range-based for loop over references - c++11

This is question is out of curiosity, not necessity. One way I have found C++11's range based for loop useful is for iterating over discrete objects:
#include <iostream>
#include <functional>
int main()
{
int a = 1;
int b = 2;
int c = 3;
// handy:
for (const int& n : {a, b, c}) {
std::cout << n << '\n';
}
I would like to be able to use the same loop style to modify non-const references too, but I believe it is not allowed by the standard (see Why are arrays of references illegal?):
// would be handy but not allowed:
// for (int& n : {a, b, c}) {
// n = 0;
// }
I thought of two workarounds but these seem like they could incur some minor additional cost and they just don't look as clean:
// meh:
for (int* n : {&a, &b, &c}) {
*n = 0;
}
// meh:
using intRef = std::reference_wrapper<int>;
for (int& n : {intRef (a), intRef (b), intRef (c)}) {
n = 0;
}
}
So the question is, is there a cleaner or better way? There may be no answer to this but I'm always impressed with the clever ideas people have on stackoverflow so I thought I would ask.

Picking up #Sombrero Chicken's idea, here is an approach with less typing:
template <class ...Args> constexpr auto ref(Args&&... args)
{
using First = std::tuple_element_t<0, std::tuple<Args...>>;
using WrappedFirst = std::reference_wrapper<std::remove_reference_t<First>>;
constexpr auto n = sizeof...(Args);
return std::array<WrappedFirst, n>{std::ref(args)...};
}
which can be used via
for (int& n : ref(a, b, c))
n = 0;

Instead of constructing a reference_wrapper yourself you could use std::ref, that's as far as you can get:
using std::ref;
for (int& n : {ref(a), ref(b), ref(c)}) {
n = 0;
}

Related

How to use std::unordered_set to a vector<vector<int>> to remove duplicates

I have a std::vector< std::vector< int> > that contains prime numbers. I wish to eliminate double entries, as the vector contents will be exported to a file and should only contain unique primes.
The prime numbers will come from certain intervals, fed to my algorithm through a file, e.g. (32,345). There may be cases where the intervals will overlap e.g. (54,434),(345,596). I wish to use std::unordered_set, since it will be the most efficient for my case.
I have seen examples with a std::vector< int> and tried to accommodate that to my needs, to no avail.
Here is code I tried, inspired by the print method of a 2d vector.
std::vector<std::vector<int> > sharedAnswersVec;
...
...
std::unordered_set<int> unique_primes;
for (auto i = 0; i < sharedAnswerVec.size(); i++)
{
for (auto j = 0; j < sharedAnswerVec[j].size(); j++)
{
unique_primes.insert({ i,j });
sharedAnswerVec.assign(unique_primes.begin(), unique_primes.end());
sort(sharedAnswerVec.begin(), sharedAnswerVec.end());
}
}
sharedAnswerVec cannot be std::vector< int>, has to be std::vector< std::vector< int> >.
With that in mind, what changes must I do in order to correct it?
I am a beginner trying to learn, so if the question seems silly to you, please bear that in mind.
You are trying to insert something into your std::unordered_set<int> something which is not an int.
It is not clear to me what your "intervals" are, or what you are doing when sorting. Perhaps this is some use?
#include <iostream>
#include <vector>
#include <set>
int main()
{
std::vector<std::vector<int> > sharedAnswersVec = {
{1,2,3,5,7,11,13,17,19,23,29},
{2,5,11,17,23,29}
};
std::set<int> unique_primes;
for ( const auto& v : sharedAnswersVec )
{
for ( auto i : v )
{
unique_primes.insert(i);
}
}
for ( auto i : unique_primes )
{
std::cout << i << std::endl;
}
return 0;
}

