IntervalTree query from database? - algorithm

Just to be clear, when I say IntervalTree I'm referring to this data structure: https://en.wikipedia.org/wiki/Interval_tree
I want to build a query-able representation of the RIPE database. I want to, given an IP, retrieve its RIPE record. How do I do this?
I have a prototype of this in the following way. Use https://pypi.python.org/pypi/intervaltree, parse the RIPE file, encode IP strings like '123.123.123.123' into integers, use this to build an intervaltree using the above-mentioned module.
The problem is that this structure is too large to hold in memory. Is there some database that would be appropriate to use which has native support for something like an interval tree?

Your need is covered by an R-Tree index. They are more general than you'd think you want because they are designed to handle multiple dimensions. But you can implement them in one dimension, and they will allow for efficient range searches.
Lots of databases have them, but will call them different things. For example MySQL calls it a SPATIAL index, while PostgreSQL implements them as a type of GiST index.

Related

Tree-based algorithm in Scala vs Earth Box

I need to find is point located in a given radius. Now I have a two choices, first is to write my own algorithm for it(or using existing library) second is use postgresql earth_box utility and I can select it directly from db, using stored procedure. What is pros/cons of both in context of web application?
I would think that using the earth_box procedure in postgres would be better for the following reasons:
The database already contains the data and procedures to work with it
The database server , given a properly indexed table, should be quite efficient at executing a spatial query on its own spatial data
Using the server there's no need to query for the spatial information, transfer it to wherever you're processing it, creating a tree structure and other overhead (ties into the first bullet)
You're using code that already exists and, presumably, has been thoroughly tested and vetted
You could reuse the code in other server-side SQL from a broader number of applications such as reporting
I would definitely suggest trying the earthbox approach first and going with a custom solution only if the earthbox absolutely sucks performance-wise.
Here's a more succinct meta-reasoning from a blog post you may want to check out:
[...] the earthbox function allows us to perform a simple compare to
find all records in a certain radius. This is done by the function by
returning the great circle distance between the points, a more
thorough explanation is located at
http://en.wikipedia.org/wiki/Greatcircle.
(By meta-reasoning I mean that the simplicity of the use of earthbox makes using it a no-brainer.)

Algorithm to recognize keywords' categories in a One-search-box-for-all model query

I'm aiming at providing one-search-box-for-everything model in search engine project, like LinkedIn.
I've tried to express my problem using an analogy.
Let's assume that each result is an article and has multiple dimensions like author, topic, conference (if that's a publication), hosted website, etc.
Some sample queries:
"information retrieval papers at IEEE by authorXYZ": three dimensions {topic, conf-name, authorname}
"ACM paper by authoABC on design patterns" : three dimensions {conf-name, author, topic}
"Multi-threaded programming at javaranch" : two dimensions {topic, website}
I've to identify those dimensions and corresponding keywords in a big query before I can retrieve the final result from the database.
Points
I've access to all the possible values to all the dimensions. For example, I've all the conference names, author names, etc.
There's very little overlap of terms across dimensions.
My approach (naive)
Using Lucene, index all the keywords in each dimension with a dedicated field called "dimension" and another field with actual value.
Ex:
1) {name:IEEE, dimension:conference}, etc.
2) {name:ooad, dimension:topic}, etc.
3) {name:xyz, dimension:author}, etc.
Search the index with the query as-it-is.
Iterate through results up to some extent and recognize first document with a new dimension.
Problems
Not sure when to stop recognizing the dimensions from the result set. For example, the query may contain only two dimensions but the results may match 3 dimensions.
If I want to include spell-checking as well, it becomes more complex and the results tend to be less accurate.
References to papers, articles, or pointing-out the right terminology that describes my problem domain, etc. would certainly help.
Any guidance is highly appreciated.
Solution 1: Well how about solving your problem using Natural Language Processing Named Entity Recognition (NER). Now NER can be done using simple Regular Expressions (in case where the data is too static) or else you can use some Machine Learning Technique like Hidden Markov Models to actually figure out the named entities in your sequence data set. Why I stress on HMM as compared to other Machine Learning Supervised algorithms is because you have sequential data with each state dependent on the previous or next state. NER would output for you the dimensions along with the corresponding name. After that your search becomes a vertical search problem and you can just search for the identified words in different Solr/Lucene fields and set your boosts accordingly.
Now coming to the implementation part, I assume you know Java as you are working with Lucene, so Mahout is a good choice. Mahout has an HMM built in and you can train+test the model on your data set. I am also assuming you have large data set.
Solution 2: Try to model this problem as a property graph problem. Check out something like Neo4j. I suggest this as your problem falls under schema less domain. Your schema is not fixed and problem very well can be modelled as a graph where each node would be a set of key value pairs.
Solution 3: As you said that you have all possible values of dimensions than before anything else why not simply convert all your unstructured data from your text to structured data by using Regular Expressions and again as you do not have fixed schema so store the data in any NoSQL key value database. Most of them provided Lucene Integrations for full text search, then simply search on those database.
what you need to do is to calculate the similarity between the query and the document set you are looking in. Measures like cosine similarity should serve your need. However a hack that you can use is calculate the Tf/idf for the document and create an index using that score from there you can choose the appropriate one. I would recommend you to look into Vector Space Model to find a method that serves your need!!
give this algorithm a look aswell
http://en.wikipedia.org/wiki/Okapi_BM25

