Associate existing Linux device structure with device file - linux-kernel

I'm developing with a PowerPC 405 embedded in a Virtex4 FPGA with Linux kernel 2.6.33.
Up until now, I've been writing drivers for platform devices implemented in the FPGA in the form of kernel loadable modules. The devices are registered using the flat Open Firmware Device Tree file. To create a device file, I use the OF functions to get the device node, and then register a new miscdevice which then automatically registers a minor device number and creates the device file for me. This also creates a device that is embedded in the miscdevice (i.e. miscdevice.this_device)
The problem is now I need to perform DMA operations. I tried to call the dma_alloc_coherent() function using the miscdevice.this_device, but this device isn't associated with any bus and always returns an error. I did some digging around and it turns out that the struct of_device also has a struct device embedded in it (i.e. of_device.dev). When I tried using this with dma_alloc_coherent(), it worked just fine.
So now I have two different struct device structures, one to manage my character device file, and one to manage the underlying Open Firmware system calls, the bus and DMA transactions. These devices are not associated with each other in the sysfs of course.
My question is, is it possible to somehow request that a device file be created for the device structure I get from the OF layer and not create a new device with the Misc Device API? That way everything will be associated with a single device structure.

I think your fix about dma_alloc_coherent() is correct.
But I don't think it's not right to use the device structure embedded in structure of_device to replace the miscdevice you created. The of_device is description of objects in Open Firmware database. And according to Linux device driver model, device structure is embedded in various device objects in Linux Kernel. And I think you registe miscdevice as one character device, there should be file_operations structure associated.
In one word, they are different views, and they can not replace each other.

