Memorising (and caching) solutions found in a Prolog query? - prolog

In this question on StackExchange I've asked (and it has been solved) about a Prolog program I have been trying to create. But while it works in principle, it doesn't scale to my real world need.
Before I start learning yet another language (Datalog), I'd like to try my already done work and know how I can implement in Prolog a way to memorise results from earlier queries such that the same query is only executed once. So, I'm looking for a way to add the result of a successful query to a List and if that same query is asked again, it doesn't redo the calculation, but uses the remembered result.
My main problem is that I cannot find a way to keep the result of a successful query in a list that is passed 'up the chain'.
In
% get this out of the way, quickly
isARelation( Source, Relation, Target, _) :-
isADirectRelation( Source, Relation, Target).
% Structural Chains
isARelation( Source, Relation, Target, Visited) :-
\+ member( [Source,Relation,Target], Visited),
structuralOrDependencyRelation( RelationOne),
structuralOrDependencyRelation( RelationTwo),
weakest( Relation, RelationOne, RelationTwo),
isADirectRelation( Source, RelationOne, Intermediate),
isARelation( Intermediate, RelationTwo, Target, [[Source,RelationOne,Intermediate]|Visited]).
isARelation( Source, Relation, Target, Visited) :-
\+ member( [Source,Relation,Target], Visited),
structuralOrDependencyRelation( RelationOne),
structuralOrDependencyRelation( RelationTwo),
weakest( Relation, RelationOne, RelationTwo),
isADirectRelation( Source, RelationTwo, Intermediate),
isARelation( Intermediate, RelationOne, Target, [[Source,RelationTwo,Intermediate]|Visited]).
How do I implement that the first call
isARelation(A, B, C, []).
does the calculation of the results, and a second call
isARelation(A, B, C, []).
uses the earlier found result, which is kept 'globally'?

This is not really an answer to your question :(
The other answer has the right idea, but the implementation has a problem. Let's say we want to make a memoized version of squaring a number:
:- dynamic mem_square/2.
square(N, S) :-
( mem_square(N, S)
; S is N*N,
assertz(mem_square(N, S))
).
BTW, the parentheses in the other answer are completely unnecessary. These are also unnecessary, but this is how you usually wrap a disjunction, just in case it is part of a conjunction. In other words, this: a ; (b, c) is the same as a ; b, c, but (a ; b), c is not the same.
Now, if I load this program from the toplevel and query:
?- square(3, S).
S = 9. % first time it's fine
?- square(3, S).
S = 9 ;
S = 9. % now there's two
?- square(3, S).
S = 9 ;
S = 9 ;
S = 9. % now three
If you keep on querying a memoized fact, and you backtrack into it, you will keep on computing again and again and adding more and more identical copies of it. Instead, you can try for example this:
:- dynamic mem_square/2.
square(N, S) :-
( mem_square(N, S)
-> true
; S is N*N,
assertz(mem_square(N, S))
).
Now, there is no choice point.
This is still not a clean implementation if you are meant to have choice multiple solutions. Any solutions after the first will be cut by the ->.

This is advice on how to generically do what tabling does. I haven't followed this advice in ages myself so there may be inaccuracies here. Hopefully the rest of the gang will show up and correct me if I'm off-base.
You have a predicate foo/4 that is inefficient.
Add this to your file:
:- dynamic(cached_foo/4).
Rename foo/4 to compute_foo/4 or something.
Make a new predicate foo/4 that looks like this:
foo(X, Y, Z, Q) :-
cached_foo(X, Y, Z, Q) ;
(
compute_foo(X, Y, Z, Q),
assertz(cached_foo(X, Y, Z, Q))
).