Parallel radix sort with virtual memory and write-combining

I'm attempting to implement the variant of parallel radix sort described in http://arxiv.org/pdf/1008.2849v2.pdf (Algorithm 2), but my C++ implementation (for 4 digits in base 10) contains a bug that I'm unable to locate.
For debugging purposes I'm using no parallelism, but the code should still sort correctly.
For instance the line arr.at(i) = item accesses indices outside its bounds in the following
std::vector<int> v = {4612, 4598};
radix_sort2(v);
My implementation is as follows
#include <set>
#include <array>
#include <vector>
void radix_sort2(std::vector<int>& arr) {
std::array<std::set<int>, 10> buckets3;
for (const int item : arr) {
int d = item / 1000;
buckets3.at(d).insert(item);
}
//Prefix sum
std::array<int, 10> outputIndices;
outputIndices.at(0) = 0;
for (int i = 1; i < 10; ++i) {
outputIndices.at(i) = outputIndices.at(i - 1) +
buckets3.at(i - 1).size();
}
for (const auto& bucket3 : buckets3) {
std::array<std::set<int>, 10> buckets0, buckets1;
std::array<int, 10> histogram2 = {};
for (const int item : bucket3) {
int d = item % 10;
buckets0.at(d).insert(item);
}
for (const auto& bucket0 : buckets0) {
for (const int item : bucket0) {
int d = (item / 10) % 10;
buckets1.at(d).insert(item);
int d2 = (item / 100) % 10;
++histogram2.at(d2);
}
}
for (const auto& bucket1 : buckets1) {
for (const int item : bucket1) {
int d = (item / 100) % 10;
int i = outputIndices.at(d) + histogram2.at(d);
++histogram2.at(d);
arr.at(i) = item;
}
}
}
}
Can anyone spot my mistake?
I took at look at the paper you linked. You haven't made any mistakes, none that I can see. In fact, in my estimation, you corrected a mistake in the algorithm.
I wrote out the algorithm and ended up with the exact same problem as you did. After reviewing Algorithm 2, either I woefully mis-understand how it is supposed to work, or it is flawed. There are at least a couple of problems with the algorithm, specifically revolving around outputIndices, and histogram2.
Looking at the algorithm, the final index of an item is determined by the counting sort stored in outputIndices. (lets ignore the histogram for now).
If you had an inital array of numbers {0100, 0103, 0102, 0101} The prefix sum of that would be 4.
The algorithm makes no indication I can determine to lag the result by 1. That being said, in order for the algorithm to work the way they intend, it does have to be lagged, so, moving on.
Now, the prefix sums are 0, 4, 4.... The algorithm doesn't use the MSD as the index into the outputIndices array, it uses "MSD - 1"; So taking 1 as the index into the array, the starting index for the first item without the histogram is 4! Outside the array on the first try.
The outputIndices is built with the MSD, it makes sense for it to be accessed by MSD.
Further, even if you tweak the algorithm to correctly to use the MSD into the outputIndices, it still won't sort correctly. With your initial inputs (swapped) {4598, 4612}, they will stay in that order. They are sorted (locally) as if they are 2 digit numbers. If you increase it to have other numbers not starting with 4, they will be globally, sorted, but the local sort is never finished.
According to the paper the goal is to use the histogram to do that, but I don't see that happening.
Ultimately, I'm assuming, what you want is an algorithm that works the way described. I've modified the algorithm, keeping with the overall stated goal of the paper of using the MSD to do a global sort, and the rest of the digits by reverse LSD.
I don't think these changes should have any impact on your desire to parallel-ize the function.
void radix_sort2(std::vector<int>& arr)
{
std::array<std::vector<int>, 10> buckets3;
for (const int item : arr)
{
int d = item / 1000;
buckets3.at(d).push_back(item);
}
//Prefix sum
std::array<int, 10> outputIndices;
outputIndices.at(0) = 0;
for (int i = 1; i < 10; ++i)
{
outputIndices.at(i) = outputIndices.at(i - 1) + buckets3.at(i - 1).size();
}
for (const auto& bucket3 : buckets3)
{
if (bucket3.size() <= 0)
continue;
std::array<std::vector<int>, 10> buckets0, buckets1, buckets2;
for (const int item : bucket3)
buckets0.at(item % 10).push_back(item);
for (const auto& bucket0 : buckets0)
for (const int item : bucket0)
buckets1.at((item / 10) % 10).push_back(item);
for (const auto& bucket1 : buckets1)
for (const int item : bucket1)
buckets2.at((item / 100) % 10).push_back(item);
int count = 0;
for (const auto& bucket2 : buckets2)
{
for (const int item : bucket2)
{
int d = (item / 1000) % 10;
int i = outputIndices.at(d) + count;
++count;
arr.at(i) = item;
}
}
}
}
For extensiblility, it would probably make sense to create a helper function that does the local sorting. You should be able to extend it to handle any number of digit numbers that way.