I wrote some experimental dma driver using miscdevice.this_device for raspberry pi
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/miscdevice.h>
#include "gpio.h"
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include "DMA.h"
#include <linux/of_irq.h>
static int my_open(struct inode *i, struct file *f)
{
printk(KERN_INFO "Driver: open() %d\n", current->pid);
return 0;
}
static int my_close(struct inode *i, struct file *f)
{
printk(KERN_INFO "Driver: close()\n");
return 0;
}
static ssize_t my_read(struct file *f, char __user *buf, size_t len, loff_t *off)
{
printk(KERN_INFO "Driver: read()\n");
return 0;
}
char databuf[100];
static ssize_t my_write(struct file *f, const char __user *buf, size_t len, loff_t *off)
{
if(copy_from_user(databuf, buf, 100) != 0) return 0;
printk("Data from the user: %s\n", databuf);
return len;
}
static struct file_operations sample_fops =
{
.owner = THIS_MODULE,
.open = my_open,
.release = my_close,
.read = my_read,
.write = my_write
};
struct miscdevice sample_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = "ledButton",
.fops = &sample_fops,
.mode = 0666,
};
//static struct dmadata_s *cpu_addr;
//dma_addr_t dma_addr;
struct dma_cb *virt_cb;
dma_addr_t phys_cb;
uint32_t *virt_src;
dma_addr_t phys_src;
uint32_t *virt_dst;
dma_addr_t phys_dst;
static irqreturn_t dma_irq_fn(int irq, void *dev_id)
{
printk("destAddr %u\n", *virt_dst);
dma_regs->CS.INT = 1;
return IRQ_HANDLED;
}
static struct device *dev;
int IRQ_DMA0;
static int __init ofcd_init(void) /* Constructor */
{
int error, mret;
struct device_node * np = NULL;
error = misc_register(&sample_device);
if (error) {
pr_err("can't misc_register :(\n");
return error;
}
dev = sample_device.this_device;
dev->coherent_dma_mask = ~0;
dev->dma_mask = &dev->coherent_dma_mask;
// dev_set_name(dev, "mydmadev");
// cpu_addr = (struct dmadata_s*)kmalloc(sizeof(struct dmadata_s), GFP_KERNEL | GFP_DMA);
//dma_addr = dma_map_single(dev, cpu_addr, sizeof(struct dmadata_s), DMA_BIDIRECTIONAL);
virt_cb = dma_alloc_coherent(dev, 32, &phys_cb, GFP_KERNEL | GFP_DMA);
if(virt_cb == 0 || phys_cb == 0){
printk("DMA cb error\n");
}
virt_src = dma_alloc_coherent(dev, 4, &phys_src, GFP_KERNEL | GFP_DMA);
if(virt_src == 0 || phys_src == 0){
printk("DMA src error\n");
}
virt_dst = dma_alloc_coherent(dev, 4, &phys_dst, GFP_KERNEL | GFP_DMA);
if(virt_dst == 0 || phys_dst == 0){
printk("DMA dst error\n");
}
memset(virt_cb, 0, sizeof(*virt_cb));
dma_regs = (struct dma_ch *)ioremap(DMA_BASE, sizeof(struct dma_ch));
// strcpy(cpu_addr->srcAddr, "DMA0");
*virt_src = 200;
virt_cb->TI.SRC_INC = 1;
virt_cb->TI.DEST_INC = 1;
virt_cb->TI.INTEN = 1;
virt_cb->SOURCE_AD = (uint32_t)phys_src;
virt_cb->DEST_AD = (uint32_t)phys_dst;
virt_cb->TXFR_LEN = 4;
virt_cb->reserved[0] = 0;
virt_cb->reserved[1] = 0;
printk("srcAddr %u\n", *virt_src);
printk("destAddr %u\n", *virt_dst);
//dma_regs->CS = (DMA_CS_t){.RESET = 1, .END = 1};
dma_regs->CS.RESET = 1;
udelay(10);
// dma_regs->CS = (DMA_CS_t){.END = 1, .INT = 1};
dma_regs->CS.INT = 1;
dma_regs->CS.END = 1;
dma_regs->CONBLK_AD = (uint32_t)phys_cb;
//dma_regs->DEBUG = (DMA_DEBUG_t){.READ_LAST_NOT_SET_ERROR = 1, .FIFO_ERROR = 1, .READ_ERROR = 1};
dma_regs->DEBUG.READ_LAST_NOT_SET_ERROR = 1;
dma_regs->DEBUG.FIFO_ERROR = 1;
dma_regs->DEBUG.READ_ERROR =1;
udelay(10);
// dma_regs->CS = (DMA_CS_t){.RESET = 1, .PRIORITY = 8, .PANIC_PRIORITY = 8, .ACTIVE = 1};
dma_regs->CS.RESET = 1;
udelay(10);
dma_regs->CS.PRIORITY = 8;
dma_regs->CS.PANIC_PRIORITY = 8;
dma_regs->CS.ACTIVE = 1;
if(dma_regs->CS.ERROR) printk("ERROR %d %d\n", dma_regs->CS.ACTIVE, dma_regs->CS.PANIC_PRIORITY);
//np = of_find_compatible_node(NULL,NULL,"brcm,bcm2835-system-timer");
np = of_find_node_by_path("/soc/dma#7e007000");
if (np == NULL){
printk("Error node not found\n");
}
// printk("node name %s\n", np->name);
IRQ_DMA0 = irq_of_parse_and_map(np, 0);
if (IRQ_DMA0 <= 0) {
printk("Can't parse IRQ\n");
}
mret = request_irq(IRQ_DMA0, dma_irq_fn, IRQF_SHARED, "dma", &dma_irq_fn);
if (mret < 0) printk(KERN_ALERT "%s: dma request_irg failed with %d\n", __func__, mret);
return 0;
}
static void __exit ofcd_exit(void) /* Destructor */
{
free_irq( IRQ_DMA0, &dma_irq_fn );
//dma_unmap_single(dev, dma_addr, sizeof(struct dmadata_s), DMA_BIDIRECTIONAL);
//kfree(cpu_addr);
dma_free_coherent(dev, 32, virt_cb, phys_cb);
dma_free_coherent(dev, 4, virt_src, phys_src);
dma_free_coherent(dev, 4, virt_dst, phys_dst);
iounmap(dma_regs);
// device_unregister(dev);
misc_deregister(&sample_device);
printk(KERN_INFO "Module unregistered\n");
}
module_init(ofcd_init);
module_exit(ofcd_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("MBajor>");
MODULE_DESCRIPTION("PiCNC driver");
MODULE_VERSION("0.1");
I hope this help.