Related

I have defined multiple predicates that seem to share a common form

All of these predicates are defined in pretty much the same way. The base case is defined for the empty list. For non-empty lists we unify in the head of the clause when a certain predicate holds, but do not unify if that predicate does not hold. These predicates look too similar for me to think it is a coincidence. Is there a name for this, or a defined abstraction?
intersect([],_,[]).
intersect(_,[],[]).
intersect([X|Xs],Ys,[X|Acc]) :-
member(X,Ys),
intersect(Xs,Ys,Acc).
intersect([X|Xs],Ys,Acc) :-
\+ member(X,Ys),
intersect(Xs,Ys,Acc).
without_duplicates([],[]).
without_duplicates([X|Xs],[X|Acc]) :-
\+ member(X,Acc),
without_duplicates(Xs,Acc).
without_duplicates([X|Xs],Acc) :-
member(X,Acc),
without_duplicates(Xs,Acc).
difference([],_,[]).
difference([X|Xs],Ys,[X|Acc]) :-
\+ member(X,Ys),
difference(Xs,Ys,Acc).
difference([X|Xs],Ys,Acc) :-
member(X,Ys),
difference(Xs,Ys,Acc).
delete(_,[],[]).
delete(E,[X|Xs],[X|Ans]) :-
E \= X,
delete(E,Xs,Ans).
delete(E,[X|Xs],Ans) :-
E = X,
delete(E,Xs,Ans).
There is an abstraction for "keep elements in list for which condition holds".
The names are inclide, exclude. There is a library for those in SWI-Prolog that you can use or copy. Your predicates intersect/3, difference/3, and delete/3 would look like this:
:- use_module(library(apply)).
intersect(L1, L2, L) :-
include(member_in(L1), L2, L).
difference(L1, L2, L) :-
exclude(member_in(L2), L1, L).
member_in(List, Member) :-
memberchk(Member, List).
delete(E, L1, L) :-
exclude(=(E), L1, L).
But please take a look at the implementation of include/3 and exclude/3, here:
https://www.swi-prolog.org/pldoc/doc/_SWI_/library/apply.pl?show=src#include/3
Also in SWI-Prolog, in another library, there are versions of those predicates called intersection/3, subtract/3, delete/3:
https://www.swi-prolog.org/pldoc/doc/_SWI_/library/lists.pl?show=src#intersection/3
https://www.swi-prolog.org/pldoc/doc/_SWI_/library/lists.pl?show=src#subtract/3
https://www.swi-prolog.org/pldoc/doc_for?object=delete/3
Those are similar in spirit to your solutions.
Your next predicate, without_duplicates, cannot be re-written like that with include/3 or exclude/3. Your implementation doesn't work, either. Try even something easy, like:
?- without_duplicates([a,b], L).
What happens?
But yeah, it is not the same as the others. To implement it correctly, depending on whether you need the original order or not.
If you don't need to keep the initial order, you can simply sort; this removes duplicates. Like this:
?- sort(List_with_duplicates, No_duplicates).
If you want to keep the original order, you need to pass the accumulated list to the recursive call.
without_duplicates([], []).
without_duplicates([H|T], [H|Result]) :-
without_duplicates_1(T, [H], Result).
without_duplicates_1([], _, []).
without_duplicates_1([H|T], Seen0, Result) :-
( memberchk(H, Seen0)
-> Seen = Seen0 , Result = Result0
; Seen = [H|Seen0], Result = [H|Result0]
),
without_duplicates_1(T, Seen, Result0).
You could get rid of one argument if you use a DCG:
without_duplicates([], []).
without_duplicates([H|T], [H|No_duplicates]) :-
phrase(no_dups(T, [H]), No_duplicates).
no_dups([], _) --> [].
no_dups([H|T], Seen) -->
{ memberchk(H, Seen) },
!,
no_dups(T, Seen).
no_dups([H|T], Seen) -->
[H],
no_dups(T, [H|Seen]).
Well, these are the "while loops" of Prolog on the one hand, and the inductive definitions of mathematical logic on the other hand (See also: Logic Programming, Functional Programming, and Inductive Definitions, Lawrence C. Paulson, Andrew W. Smith, 2001), so it's not surprising to find them multiple times in a program - syntactically similar, with slight deviations.
In this case, you just have a binary decision - whether something is the case or not - and you "branch" (or rather, decide to not fail the body and press on with the selected clause) on that. The "guard" (the test which supplements the head unification), in this case member(X,Ys) or \+ member(X,Ys) is a binary decision (it also is exhaustive, i.e. covers the whole space of possible X)
intersect([X|Xs],Ys,[X|Acc]) :- % if the head could unify with the goal
member(X,Ys), % then additionally check that ("guard")
(...action...). % and then do something
intersect([X|Xs],Ys,Acc) :- % if the head could unify with the goal
\+ member(X,Ys), % then additionally check that ("guard")
(...action...). % and then do something
Other applications may need the equivalent of a multiple-decision switch statement here, and so N>2 clauses may have to be written instead of 2.
foo(X) :-
member(X,Set1),
(...action...).
foo(X) :-
member(X,Set2),
(...action...).
foo(X) :-
member(X,Set3),
(...action...).
% inefficient pseudocode for the case where Set1, Set2, Set3
% do not cover the whole range of X. Such a predicate may or
% may not be necessary; the default behaviour would be "failure"
% of foo/1 if this clause does not exist:
foo(X) :-
\+ (member(X,Set1);member(X,Set2);member(X,Set3)),
(...action...).
Note:
Use memberchk/2 (which fails or succeeds-once) instead of member/2 (which fails or succeeds-and-then-tries-to-succeed-again-for-the-rest-of-the-set) to make the program deterministic in its decision whether member(X,L).
Similarly, "cut" after the clause guard to tell Prolog that if a guard of one clause succeeds, there is no point in trying the other clauses because they will all turn out false: member(X,Ys),!,...
Finally, use term comparison == and \== instead of unification = or unification failure \= for delete/3.