How to efficiently search large datasets by location and date range?

I have a MongoDB collection containing attributes such as:
longitude, latitude, start_date, end_date, price
I have over 500 million documents.
My question is how to search by lat/long, date range and price as efficiently as possible?
As I see it my options are:
Create an Geo-spatial index on lat/long and use MongoDB's proximity search... and then filter this based on date range and price.
I have yet to test this but, am worrying that the amount of data would be too much to search this quickly, when we have around 1 search a second.
have you had experience with how MongoDB would react under these circumstances?
Split the data into multiple collections by location. i.e. by cities like london_collection, paris_collection, new_york_collection.
I would then have to query by lat/long first, find the nearest city collection and then do a MongoDB spatial search on that subset data in that collection with date and price filters.
I would have uneven distribution of documents as some cities would have more documents than others.
Create collections by dates instead of location. Same as above but each document is allocated a collection based on it's date range.
problem with searches that have a date range that straddles multiple collections.
Create unique ids based on city_start_date_end_date for each document.
Again I would have to use my lat/long query to find the nearest city append the date range to access the key. This seems to be pretty fast but I don't really like the city look up aspect... it seems a bit ugly.
I am in the process of experimenting with option 1.) but would really like to hear your ideas before I go too far down one particular path?
How do search engines split up and manage their data... this must be a similar kind of problem?
Also I do not have to use MongoDB, I'm open to other options?
Many thanks.
Indexing and data access performance is a deep and complex subject. A lot of factors can effect the most efficient solution including the size of your data sets, the read to write ratio, the relative performance of your IO and backing store, etc.
While I can't give you a concrete answer, I can suggest investigating using morton numbers as an efficient way of pulling multiple similar numeric values like lat longs.
Morton number
Why do you think option 1 would be too slow? Is this the result of a real world test or is this merely an assumption that it might eventually not work out?
MongoDB has native support for geohashing and turns coordinates into a single number which can then be searched by a BTree traversal. This should be reasonably fast. Messing around with multiple collections does not seem like a very good idea to me. All it does is replace one level of BTree traversal on the database with some code you still need to write, test and maintain.
Don't reinvent the wheel, but try to optimize the most obvious path (1) first:
Set up geo indexes
Use explain to make sure your queries actually use the index
Make sure your indexes fit into RAM
Profile the database using the built-in profiler
Don't measure performance on a 'cold' system where the indexes didn't have a chance to go to RAM yet
If possible, try not to use geoNear if possible, and stick to the faster (but not perfectly spherical) near queries
If you're still hitting limits, look at sharding to distribute reads and writes to multiple machines.