Related

Create an IOMMU entry in Linux

I've been browsing through the Linux IOMMU code for quite a while now and couldn't find an easy approach to directly create an IOMMU entry.
I want to specify the physical address (maybe also the virtual but it is not necessary) and the device. The range should be inserted into the IOMMU and the virt address printed through printk.
I am searching for a function that lets me easily do it.
Thanks
I ended up with a pretty hacky solution, not the optimal one, but it worked for my usecase. Adjusted the function iommu_dma_map_page in dma-iommu.c to look like the following and export it.
(vanilla 5.18 except for this modification)
dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
bool coherent = dev_is_dma_coherent(dev);
int prot = dma_info_to_prot(dir, coherent, attrs);
struct iommu_domain *domain = iommu_get_dma_domain(dev);
struct iommu_dma_cookie *cookie = domain->iova_cookie;
struct iova_domain *iovad = &cookie->iovad;
dma_addr_t iova, dma_mask = dma_get_mask(dev);
phys_addr_t phys;
if (page->flags == 0xF0F0F0F0F0F0F) {
phys = page->dma_addr;
} else {
phys = page_to_phys(page) + offset;
}
/*
* If both the physical buffer start address and size are
* page aligned, we don't need to use a bounce page.
*/
if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
void *padding_start;
size_t padding_size, aligned_size;
aligned_size = iova_align(iovad, size);
phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
iova_mask(iovad), dir, attrs);
if (phys == DMA_MAPPING_ERROR)
return DMA_MAPPING_ERROR;
/* Cleanup the padding area. */
padding_start = phys_to_virt(phys);
padding_size = aligned_size;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
padding_start += size;
padding_size -= size;
}
memset(padding_start, 0, padding_size);
}
if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
arch_sync_dma_for_device(phys, size, dir);
iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
return iova;
}
EXPORT_SYMBOL(iommu_dma_map_page);
Then use the following kernel module to program the entry. This could be also extended and programmed in a more usable manner, but for prototyping, it should be enough.
#include <linux/init.h>
#include <asm/io.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
extern dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir,
unsigned long attrs);
int magic_value = 0xF0F0F0F0F0F0F;
struct page page_ = {
.flags = 0xF0F0F0F0F0F0F,
.dma_addr = 0x0000002f000f0000,
};
static int my_init(void)
{
dma_addr_t dma_addr;
struct pci_dev *dummy = pci_get_device(0x10EE, 0x0666, NULL);
if (dummy != NULL)
{
printk(KERN_INFO "module loaded.\n");
dma_addr = iommu_dma_map_page(&(dummy->dev), &page_, 0, 4096, DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC);
printk(KERN_INFO "DMA_addr: %llx", dma_addr);
}
else
{
printk("Error getting device");
}
return 0;
}
static void my_exit(void)
{
printk(KERN_INFO "iommu_alloc unloaded.\n");
return;
}
module_init(my_init);
module_exit(my_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("benedict.schlueter#inf.ethz.ch");
MODULE_DESCRIPTION("Alloc IOMMU entry");

There is no entry for device under /dev even after class_create and device_create