How can I unify this list instead of just adding more variables to it?

I'm doing a project in college and I'm trying to use Prolog, in this case I have to run trough the elements of the list three by three, but I've not been successful at unifying the list with the correct variables (X, Y, Z) and my program keeps adding more and more variables to the list.
aplica_R1_fila_aux(Fila, N_Fila) :-
copia(Fila, N_Fila).
aplica_R1_fila_aux(Fila, [X,Y,Z|T]) :-
aplica_R1_Triplo([X,Y,Z], F),
aplica_R1_fila_aux(Fila, T).
This code it should copy the list Fila to N_Fila then unify [X,Y,Z|T] with N_Fila and change the list but instead it just keeps adding variables to N_Fila.
The main trick you need to make this work is that you can use call/N with varying numbers of arguments. So once you have peeled off X, Y and Z, you can obtain the result of your Goal against them with call(Goal, X, Y, Z, Result).
There are several ways to do this, but I would prefer to just make three sublists and recur on all three of them. When the rightmost one is exhausted, you are done recurring. This gives you fewer base cases to worry about (lists with no, one or two elements do not need to be handled separately) and there are no cuts so your code will wind up looking like this:
map3(Goal, [X,Y,Z|L], Solutions) :-
map3(Goal, [X,Y,Z|L], [Y,Z|L], [Z|L], Solutions).
map3(_, _, _, [], []).
map3(Goal, [X|XR], [Y|YR], [Z|ZR], [R|Rest]) :-
call(Goal, X, Y, Z, R),
map3(Goal, XR, YR, ZR, Rest).
This could also be solved without the helper predicate, but there was something that offended me about it and this really shouldn't be much worse in terms of expense, so this is the way I went.
With a dummy goal of foo(X,Y,Z, foo(X,Y,Z)), I got this example query and result:
?- map3(foo, [a,b,c,d,e,f], Result).
Result = [foo(a, b, c), foo(b, c, d), foo(c, d, e), foo(d, e, f)] ;
false.
I think this is basically what you are trying to get, let me know if I can clarify anything.

