Create a copy of a column for a matrix template C++ - c++11

I am learning C++11 and I would like to create copies of columns for a simple matrix template I created. I don't want to use full-fledged matrix templates like armadillo and others because I don't need sofisticated matrix algebra. The operations I would like to do are:
matrix<int> A(3,3,{1,0,1,2,2,2,1,0,1});
matrix<int> A1(3,1));
A1 = A.col_cpy(1);
// do something with the column vector
A1[2] += 5;
// and then assign back
A.col(1) = A1;
my naive first attempt with col_cpy was to return a column matrix which is wrong because the local variable is destroyed.
template<typename T >
class matrix {
T* m_elems;
size_t m_rows;
size_t m_cols;
public:
matrix(size_t rows, size_t cols)
: m_elems((T*)std::malloc(rows * cols * sizeof(T))), m_rows(rows), m_cols(cols) {}
matrix(size_t rows, size_t cols, std::initializer_list<T> const& xs)
: m_elems((T*)std::malloc(rows * cols * sizeof(T))), m_rows(rows), m_cols(cols) {
T* es = m_elems;
for (auto x : xs) {
*es = x;
++es;
}
}
auto col_cpy(size_t col) const -> T* {
auto c = (T*)std::malloc(m_rows * sizeof(T));
col_cpy(col, c);
return c;
}
auto col_cpy(size_t col) const -> matrix& {
matrix <T> c(m_rows,1);
for(auto i=0u; i<m_rows; i++)
c(i) = m_elems[col * m_rows + i];
return c;
}
Another way was to create a friend function and pass matrix by reference
template<typename T>
void col_cpy( size_t col, matrix<T> const& D, matrix<T> & A ) {
A(D.m_rows,1);
D.col_cpy(col,A.m_elems);
}
So I could do
col_cpy(1,A,A1);
It works but I think is not the safest neither elegant way to do it.
The full example is here http://coliru.stacked-crooked.com/a/546db2c1b520bdc7

Related

range-based for loop over references

This is question is out of curiosity, not necessity. One way I have found C++11's range based for loop useful is for iterating over discrete objects:
#include <iostream>
#include <functional>
int main()
{
int a = 1;
int b = 2;
int c = 3;
// handy:
for (const int& n : {a, b, c}) {
std::cout << n << '\n';
}
I would like to be able to use the same loop style to modify non-const references too, but I believe it is not allowed by the standard (see Why are arrays of references illegal?):
// would be handy but not allowed:
// for (int& n : {a, b, c}) {
// n = 0;
// }
I thought of two workarounds but these seem like they could incur some minor additional cost and they just don't look as clean:
// meh:
for (int* n : {&a, &b, &c}) {
*n = 0;
}
// meh:
using intRef = std::reference_wrapper<int>;
for (int& n : {intRef (a), intRef (b), intRef (c)}) {
n = 0;
}
}
So the question is, is there a cleaner or better way? There may be no answer to this but I'm always impressed with the clever ideas people have on stackoverflow so I thought I would ask.
Picking up #Sombrero Chicken's idea, here is an approach with less typing:
template <class ...Args> constexpr auto ref(Args&&... args)
{
using First = std::tuple_element_t<0, std::tuple<Args...>>;
using WrappedFirst = std::reference_wrapper<std::remove_reference_t<First>>;
constexpr auto n = sizeof...(Args);
return std::array<WrappedFirst, n>{std::ref(args)...};
}
which can be used via
for (int& n : ref(a, b, c))
n = 0;
Instead of constructing a reference_wrapper yourself you could use std::ref, that's as far as you can get:
using std::ref;
for (int& n : {ref(a), ref(b), ref(c)}) {
n = 0;
}

Is it possible in C++11 to combine functions into a new function?