I am making one simple char driver and I learnt that there are 2 ways I can get Major number for my driver to pair with - alloc_chrdev_region(and register_chrdev_region) and register_chrdev. I initially started with register_chrdev and it gave me my major number and also created entry in /dev (class and device create used).
But when I change for register_chrdev to alloc_chrdev_region to acquire major number (using chrdev_init and chrdev_add), leaving rest of the entry function same, I don't see an entry in /dev, though when I make it manually with mknode, and run the test application to use the driver, it works fine.
Below is the code of entry point that does not produce the /dev entry
#include<linux/module.h>
#include<linux/init.h>
#include<linux/fs.h>
#include<linux/device.h>
#include<linux/kernel.h>
#include<linux/slab.h>
#include<linux/uaccess.h>
#include<linux/stat.h>
#include<linux/cdev.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/kdev_t.h>
#define DEVICE_NAME "myCharDevice"
#define MODULE_NAME "myCharDriver"
#define CLASS_NAME "myCharClass"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("YASH BHATT");
MODULE_VERSION(".01");
static char *bufferMemory;
static int bufferPointer;
static int bufferSize = 15;
static dev_t myChrDevid;
static struct cdev *myChrDevCdev;
static struct class *pmyCharClass;
static struct device *pmyCharDevice;
int majorNumber = 0;
static int charDriverOpen(struct inode *inodep, struct file *filep);
static int charDriverClose(struct inode *inodep, struct file *filep);
static ssize_t charDriverWrite(struct file *filep, const char *buffer, size_t len, loff_t *offset);
static ssize_t charDriverRead(struct file *filep, char *buffer, size_t len, loff_t *offset);
static int charDriverEntry(void);
static void charDriverExit(void);
static ssize_t attrShowData(struct device*, struct device_attribute*, char*);
static ssize_t attrStoreData(struct device*, struct device_attribute*, const char*, size_t);
static ssize_t attrShowBuffer(struct device*, struct device_attribute*, char*);
static ssize_t attrStoreBuffer(struct device*, struct device_attribute*, const char*, size_t);
/* The following function is called when the file placed on the sysfs is accessed for read*/
static ssize_t attrShowData(struct device* pDev, struct device_attribute* attr, char* buffer)
{
printk(KERN_INFO "MESG: The data has been accessed through the entry in sysfs\n");
if (bufferPointer == 0)
{
printk(KERN_WARNING "Thre is no data to read from buffer!\n");
return -1;
}
strncpy(buffer, bufferMemory, bufferPointer);
/* Note : Here we can directly use strncpy because we are already in kernel space and do not need to translate address*/
return bufferPointer;
}
static ssize_t attrStoreData(struct device* pDev, struct device_attribute* attr, const char* buffer, size_t length)
{
printk(KERN_INFO "Writing to attribute\n");
bufferPointer = length;
strncpy(bufferMemory, buffer, length);
return length;
}
static ssize_t attrShowBuffer(struct device* pDev, struct device_attribute* attr, char* buffer)
{
int counter;
int temp = bufferSize;
char bufferSizeArray[4] = {0};
counter = 3;
//printk(KERN_INFO "Buffer = %d\n",bufferSize % 10);
do
{
bufferSizeArray[counter] = '0' + (bufferSize % 10);
//printk(KERN_INFO "Character at %d is : %c\n",counter,bufferSizeArray[counter]);
bufferSize /= 10;
counter--;
}
while(counter != -1);
strncpy(buffer, bufferSizeArray, 4);
bufferSize = temp;
/* Note : Here we can directly use strncpy because we are already in kernel space and do not need to translate address*/
return 4;
}
static ssize_t attrStoreBuffer(struct device* pDev, struct device_attribute* attr, const char* buffer, size_t length)
{
int counter;
bufferPointer = length;
//printk(KERN_INFO "Length : %d With first char %c\n",length,buffer[0]);
bufferSize = 0;
for (counter = 0; counter < length-1 ; counter++)
{
bufferSize = (bufferSize * 10) + (buffer[counter] - '0') ;
}
//printk(KERN_INFO "Buffer size new : %d\n",bufferSize);
return length;
}
/* These macros converts the function in to instances dev_attr_<_name>*/
/* Defination of the macro is as follows : DEVICE_ATTR(_name, _mode, _show, _store) */
/* Note the actual implementation of the macro makes an entry in the struct device_attribute. This macro does that for us */
static DEVICE_ATTR(ShowData, S_IRWXU, attrShowData, attrStoreData); // S_IRUSR gives read access to the user
static DEVICE_ATTR(Buffer, S_IRWXU, attrShowBuffer, attrStoreBuffer); // S_IRUSR gives read access to the user
static struct file_operations fops =
{
.open = charDriverOpen,
.release = charDriverClose,
.read = charDriverRead,
.write = charDriverWrite,
};
static int __init charDriverEntry()
{