External store for complex collections that can be accessed by Key-Value

Problem
I need a key-value store that can store values of the following form:
DS<DS<E>>
where the data structure DS can be
either a List, SortedSet or an Array
and E can be either a String or byte-array.
It is very expensive to generate this data and so once I put it into the store, I will only perform read queries on it. Essentially it is a complex object cache with no eviction.
Example Application
A (possibly bad, but sufficient to clarify) example of an application is storing tokenized sentences from a document where you need to be able to quickly access the qth word of the pth sentence given documentID. In this case, I would be storing it as a K-V pair as follows:
K - docID
V - List<List<String>>
String word = map.get(docID).get(p).get(q);
I prefer to avoid app-integrated Map solutions (such as EhCache within Java).
I have worked with Redis but it doesn't appear to support the second layer of data-structure complexity. Any other K-V solutions that can help my use case?
Update:
I know that I could serialize/deserialize my object but I was wondering if there is any other solution.
In terms of platform choice you have two options - A full document database will support arbitrarily complex objects, but won't have built in commands for working with specific data structures. Something like Redis which does have optimised code for specific data structures can't support all possible data structures.
You can actually get pretty close with Redis by using ids instead of the nested data structure. DS1<DS2<E>> becomes DS1<int> and DS2<E>, with the int from DS1 and a prefix giving you the key holding DS2.
With this structure you can access any E with only two operations. In some cases you will be able to get that down to a single operation by knowing what the id of DS2 will be for a given query.
I hesitate to "recommend" it, but one of the only storage engines I know of which handles multi-dimensional data of this sort efficiently is Intersystems Cache. I had to use it at my last job, mostly coding against it using it's built in MUMPS-based language. I would not recommend the native approach, unless you hate yourself or your developers. However, they do have decent Java adapters, which appears to be what you're using. I've seen it handle billions of records, efficiently stored in nested binary tree tables. There is no practical limit to the depth (number of dimensions) you can use. However, this is very much a proprietary solution. There is an open-source alternative called GT.M, but I don't know how compatible it is with languages that aren't M or C.
Any Key-Value store supports complex values, you just need to serialize/deserialize the data.
If you want fast retrieval only for specific parts of the data, you could use a more complex Key. In your example this would be:
K - tuple(docID, p, q)

NoSQL or YesSQL

I have a huge dictionary of words:
"word1" => [value1]
"word2" => [value2]
"word3" => [value3, value2]
...
"word400000000" => [value455, value3435, ..., value3423]
number of words is really big.
Now I want to be able to retrieve, really fast, all the values which are being pointed by word. word is string value.
What are the best tools to use? I thought of simple DB solution, but DBA guys said that it will not work really fast.
So, before I open Cormen's book, is there some ready solutions for that problem?
Look at key/value storage engines such as Berkeley DB. They are very fast at that sort of thing.
In RDMSs (YesSQL) you will most probably search values with LIKE or = operators on all records, i.e. search will take O(n). What you actually need is a data structure called inverted index, which allows you to find list of needed values in O(1). For description of structure and algorithms see Wikipedia article, for ready-to-use tools keep reading.
There's plenty of implementations of inverted index in search engines like Lucene/Solr, Sphinx (which, by the way, supports several databases as data source), and also in some key-value stores like Berkeley DB or Apache Cassandra. Distinction between search engines and key-value stores is in that:
Search engines implement inverted index more directly (AFAIK, key-value DBs use BigTable-like structures, that are much more complex then inverted index itself).
Search engines have a plenty of tools for text analysis (parsing, stemming). I don't know, if you actually need it, but if you do, use search engines.
Key-value DBs are real databases. I.e., unlike search engines they have real data types, not only strings. Moreover, some of such DBs (e.g. Berkeley DB) can store programming language native data types without converting them to any inner format. So, if you need a real database with all features, use key-value stores.
Also note, that inverted index is really simple structure, so you can easily implement it by yourself, if none of previous options is suitable for you.
It really depends on what behavior you want. If you just want to be able to do an exact text search, then a hash table is probably a really great idea. It has expected O(1) lookup, which is about as fast as you're going to get.
If you need the elements in sorted order (for example, so you can iterate across them in a reasonable order), then one of the myriad balanced search trees might be a good candidate; for example, a red-black tree or an AVL tree.
If you're working with a huge data set that can't all fit into main memory, then a very good choice might be a B-tree, which is a type of balanced binary search tree that minimizes the number of disk reads required to find a given element. Most database systems use some flavor of B-trees for their lookups.
You can use cassandra (http://cassandra.apache.org/). Is Easy to start, has pretty much documentation and is a really fast solution for your problem.
Hope this helps,
If you know that you will only want to search for values based on words and not the other way around, use a simple Key-Value store. Maybe Redis would be best.
If you think you will ever need to search based on the values, then you'll likely need Secondary Indices or off-line MapReduce jobs. Maybe Cassandra would be best.

Resources