This is more a kind of theoretical question. Is it possible in C++11 to combine functions into a new function? For example :
auto f = [](int i){return i * 2;};
auto g = [](int i){return i + 10;};
So this works:
auto c = f(g(20)); // = 60
But I want an object that stores the combination, like
auto c = f(g);
std::cout << c(20) << std::endl; //prints 60
Edit:
Additionally what i want to create is a function a, which you can give a function b and an int n, and which returns the n'th combination of the given function b. For example (not compilable)
template<typename T>
auto combine(T b, int i) -> decltype(T)
{
if (i == 0)
return b;
return combine(b, i - 1);
}
auto c = combine(f, 2); //c = f(f(f(int)))
A first attempt:
template<class First, class Second>
auto compose( Second&& second, First&& first ) }
return [second = std::forward<Second>(second), first=std::forward<First>(first)]
(auto&&...args)->decltype(auto) {
return second( first( decltype(args)(args)... ) );
};
}
template<class A, class B, class...Rest>
auto compose(A&& a, B&& b, Rest&&... rest) {
return compose( compose(std::forward<A>(a), std::forward<B>(b)), std::forward<Rest>(rest)... );
}
template<class A>
std::decay_t<A> compose(A&& a) {
return std::forward<A>(a);
}
in C++14. Now, this isn't perfect, as the pattern doesn't work all that well in C++.
To do this perfectly, we'd have to take a look at compositional programming. Here, functions interact with an abstract stack of arguments. Each function pops some number of arguments off the stack, then pops some number back on.
This would allow you do do this:
compose( print_coord, get_x, get_y )
where get_x and get_y consume nothing but return a coordinate, and print_coord takes two coordinates and prints them.
To emulate this in C++, we need some fancy machinery. Functions will return tuples (or tuple-likes?), and those values will be "pushed onto the argument stack" logically.
Functions will also consume things off this argument stack.
At each invocation, we unpack the current tuple of arguments, find the longest collection that the function can be called with, call it, get its return value, unpack it if it is a tuple, and then stick any such returned values back on the argument stack.
For this more advanced compose to compose with itself, it then needs SFINAE checks, and it needs to be able to take a invokable object and a tuple of arguments and find the right number of arguments to call the invokable object with, plus the left-over arguments.
This is a tricky bit of metaprogramming that I won't do here.
The second part, because I missed it the first time, looks like:
template<class F>
auto function_to_the_power( F&& f, unsigned count ) {
return [f=std::forward<F>(f),count](auto&& x)
-> std::decay_t< decltype( f(decltype(x)(x)) ) >
{
if (count == 0) return decltype(x)(x);
auto r = f(decltype(x)(x));
for (unsigned i = 1; i < count; ++i) {
r = f( std::move(r) );
}
return r;
};
}
This uses no type erasure.
Test code:
auto f = [](int x){ return x*3; };
auto fs = std::make_tuple(
function_to_the_power( f, 0 ),
function_to_the_power( f, 1 ),
function_to_the_power( f, 2 ),
function_to_the_power( f, 3 )
);
std::cout << std::get<0>(fs)(2) << "\n";
std::cout << std::get<1>(fs)(2) << "\n";
std::cout << std::get<2>(fs)(2) << "\n";
std::cout << std::get<3>(fs)(2) << "\n";
prints:
2
6
18
54
You can write something along the lines of:
#include <functional>
#include <iostream>
template<class F>
F compose(F f, F g)
{
return [=](int x) { return f(g(x)); };
}
int main()
{
std::function<int (int)> f = [](int i) { return i * 2; };
std::function<int (int)> g = [](int i) { return i + 10; };
auto c = compose(f, g);
std::cout << c(20) << '\n'; // prints 60
}
The code can be simply extended to cover the second half of the question:
template<class F>
F compose(F f, unsigned n)
{
auto g = f;
for (unsigned i = 0; i < n; ++i)
g = compose(g, f);
return g;
}
int main()
{
std::function<int (int)> h = [](int i) { return i * i; };
auto d = compose(h, 1);
auto e = compose(h, 2);
std::cout << d(3) << "\n" // prints 81
<< e(3) << "\n"; // prints 6561
}
NOTE. Here using std::function. It isn't a lambda but wraps a lambda with a performance cost.

c++11 insert into collection with a lambda functional map

It is kind of exasperating that std collections don't provide a functional map interface to fill a collection
std::vector< int > oldV = {1,3,5};
std::vector< int > newV = (oldV % [&](int v)-> int{ return v+1; });
newV.insert( oldV.begin(), oldV.end(), [&](int v)-> int{ return 2*v; });
Is there a simple header library that implements wrappers for functional style programming with std collections?
I don't see a way to do it such that it would apply both to things like std::vector and std::unordered_set without repeating the operator definition for each container. In the case of vector it would be like this:
#include <iostream>
#include <vector>
template <typename T, typename Lambda>
std::vector< T > operator |(const std::vector< T >& input, Lambda map)
{
std::vector< T > output;
for (const T& elem : input)
output.push_back( map(elem) );
return std::move(output);
};
int main()
{
std::vector< int > oldV = {1,3,5};
std::vector< int > newV = oldV | [&](int v) -> int { return v + 1; };
for(int i=0; i< newV.size() ; i++)
{
std::cout << newV[i] << std::endl;
}
};
For the case of std::unordered_set you would only have to replace push_back with insert
The pipe operator here has the same well known semantics as on Unix/Linux shells and some languages
You could use std::generate and std::transform to do this.