int returnValue;
//majorNumber = register_chrdev(0, DEVICE_NAME, &fops);
returnValue = alloc_chrdev_region(&myChrDevid, 0, 1, DEVICE_NAME);
/* This function takes 4 arguments - dev_t address, start of minor number, range/count of minor number, Name; Note - unlike register_chrdev fops have not
yet been tied to the major number */
if (returnValue < 0)
{
printk(KERN_ALERT "ERROR : can not aquire major number! error %d",returnValue);
return -1;
}
printk(KERN_INFO "Aquired Major Number! : %d\n", MAJOR(myChrDevid));
//cdev_init(&myChrDevCdev,&fops);
myChrDevCdev = cdev_alloc();
if (IS_ERR(myChrDevCdev))
{
printk(KERN_ALERT "Failed to allocate space for CharDev struct\n");
unregister_chrdev_region(myChrDevid, 1);
return -1;
}
cdev_init(myChrDevCdev,&fops);
myChrDevCdev->owner = THIS_MODULE;
//myChrDevCdev->ops = &fops;/* this function inits the c_dev structure with memset 0 and then does basic konject setup and then adds fops to cdev struct*/
/* this function adds the cdev to the kernel structure so that it becomes available for the users to use it */
// Now we will create class for this device
pmyCharClass = class_create(THIS_MODULE,CLASS_NAME);
if (IS_ERR(pmyCharClass))
{
printk(KERN_ALERT "Failed to Register Class\n");
cdev_del(myChrDevCdev);
kfree(myChrDevCdev);
unregister_chrdev_region(myChrDevid, 1);
return -1;
}
printk(KERN_INFO "Class created!\n");
pmyCharDevice = device_create(pmyCharClass, NULL, MKDEV(majorNumber,0),NULL,DEVICE_NAME);
if (IS_ERR(pmyCharDevice))
{
printk(KERN_ALERT "Failed to Register Class\n");
class_unregister(pmyCharClass);
class_destroy(pmyCharClass);
cdev_del(myChrDevCdev);
kfree(myChrDevCdev);
unregister_chrdev_region(myChrDevid, 1);
return -1;
}
printk(KERN_INFO "Device created!\n");
returnValue = cdev_add(myChrDevCdev, myChrDevid, 1);
if (returnValue < 0)
{
printk(KERN_ALERT "Failed to add chdev \n");
return -1;
}
/* We now have created the class and we have aquired major numer. But we have not yet tied out created fileops with anything.
We will do that now */
//returnValue = cdev_init(cdev)
printk(KERN_INFO "Now We will create the attribute entry in sysfs\n");
/* the function used is device_create_file(struct device *, struct device_attribute*) */
device_create_file(pmyCharDevice, &dev_attr_ShowData); // The second argumnet is the structure created by the DEVICE_ATTR macro
device_create_file(pmyCharDevice, &dev_attr_Buffer);
return 0;
}
static void __exit charDriverExit()
{
device_remove_file(pmyCharDevice, &dev_attr_Buffer);
device_remove_file(pmyCharDevice, &dev_attr_ShowData);
device_destroy(pmyCharClass, MKDEV(majorNumber,0));
class_unregister(pmyCharClass);
class_destroy(pmyCharClass);
//unregister_chrdev(majorNumber,DEVICE_NAME);
cdev_del(myChrDevCdev);
unregister_chrdev_region(myChrDevid, 1);
kfree(myChrDevCdev);
printk(KERN_INFO "Unmounting module done !\n");
}
static int charDriverOpen(struct inode *inodep, struct file *filep)
{
if ((filep->f_flags & O_ACCMODE) != O_RDWR)
{
printk(KERN_ALERT "WARNING : This driver can only be opened in both read and write mode\n");
return -1;
}
printk(KERN_INFO "INFO : CHARATER DRIVER OPENED\n");
bufferMemory = kmalloc(bufferSize,GFP_KERNEL);
bufferPointer = 0;
return 0;
}
static int charDriverClose(struct inode *inodep, struct file *filep)
{
kfree(bufferMemory);
printk(KERN_INFO "INFO : CHARACTER DRIVER CLOSED\n");
return 0;
}
static ssize_t charDriverWrite(struct file *filep, const char *buffer, size_t len, loff_t *offset)
{
// Here we will only allow to write one byte of data
if (len > bufferSize)
{
printk(KERN_WARNING "Attempted to write data larger than 15 byte!\n");
return 0;
}
//bufferMemory[bufferPointer] = *buffer;
copy_from_user(bufferMemory, buffer, len);
bufferPointer += len;
return len;
}
static ssize_t charDriverRead(struct file *filep, char *buffer, size_t len, loff_t *offset)
{
if(len > bufferSize || len > bufferPointer)
{
printk(KERN_WARNING "Attempting to read more than buffer size ! Deny\n");
return 0;
}
copy_to_user(buffer, bufferMemory, len);
// buffer[0] = bufferMemory[0];
bufferPointer -= len;
return len;
}
module_init(charDriverEntry);
module_exit(charDriverExit);
module_param(bufferSize, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(bufferSize, "Buffer Memory Size [15]");
Now if I replace the while alloc_chrdev_region, cdev_init and cdev_add with just register_chrdev(), The entry in /dev pops up. I am unable to figure out what more does register_chrdev() do that the former combination does not.
Thank you
Edit : Found the issue.
it was due to using MKDEV(majorNumber, 0); Without actually storing major number in the majorNumber variable using MAJOR();
Not deleting the question as someone can find it useful