Prolog - Path finding and length given Relation

I just began learning Prolog and I wanted to understand Pathfinding better. I have a few examples of relationships, however, I don't know how to find the path and length of a relationships when the relationships are cyclical. I've been trying to create a list that documents visited nodes, but I keep receiving errors.
Below are a few examples as well as my attempt to find path given the relationship, source, target, pathlist, and length):
is_a(parallelogram, quadrilateral).
is_a(trapezoid, quadrilateral).
is_a(rhombus, parallelogram).
is_a(rectangle, parallelogram).
is_a(square, rhombus).
is_a(square, rectangle).
edge(a, b).
edge(b, c).
edge(c, d).
edge(d, a).
friend(alice, bob).
friend(bob, carol).
friend(carol, daniel).
friend(carol, eve).
friends(A,B) :-
friend(A,B);
friend(B,A).
transit(Rel, S, T) :-
call(Rel, S, X),
(X = T; transit(Rel, X, T)).
path_(Rel,Source,Target,Path,Len) :-
path_(Rel,Source,Target,Path,Len,[]).
path_(Rel,Source,Target,Path,Len,Visited) :-
transit(Rel,Source,Target),
transit(Rel,Source,Mid),
Mid == Target, !,
append(Visited,[Source,Target],Path),
length(Path,L),
Len is L+1.
path_(Rel,Source,Target,Path,Len,Visited) :-
transit(Rel,Source,Target),
transit(Rel,Source,Mid),
not(member(Mid,Visited)),
path_(Rel,Mid,Target,Path,Len,[Source|Visited]).
The above is my second attempt, but I receive errors on everything. My first attempt only worked with non-cyclical paths, such as for the is_a relationships, which is noted below:
path0(Rel,From,To,[From,To],2) :-
transit(Rel,From,To),
call(Rel, From, To).
path0(Rel,From,To,[From|Xs],Len) :-
transit(Rel,From,X),
call(Rel,From,X),
path0(Rel,X,To,Xs,_),
length(Xs, L),
Len is L+1.

How to compare elements in dynamic

I have two dynamics of /2.
One of the lists, lets call it D2 has set values inside of it. For example: 2 and 3, 4 and 5.
How can I check if my dynamic 1 aka. D1 has all the values inside of it that D2 has and then return true if it does?
I tried to use
member(E, D1(_,_)), member(E, D2(_, _)). So far but without much luck.
This is pretty icky as far as data models go and whatever it is you're trying to do with this is going to at least be inefficient, if it can even be made to work. You'd be far better off defining an arity 3 fact with the first arg being an atom that identifies the type.
That said, you can probably do enough introspection to handle it.
dif(Q, P),
predicate_property(QR, dynamic),
predicate_property(PR, dynamic),
QR =.. [Q, _, _],
PR =.. [P, _, _].
This says, find me two predicates with arity 2, whose heads are different. Ideally, you want just the user-defined predicates. SWI-Prolog cannot do this, but GNU Prolog can, you could add some extra constraints:
predicate_property(QR, user),
predicate_property(PR, user),
This is my solution:
matching(Q, P) :-
dif(Q, P), % different predicates, please
predicate_property(QR, dynamic), % both dynamic
predicate_property(PR, dynamic),
QR =.. [Q, Q1, Q2], % arity-2 predicates, please
PR =.. [P, P1, P2],
findall([Q1, Q2], clause(QR, true), Qs), % find all facts (:- true)
findall([P1, P2], clause(PR, true), Ps),
forall(member(PV, Ps), member(PV, Qs)), % ensure the fact sets are equal
forall(member(QV, Qs), member(QV, Ps)).
Please, please, please DO NOT DO THIS!