Accept std::function with arbitrary inputs as input w/o Templates

For Learning Purposes:
I am creating a small numerical methods library and I am trying to implement the gradient currently I have done 2D gradient and 3D gradient . But I want to generalize this to higher dimensions.
Currently I have :
matrix<double> analysis::gradient_2D(std::function<double(double, double)> fn, double x, double y)
{
matrix<double> R(2, 1);
std::function<double(double)> fnX = [fn, y](double xVar){ return fn(xVar, y); };
std::function<double(double)> fnY = [fn, x](double yVar){ return fn(x, yVar); };
R(1, 1) = differentiateBest(fnX, x);
R(1, 2) = differentiateBest(fnY, y);
return R;
}
matrix<double> analysis::gradient_3D(std::function<double(double, double, double)> fn, double x, double y, double z)
{
matrix<double> R(3, 1);
std::function<double(double)> fnX = [fn, y, z](double xVar){ return fn(xVar, y,z); };
std::function<double(double)> fnY = [fn, x, z](double yVar){ return fn(x ,yVar, z); };
std::function<double(double)> fnZ = [fn, x, y](double zVar){ return fn(x, y, zVar); };
R(1, 1) = differentiateBest(fnX, x);
R(1, 2) = differentiateBest(fnY, y);
R(1, 3) = differentiateBest(fnZ, z);
return R;
}
// Where
double analysis::differentiateBest(std::function<double(double)> fn, double x)
{
return derivative_1_Richardson_6O(fn, x);
}
// For brevity , derivative_1_Richardson_6O also has the same input as differentiateBest
I know it is verbose , but I like it
Question
What I would like to do is to create a
// What do I do at the ... ?
matrix<double> analysis::gradient_ND(std::function<double(...)> fn, matrix<double>)
So that I can pass a std::function with arbitrary input say N and I will pass
a vector which has N values.
How will I go about doing this ? If the answer is too long , links will be appreciated too .
Thank you.
PS: I saw a method using Templates , but if I use templates in the implementation , the I will have to change the .cpp file to something else right ? I would like to avoid. If using templates is the only way , then I will have to compromise. Thanks.
template<class T>
struct array_view {
T* b = nullptr; T* e = nullptr;
T* begin() const { return b; }
T* end() const { return e; }
size_t size() const { return end()-begin(); }
bool empty() const { return begin()==end(); }
T& front()const{return *begin(); }
T& back()const{return *std::prev(end()); }
T& operator[](size_t i)const{return begin()[i]; }
array_view( T* s, T* f ):b(s),e(f) {};
array_view() = default;
array_view( T* s, size_t l ):array_view(s, s+l) {}
using non_const_T = std::remove_const_t<T>;
array_view( std::initializer_list<non_const_T> il ):
array_view(il.begin(), il.end()) {}
template<size_t N>
array_view( T(&arr)[N] ):array_view(arr, N){}
template<size_t N>
array_view( std::array<T,N>&arr ):array_view(arr.data(), N){}
template<size_t N>
array_view( std::array<non_const_T,N> const&arr ):
array_view(arr.data(), N){}
template<class A>
array_view( std::vector<T,A>& v):
array_view(v.data(), v.size()){}
template<class A>
array_view( std::vector<non_const_T,A> const& v):
array_view(v.data(), v.size()){}
};
an array_view is a non-owning view into a contiguous array of T. It has converting constructors from a myriad of contiguous containers (if matrix is contiguous, a converter to array_view should be written).
Then:
matrix<double> analysis::gradient_ND(std::function<double(array_view<const double>)>, array_view<const double> pt)
is reasonable.
Using array_view causes no problem with .h and .cpp code splitting. The only templates involved are either fixed (the array_view itself), or are resolved when constructing the array_view.
matrix<double> R(pt.size(), 1);
auto make_tmp = [pt]{
std::vector<double> tmp;
tmp.reserve(pt.size());
for (double x:pt)
tmp.push_back(x);
return tmp;
};
std::vector<std::function<double(double)>> partials;
partials.reserve(pt.size());
for (size_t i = 0; i < pt.size(); ++i) {
partials.push_back(
[&,i](double x){ auto tmp=make_tmp(); tmp[i]=x; return fn(tmp); };
);
}
for (size_t i = 0; i < pt.size(); ++i) {
R(1, i) = differentiateBest(partials[i], pt[i]);
}
return R;
note that creating array of partials is not actually needed. You could just directly differentiateBest.
There is an inefficiency where partials reallocate each call. If you are ok with making reentrancy not work (which will often be ok), creating a tmp and capturing it by-value, and modifying and restoring it after each call to fn, would boost performance.
[&,i,tmp=make_tmp()](double x){ std::swap(tmp[i],x); double r=fn(tmp); std::swap(tmp[i],x); return r; };
is C++14 version. C++11 version would create a tmp variable and capture it by-value.