User space netlink socket receives empty messages from kernel space

Disclaimer - I have to admit that it's the 1'st time I'm using this kernel interface (socket).
I'm currently working on a design of a kernel module that is based on a netlink socket .
I'm using Ubuntu14.04 and linux kernel 4.
As a starter, I wanted to make sure that I can use the netlink socket in both directions.
I've written an application that does the following:
1) User send a message to kernel via the netlink socket.
2) Kernel, upon receiving the message – sends "ABCD" string message to a workqueue.
3) When the "ABCD" message is received by the workqueue, it calls a function (named - my_wq_function) which send it back to the user space via netlink socket.
4) In the user space I'm using a recvmsg function (blocking until a message is received) and displays the "ABCD" message.
My problem is that the return value from the recvmsg function is 20 (instead of 4), and the data itself (i.e. NLMSG_DATA) is empty.
During the debug I tried to change the message to "ABCD1234" and got a return value of 24 bytes, however the data is still empty.
I also verified that my entire path until the point of sending the "ABCD" from kernel to the socket is OK.
Not sure what I'm doing wrong here & will highly appreciate your help.
Thanks in advance, MotiC.
my code example can be found below:
User space code:
printf("netlink receiver thread started...\n");
nlh_rcv = (struct nlmsghdr *)malloc(NLMSG_SPACE(MAX_PAYLOAD));
while(true) //endless loop on netlink socket
{
memset(nlh_rcv, 0, NLMSG_SPACE(MAX_PAYLOAD));
iov_rcv.iov_base = (void *)nlh_rcv;
iov_rcv.iov_len = nlh_rcv->nlmsg_len;
msg_rcv.msg_name = (void *)&dest_addr;
msg_rcv.msg_namelen = sizeof(dest_addr);
msg_rcv.msg_iov = &iov;
msg_rcv.msg_iovlen = 1;
ret=recvmsg(sock_fd, &msg_rcv, 0);
printf("errno=%i bytes=%i message from kernel: %s\n",errno, ret, (char*)NLMSG_DATA(nlh_rcv));
uint8_t mymsg[100];
memcpy(mymsg, NLMSG_DATA(nlh_rcv), 100);
printf("message from kernel: %s\n",mymsg);
}
Kernel space code:
#include <linux/module.h> /* Needed by all modules */
#include <linux/kernel.h> /* Needed for KERN_INFO */
#include <linux/init.h> /* Needed for the macros */
#include <net/sock.h>
#include <linux/socket.h>
#include <linux/net.h>
#include <asm/types.h>
#include <linux/netlink.h>
#include <linux/skbuff.h>
#include <linux/workqueue.h>
MODULE_LICENSE("GPL");
#include "rf_Kdriver_main.h"
//------ definitions ------------------------------------------------------------------------------------------------------------
#define NETLINK_USER 31
#define MAX_PAYLOAD 1024 /* maximum payload size*/
struct sock *nl_sk = NULL;
struct nlmsghdr *nlh;
struct nlmsghdr *nlh_out;
struct sk_buff *skb_out;
char buf_to_user[100];
int pid;
//------------------------------------------------------------------------------------------------------------------------------
struct workqueue_struct *my_wq;
typedef struct {
struct work_struct my_work;
uint8_t msg_to_pc[128];
uint8_t msg_len;
} my_work_t;
my_work_t *work, *work2;
//-----------------------------------------------------------------------------------------------------------------------------
static void my_wq_function( struct work_struct *work)
{
int res;
my_work_t *my_work = (my_work_t *)work;
skb_out = nlmsg_new(my_work->msg_len,0);
if (!skb_out)
{
printk("Failed to allocate new skb\n");
return;
}
nlh_out = nlmsg_put(skb_out, 0, 0, NLMSG_DONE,my_work->msg_len, 0);
NETLINK_CB(skb_out).dst_group = 0;
memcpy((char*)NLMSG_DATA(nlh_out), my_work->msg_to_pc , my_work->msg_len);
printk( "dequeue message to pc=%s len=%i\n", (char*)NLMSG_DATA(nlh_out), (int)strlen((char*)NLMSG_DATA(nlh_out)));
res = nlmsg_unicast(nl_sk, skb_out, pid);
if (res<0)
printk("Failed to send message from kernel to user\n");
kfree( (void *)work );
return;
}
//-----------------------------------------------------------------------------------------------------------------------------
int send_up_msg_to_workque(uint8_t msg_to_pc[], uint8_t msg_len)
{
int ret=0;
work = (my_work_t *)kmalloc(sizeof(my_work_t), GFP_KERNEL);
if (work) {
INIT_WORK( (struct work_struct *)work, my_wq_function );
memcpy(work->msg_to_pc, msg_to_pc, msg_len);
work->msg_len = msg_len;
ret = queue_work( my_wq, /*(struct work_struct *)RR*/work );
printk("kuku ret=%i msg=%s\n",ret,work->msg_to_pc);
}
return ret;
}
//------------------------------------------------------------------------------------------------------------------------------
static void netlink_recv_msg(struct sk_buff *skb)
{
char *msg = "ABCD1234";
printk(KERN_INFO "Entering: %s\n", __FUNCTION__);
nlh=(struct nlmsghdr*)skb->data;
printk(KERN_INFO "Netlink at kernel received msg payload: %s\n",(char*)NLMSG_DATA(nlh));
//rr
pid = nlh->nlmsg_pid;
send_up_msg_to_workque((uint8_t*) msg, strlen(msg));
}
//-------------------------------------------------------------------------------------------------------------------------------------
struct netlink_kernel_cfg cfg = {
.input = netlink_recv_msg,
};
static int __init rf_driver_start(void)
{
printk(KERN_INFO "Loading RF Driver module1...\n");
my_wq = create_workqueue("my_queue");
if (!my_wq)
{
printk("Failed to create work queue\n");
}
printk("Entering: %s\n",__FUNCTION__);
nl_sk = netlink_kernel_create(&init_net, NETLINK_USER, &cfg);
if(!nl_sk)
{
printk(KERN_ALERT "Error creating socket.\n");
return -10;
}
return 0;
}
//--------------------------------------------------------------------------------------------------------------
static void __exit rf_driver_end(void)
{
netlink_kernel_release(nl_sk);
flush_workqueue(my_wq);
destroy_workqueue(my_wq);
printk(KERN_INFO "RF Driver exit...\n");
}
module_init(rf_driver_start);
module_exit(rf_driver_end);
Update,
I changed my user space function to:
char buf[100];
ret=recv(sock_fd, buf, 100, 0);
instead of:
ret=recvmsg(sock_fd, &msg_rcv, 0);
and it works...
does anyone have an idea regarding this strange behavior ?
Thanks.
Can you please paste complete userspace code.
I guess 'len' int this code is the issue:
memset(nlh_rcv, 0, NLMSG_SPACE(MAX_PAYLOAD));
iov_rcv.iov_len = nlh_rcv->nlmsg_len; << check to what value is it getting initialized.

