointer */
index = tty_this->index;
ms_ptr = ms_tty_table[index];
if (ms_ptr == NULL) {
/* first time accessing this device, create it */
ms_ptr = kmalloc(sizeof(*ms_ptr), GFP_KERNEL);
if (!ms_ptr)
return -ENOMEM;
// init_MUTEX(&ms_ptr->sem); /* didn't work for this kernel version 3.5.0 */
#ifndef init_MUTEX /* sema_init is to be used for kernel 2.6.37 and above */
sema_init(&ms_ptr->sem,1);
#else
init_MUTEX(&ms_ptr->sem);
#endif
ms_ptr->open_count = 0;
ms_ptr->timer = NULL;
ms_tty_table[index] = ms_ptr;
}
down(&ms_ptr->sem);
/* save our structure within the tty structure */
tty_this->driver_data = ms_ptr;
ms_ptr->tty = tty_this;
ms_ptr->filp = file_this; // to be tried
++ms_ptr->open_count;
if (ms_ptr->open_count == 1) {
/* this is the first time this port is opened */
/* do any hardware initialization needed here */
/* create timer and submit it */
if (!ms_ptr->timer) {
timer = kmalloc(sizeof(*timer), GFP_KERNEL);
if (!timer) {
up(&ms_ptr->sem);
return -ENOMEM;
}
ms_ptr->timer = timer;
}
init_timer (ms_ptr->timer); // to be tried
ms_ptr->timer->data = (unsigned long )ms_ptr;
ms_ptr->timer->expires = jiffies + DELAY_TIME;
ms_ptr->timer->function = ms_tty_timer;
add_timer(ms_ptr->timer);
}
up(&ms_ptr->sem);
return 0;
}
//// Define the close function ////
static void do_close(struct ms_tty_serial *ms_ptr)
{
down(&ms_ptr->sem);
if (!ms_ptr->open_count) {
/* port was never opened */
goto exit;
}
--ms_ptr->open_count;
if (ms_ptr->open_count <= 0) {
/* The port is being closed by the last user. */
/* Do any hardware specific stuff here */
/* shut down our timer */
del_timer(ms_ptr->timer);
}
exit:
up(&ms_ptr->sem);
}
static void tty_ms_close(struct tty_struct *tty_this, struct file *file_this)
{
printk(KERN_ALERT "tty_ms driver: CLOSING ...\n");
struct ms_tty_serial *ms_ptr = tty_this->driver_data;
if (ms_ptr)
do_close(ms_ptr);
}
//// Define the write function ////
static int tty_ms_write(struct tty_struct *tty_this, const unsigned char *tty_buff, int count)
{
printk(KERN_ALERT "tty_ms driver: WRITING ...\n");
struct ms_tty_serial *ms_ptr = tty_this->driver_data;
int i;
int retval = -EINVAL;
if (!ms_ptr)
return -ENODEV;
down(&ms_ptr->sem);
if (!ms_ptr->open_count)
/* port was not opened */
{
up(&ms_ptr->sem);
return retval;
}
/* fake sending the data out a hardware port by
* writing it to the kernel debug log.
*/
printk(KERN_DEBUG "%s - ", __FUNCTION__);
for (i = 0; i < count; ++i)
printk("%02x ", tty_buff[i]);
printk("\n");
return 0;
}
// Define the operations for tty driver in tty_operations struct //
static struct tty_operations tty_ms_ops = {
.open = tty_ms_open,
.close = tty_ms_close,
.write = tty_ms_write,
//.set_termios = tty_ms_set_termios,
};
///////////////////////////////////////// Module Initialization Starts ////////////////////////////////////
static struct tty_driver *tty_ms_driver;
static int tty_ms_init(void)
{
// static int result;
static int retval,iter;
// Allocate the tty_driver struct for this driver //
tty_ms_driver = alloc_tty_driver(MS_TTY_NUM_DEV);
if (!tty_ms_driver)
return -ENOMEM; // Error NO Memory , allocation failed
else
printk(KERN_INFO "tty_driver structure allocated..!!"); //debug line
// Initialize the allocated tty_driver structure //
tty_ms_driver->magic=TTY_DRIVER_MAGIC;
tty_ms_driver->owner = THIS_MODULE;
tty_ms_driver->driver_name = "tty_ms";
tty_ms_driver->name = "ttyms";
tty_ms_driver->major = MS_TTY_MAJOR,
tty_ms_driver->type = TTY_DRIVER_TYPE_SERIAL,
tty_ms_driver->subtype = SERIAL_TYPE_NORMAL,
tty_ms_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV,
tty_ms_driver->init_termios = tty_std_termios;
tty_ms_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
tty_set_operations(tty_ms_driver, &tty_ms_ops);
printk(KERN_INFO "allocated tty_driver structure -INITIALIZED."); //debug line
//// Register this driver with the tty core ////
retval = tty_register_driver(tty_ms_driver);
if (retval) {
printk(KERN_ERR "failed to register tty_ms driver\n tty registration returned %d", retval);
put_tty_driver(tty_ms_driver);
return retval;
}
//// Register the tty devices(nodes) with the tty core ////
for (iter = 0; iter < MS_TTY_NUM_DEV ; ++iter)
tty_register_device(tty_ms_driver, iter, NULL);
return 0; // All initializations done
} // init func ends
///////////////////////////////////////// Module Initialization Ends ////////////////////////////////////
///////////////////////////////////////// Module cleanup Starts ////////////////////////////////////
static void tty_ms_terminate(void)
{
static int iter;
struct ms_tty_serial *tty_ser;
printk(KERN_ALERT "tty_ms driver: Unloading...\n");
for(iter=1;iter<=MS_TTY_NUM_DEV;iter++)
tty_unregister_device(tty_ms_driver,iter); //unregister all the devices, from tty layer
tty_unregister_driver(tty_ms_driver); // Now unregister the driver from tty layer
/* shut down all of the timers and free the memory */
for (iter = 0; iter < MS_TTY_NUM_DEV; ++iter) {
tty_ser = ms_tty_table[iter];
if (tty_ser) {
/* close the port */
while (tty_ser->open_count)
do_close(tty_ser);
/* shut down our timer and free the memory */
del_timer(tty_ser->timer);
kfree(tty_ser->timer);
kfree(tty_ser);
ms_tty_table[iter] = NULL;
}
}
dev_t devno=MKDEV(major_num,0); // wrap major/minor numbers in a dev_t structure , to pass for deassigning.
unregister_chrdev_region(devno,MS_TTY_NUM_DEV);
}
///////////////////////////////////////// Module cleanup ends ////////////////////////////////////
module_init(tty_ms_init);
module_exit(tty_ms_terminate);

Resources