Boost.Variant Vs Virtual Interface Performance

I'm trying to measure a performance difference between using Boost.Variant and using virtual interfaces. For example, suppose I want to increment different types of numbers uniformly, using Boost.Variant I would use a boost::variant over int and float and a static visitor which increments each one of them. Using class interfaces I would use a pure virtual class number and number_int and number_float classes which derive from it and implement an "increment" method.
From my testing, using interfaces is far faster than using Boost.Variant.
I ran the code at the bottom and received these results:
Virtual: 00:00:00.001028
Variant: 00:00:00.012081
Why do you suppose this difference is? I thought Boost.Variant would be a lot faster.
** Note: Usually Boost.Variant uses heap allocations to guarantee that the variant would always be non-empty. But I read on the Boost.Variant documentation that if boost::has_nothrow_copy is true then it doesn't use heap allocations which should make things significantly faster. For int and float boost::has_nothrow_copy is true.
Here is my code for measuring the two approaches against each other.
#include <iostream>
#include <boost/variant/variant.hpp>
#include <boost/variant/static_visitor.hpp>
#include <boost/variant/apply_visitor.hpp>
#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/date_time/posix_time/posix_time_io.hpp>
#include <boost/format.hpp>
const int iterations_count = 100000;
// a visitor that increments a variant by N
template <int N>
struct add : boost::static_visitor<> {
template <typename T>
void operator() (T& t) const {
t += N;
}
};
// a number interface
struct number {
virtual void increment() = 0;
};
// number interface implementation for all types
template <typename T>
struct number_ : number {
number_(T t = 0) : t(t) {}
virtual void increment() {
t += 1;
}
T t;
};
void use_virtual() {
number_<int> num_int;
number* num = &num_int;
for (int i = 0; i < iterations_count; i++) {
num->increment();
}
}
void use_variant() {
typedef boost::variant<int, float, double> number;
number num = 0;
for (int i = 0; i < iterations_count; i++) {
boost::apply_visitor(add<1>(), num);
}
}
int main() {
using namespace boost::posix_time;
ptime start, end;
time_duration d1, d2;
// virtual
start = microsec_clock::universal_time();
use_virtual();
end = microsec_clock::universal_time();
// store result
d1 = end - start;
// variant
start = microsec_clock::universal_time();
use_variant();
end = microsec_clock::universal_time();
// store result
d2 = end - start;
// output
std::cout <<
boost::format(
"Virtual: %1%\n"
"Variant: %2%\n"
) % d1 % d2;
}
For those interested, after I was a bit frustrated, I passed the option -O2 to the compiler and boost::variant was way faster than a virtual call.
Thanks
This is obvious that -O2 reduces the variant time, because that whole loop is optimized away. Change the implementation to return the accumulated result to the caller, so that the optimizer wouldn't remove the loop, and you'll get the real difference:
Output:
Virtual: 00:00:00.000120 = 10000000
Variant: 00:00:00.013483 = 10000000
#include <iostream>
#include <boost/variant/variant.hpp>
#include <boost/variant/static_visitor.hpp>
#include <boost/variant/apply_visitor.hpp>
#include <boost/date_time/posix_time/ptime.hpp>
#include <boost/date_time/posix_time/posix_time_types.hpp>
#include <boost/date_time/posix_time/posix_time_io.hpp>
#include <boost/format.hpp>
const int iterations_count = 100000000;
// a visitor that increments a variant by N
template <int N>
struct add : boost::static_visitor<> {
template <typename T>
void operator() (T& t) const {
t += N;
}
};
// a visitor that increments a variant by N
template <typename T, typename V>
T get(const V& v) {
struct getter : boost::static_visitor<T> {
T operator() (T t) const { return t; }
};
return boost::apply_visitor(getter(), v);
}
// a number interface
struct number {
virtual void increment() = 0;
};
// number interface implementation for all types
template <typename T>
struct number_ : number {
number_(T t = 0) : t(t) {}
virtual void increment() { t += 1; }
T t;
};
int use_virtual() {
number_<int> num_int;
number* num = &num_int;
for (int i = 0; i < iterations_count; i++) {
num->increment();
}
return num_int.t;
}
int use_variant() {
typedef boost::variant<int, float, double> number;
number num = 0;
for (int i = 0; i < iterations_count; i++) {
boost::apply_visitor(add<1>(), num);
}
return get<int>(num);
}
int main() {
using namespace boost::posix_time;
ptime start, end;
time_duration d1, d2;
// virtual
start = microsec_clock::universal_time();
int i1 = use_virtual();
end = microsec_clock::universal_time();
// store result
d1 = end - start;
// variant
start = microsec_clock::universal_time();
int i2 = use_variant();
end = microsec_clock::universal_time();
// store result
d2 = end - start;
// output
std::cout <<
boost::format(
"Virtual: %1% = %2%\n"
"Variant: %3% = %4%\n"
) % d1 % i1 % d2 % i2;
}

Resources