Prolog planner only generates one plan

I have a prolog planner which works correctly with one major problem of only generating one plan at the time. The plan is correct but for my application I really need to have all the possible plans.
plan(State, Goal, _, Moves) :- subsetB(Goal,State),
write('moves are'), nl,
reverse_print_stack(Moves).
plan(State, Goal, Been_list, Moves) :-
effects(Name, [Preconditions, Add,Delete]), //a list of of rules governing the domain
conditions_met(Preconditions, State), //checks if all preconditions are present in the state
change_state(State, Add,Delete, Child_state), //add predicates from Add list, removes predicates in the Delete list and stores result in Child_state
\+(member_state(Child_state, Been_list)), //checks if Child_state hasn't been previously visited
stack(Child_state, Been_list, New_been_list),
stack(Name, Moves, New_moves),
plan(Child_state, Goal, New_been_list, New_moves).
change_state(S, [],[], S).
change_state(S, [], Delete, S_new) :- change_state(S, [],[], S2),
apply_del(Delete, S2, S_new).
change_state(S, Add,Delete, S_new) :- change_state(S, [], Delete, S2),
apply_add(Add, S2, S_new).
apply_add([],State,State).
apply_add([activate(App)|Rest],State,InterimState) :-apply_add(Rest,State,S2),find_stones(App,State,StonesToBeActivated), make_active(StonesToBeActivated,S2, InterimState).
apply_add([First|Rest],State,InterimState) :- apply_add(Rest,State,S2),add_element(First, S2, InterimState).
apply_del([],InterimState,InterimState).
apply_del([First|Rest],InterimState,NewState) :- apply_del(Rest, InterimState,S2),del_element(First, S2, NewState).
subsetB([],_).
subsetB([F|R],S) :- member(F,S),subsetB(R,S).
%dropping a stone inside app1
effects(drop(X,app1), %action
[[stone(X),active(X)], %preconditions
[in(app1,X)], %postconditions : add list
[active(X)]]). %postconditions : delete list
go(S,G,AllPlans):- findall(Moves, plan(S,G,[S],Moves),AllMoves).
conditions_met(P, S) :- subsetB(P, S).
Sample call
go([in(app1,s1), stone(s2), active(s2),stone(s3),active(s3)],[in(app1,s1),in(app1,s3),in(app1,s2)],AllPlans).
Answer:
drop(s2,app1)
drop(s3,app1) //correct
_2368
_2366
_2364
_2362
_2360
_2358
_2356
_2354
_2352
_2350
_2348
_2346
_2344
_2342
_2340
_2338
_2336
etc... infinitely
For finding all solutions to a goal, look at bagof or findall. Or am I missing something?
Like this:
?- findall(Moves, plan(State, Goal, _, Moves), AllMoves).
The whole idea of these predicates is that you say which arguments you want to collect and get a list of all possible instantiations under that predicate. In this sense you normally have a "return" value (an argument that gets instantiated with the result) that you can then look at or print, instead of printing it explicitly in the predicate that finds solutions.
A simplistic example:
foo(1). foo(2). foo(3). foo(4). foo(5). foo(6).
bar(R) :- foo(A), A mod 2 =:= 0.
findall(R, bar(R), Even).
Now to recursion: how does it work? You cannot share variables between different clauses of the same predicate. For example, this is wrong:
baz(0, B).
baz(X, B) :- X0 is X - 1, B1 is B + 1, baz(X0, B1).
because B is a singleton variable in the first clause of baz. Instead, you can do:
baz(0, B, B).
baz(X, B, Result) :- X0 is X - 1, B1 is B + 1, baz(X0, B1, Result).
which you can now call:
?- baz(10, 2, Result).
Result = 12
but you will still run into problems after the first answer.
You get the single correct plan probably because the first clause of plan does not meet the requirements of subsetB, and you get to the second clause. There, you make a Moves that has a free variable at its Tail, but this is not a problem yet. The problem is, however, that when you find your first solution (all in the second plan clause, recursively), Moves is now bound to a list of actions, and instead of starting to look for a new solution, you get into the second clause again by backtracking, with the already filled in Moves, which probably messes up the rest of the algorithm.
To make it correct, you probably need to make sure that when your plan backtracks, it starts to look for a new solution, with a clean Moves. You can start by instantiating Moves to an empty list and collecting results in an accumulator, as shown in the simplistic baz predicate above.

Resources