polling sysfs and kernel module

I have read many posts about this same topic, but I am unable to find out what is exactly wrong with my sysfs implementation in my kernel module. I am trying to make a userspace program block on a poll untill the value changes in a sysfs file. Most people seem to not get blocking, I seem to not be able to get out of my blocking. Here is the relevent code:
kernel module:
static int sysfs_test = 88;
static ssize_t test_interrupts_show(struct device* dev, struct device_attribute* attr, const char* buf)
{
return scnprintf(buf, PAGE_SIZE, "%d\n", sysfs_test);
}
static ssize_t test_interrupts_store(struct device* dev, struct device_attribute* attr, const char* buf, size_t count)
{
kstrtol(buf, 10, &sysfs_test);
return count;
}
static DEVICE_ATTR(interrupts, S_IWUSR | S_IRUGO, test_interrupts_show, test_interrupts_store);
static int __init test_init(void)
{
int result;
if(dev_major)
{
dev = MKDEV(dev_major, dev_minor);
result = register_chrdev_region(dev, NUM_DEVICES, name);
} else {
result = alloc_chrdev_region(&dev, dev_minor, NUM_DEVICES, name);
dev_major = MAJOR(dev);
dev_minor = MINOR(dev);
}
if(result < 0) {
printk(KERN_WARNING "%s: can't get major %d\n", name, dev_major);
return -1;
}
printk(KERN_NOTICE "%s: Major = %d, Minor = %d\n", name, dev_major, dev_minor);
// Register as character device
test_cdev = cdev_alloc();
cdev_init(cajun_cdev, &test_fops); // Initialize cdev structure
test_cdev->owner = THIS_MODULE; // Add owner
result = cdev_add(test_cdev, dev,1); // Tell kernel about our device
if(result)
{
printk(KERN_NOTICE "Error %d adding cdev\n", result);
goto OUT2;
}
// This stuff relates to sysfs:
ctest_class = class_create(THIS_MODULE, NAME);
if(IS_ERR(test_class))
{
printk(KERN_ALERT "Failed to register device class\n");
goto OUT2;
}
test_device = device_create(test_class, NULL, dev, NULL, NAME);
if(IS_ERR(test_device))
{
printk(KERN_ALERT "Failed to create device\n");
goto OUT3;
}
result = device_create_file(test_device, &dev_attr_interrupts);
if (result < 0)
{
printk(KERN_ALERT "failed\n");
}
OUT3:
class_unregister(test_class);
class_destroy(test_class);
OUT2:
cdev_del(test_cdev);
OUT1:
unregister_chrdev_region(dev, NUM_DEVICES);
return -1;
}
Relevent userspace code:
char interrupts_path[] = "/sys/class/test_module/test_module/interrupts";
int main()
{
struct pollfd fds;
fds.fd = open(interrupts_path, O_RDWR | O_SYNC);
char dummy_buff[1];
read(fds.fd, dummy_buff, 1);
lseek(fds.fd, 0, SEEK_SET);
fds.events = POLLPRI;
printf("Polling for interrupt\n");
poll(&fds,1,-1);
printf("Interrupt occured\n");
return 0;
}
I run my userspace code in the background (./test &) and then I echo a new value into the sysfs file for interrupts. I am hopping for my userspace program to unblock and return when the value changes. What am I doing wrong here?
edit:
struct file_operations test_fops = {
.owner = THIS_MODULE,
.llseek = test_llseek,
.read = test_read,
.write = test_write,
.unlocked_ioctl = test_ioctl,
.open = test_open,
.release = test_release
};

After insmod I am not able to see the device entry in /proc/devices

After performing the command "insmod demo_device" the modules listed in /proc/modules
**demo_device 2528 0 - Live 0xe02da000**
fp_indicators 5072 1 - Live 0xe02d2000 (P)
screader 22672 1 - Live 0xe02c5000 (P)
icamdescrambler 12912 0 - Live 0xe02b2000 (P)
icamemmfilter 16208 0 - Live 0xe02a4000 (P)
icamecmfilter 14992 0 - Live 0xe0294000 (P)
but "(P)" is not avail after that.
After firing the command cat /proc/devices the device "demo_device" is not listed there.
So my question is that: what (P) stands in (cat /proc/modules) and what could be the reason that the device is not listed in (cat /proc/devices).
Thanks in Advance !!
The source code is as:
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <asm/uaccess.h>
#include "query_ioctl.h"
#define FIRST_MINOR 0
#define MINOR_CNT 1
static dev_t dev;
static struct cdev c_dev;
static struct class *cl;
static int status = 1, dignity = 3, ego = 5;
static int my_open(struct inode *i, struct file *f)
{
return 0;
}
static int my_close(struct inode *i, struct file *f)
{
return 0;
}
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35))
static int my_ioctl(struct inode *i, struct file *f, unsigned int cmd, unsigned long arg)
#else
static long my_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
#endif
{
query_arg_t q;
switch (cmd)
{
case QUERY_GET_VARIABLES:
q.status = status;
q.dignity = dignity;
q.ego = ego;
if (copy_to_user((query_arg_t *)arg, &q, sizeof(query_arg_t)))
{
return -EACCES;
}
break;
case QUERY_CLR_VARIABLES:
status = 0;
dignity = 0;
ego = 0;
break;
case QUERY_SET_VARIABLES:
if (copy_from_user(&q, (query_arg_t *)arg, sizeof(query_arg_t)))
{
return -EACCES;
}
status = q.status;
dignity = q.dignity;
ego = q.ego;
break;
default:
return -EINVAL;
}
return 0;
}
static struct file_operations query_fops =
{
.owner = THIS_MODULE,
.open = my_open,
.release = my_close,
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35))
.ioctl = my_ioctl
#else
.unlocked_ioctl = my_ioctl
#endif
};
static int __init query_ioctl_init(void)
{
int ret;
struct device *dev_ret;
printk("Before calling alloc\n");
dev=150;
if ((ret = register_chrdev_region(dev, MINOR_CNT, "demo_device")))
{
return ret;
}
else if((ret = alloc_chrdev_region(&dev,0,MINOR_CNT,"demo_device")))
{
return ret;
}
printk("After alloc %d %d\n",ret,dev);
cdev_init(&c_dev, &query_fops);
if ((ret = cdev_add(&c_dev, dev, MINOR_CNT)) < 0)
{
return ret;
}
printk("After cdev_add\n");
if (IS_ERR(cl = class_create(THIS_MODULE, "char")))
{
cdev_del(&c_dev);
unregister_chrdev_region(dev, MINOR_CNT);
return PTR_ERR(cl);
}
printk("After class_create\n");
if (IS_ERR(dev_ret = device_create(cl, NULL, dev, NULL, "demo")))
{
class_destroy(cl);
cdev_del(&c_dev);
unregister_chrdev_region(dev, MINOR_CNT);
return PTR_ERR(dev_ret);
}
printk("After device_create\n");
return 0;
}
static void __exit query_ioctl_exit(void)
{
device_destroy(cl, dev);
class_destroy(cl);
cdev_del(&c_dev);
unregister_chrdev_region(dev, MINOR_CNT);
}
module_init(query_ioctl_init);
module_exit(query_ioctl_exit);
MODULE_LICENSE("GPL");
And after inserting the module I am able to see these messages:
$insmod demo_device.ko
Before calling alloc
After alloc 0 217055232
After cdev_add
After class_create
After device_create
$
Make sure that Major Number of the device is not preoccupied by some other device file. use the following command to check the occupied Major Numbers
cat /proc/devices
Use the following code to capture initialization error in init function
int t=register_chrdev(majorNumber,"mydev",&fops);
if(t<0)
printk(KERN_ALERT "device registration failed.");
Use dmesg to look into kernel logs
Look at module_flags_taint() in kernel/module.c.
The 'P' flag merely indicated the other modules are proprietary. The reason your device doesn't show up in /proc/devices is probably because something is wrong with the initialisation, but we can't help you with that unless you show us code.
After perfroming make clean to the linux/application source code and rebuilding it again...make it works. Now after inserting the module the corresponding entry is visibe in the /proc/devcies file :)

Resources