All of the option to replace an unknown number of characters

I am trying to find an algorithm that for an unknown number of characters in a string, produces all of the options for replacing some characters with stars.
For example, for the string "abc", the output should be:
*bc
a*c
ab*
**c
*b*
a**
***
It is simple enough with a known number of stars, just run through all of the options with for loops, but I'm having difficulties with an all of the options.
Every star combination corresponds to binary number, so you can use simple cycle
for i = 1 to 2^n-1
where n is string length
and set stars to the positions of 1-bits of binary representations of i
for example: i=5=101b => * b *
This is basically a binary increment problem.
You can create a vector of integer variables to represent a binary array isStar and for each iteration you "add one" to the vector.
bool AddOne (int* isStar, int size) {
isStar[size - 1] += 1
for (i = size - 1; i >= 0; i++) {
if (isStar[i] > 1) {
if (i = 0) { return true; }
isStar[i] = 0;
isStar[i - 1] += 1;
}
}
return false;
}
That way you still have the original string while replacing the characters
This is a simple binary counting problem, where * corresponds to a 1 and the original letter to a 0. So you could do it with a counter, applying a bit mask to the string, but it's just as easy to do the "counting" in place.
Here's a simple implementation in C++:
(Edit: The original question seems to imply that at least one character must be replaced with a star, so the count should start at 1 instead of 0. Or, in the following, the post-test do should be replaced with a pre-test for.)
#include <iostream>
#include <string>
// A cleverer implementation would implement C++'s iterator protocol.
// But that would cloud the simple logic of the algorithm.
class StarReplacer {
public:
StarReplacer(const std::string& s): original_(s), current_(s) {}
const std::string& current() const { return current_; }
// returns true unless we're at the last possibility (all stars),
// in which case it returns false but still resets current to the
// original configuration.
bool advance() {
for (int i = current_.size()-1; i >= 0; --i) {
if (current_[i] == '*') current_[i] = original_[i];
else {
current_[i] = '*';
return true;
}
}
return false;
}
private:
std::string original_;
std::string current_;
};
int main(int argc, const char** argv) {
for (int a = 1; a < argc; ++a) {
StarReplacer r(argv[a]);
do {
std::cout << r.current() << std::endl;
} while (r.advance());
std::cout << std::endl;
}
return 0;
}

C++11: How to Get A Multidimensional Array Through vector and to Assign it to auto?

I am a lazy programmer. I want to use C++ vector to create a multidimensional array. For example, this code create a 3x2 2D array:
int nR = 3;
int nC = 2;
vector<vector<double> > array2D(nR);
for(int c = 0; c < nC; c++)
array2D.resize(nC, 0);
However, I am too lazy to
declare array2D's data type: vector<vector<double> >
C++ auto could solve this problem.
However, I am too lazy to
write loop(s) to allocate the space(s) for each object like array2D.
Writing a function could solve this problem.
However, I am too lazy to
write each function for each N-dimensional array.
write nested N-1 loops for allocating spaces.
wirte each function for each data type.
The C++11 variadic template with function recursion could solve this problem.
Is it possible ...?
This is what you want. (Tested on Microsoft Visual C++ 2013 Update 1)
#include <iostream>
#include <vector>
using namespace std;
template<class elemType> inline vector<elemType> getArrayND(int dim) {
// Allocate space and initialize all elements to 0s.
return vector<elemType>(dim, 0);
}
template<class elemType, class... Dims> inline auto getArrayND(
int dim, Dims... resDims
) -> vector<decltype(getArrayND<elemType>(resDims...))> {
// Allocate space for this dimension.
auto parent = vector<decltype(getArrayND<elemType>(resDims...))>(dim);
// Recursive to next dimension.
for (int i = 0; i < dim; i++) {
parent[i] = getArrayND<elemType>(resDims...);
}
return parent;
}
int main() {
auto test3D = getArrayND<double>(2, 3, 4);
auto test4D = getArrayND<double>(2, 3, 4, 2);
test3D[0][0][1] = 3;
test4D[1][2][3][1] = 5;
cout << test3D[0][0][1] << endl;
cout << test4D[1][2][3][1] << endl;
return 0;
}

Implementing equivalence relations in C++ (using boost::disjoint_sets)

Assume you have many elements, and you need to keep track of the equivalence relations between them. If element A is equivalent to element B, it is equivalent to all the other elements B is equivalent to.
I am looking for an efficient data structure to encode this information. It should be possible to dynamically add new elements through an equivalence with an existing element, and from that information it should be possible to efficiently compute all the elements the new element is equivalent to.
For example, consider the following equivalence sets of the elements [0,1,2,3,4]:
0 = 1 = 2
3 = 4
where the equality sign denotes equivalence. Now we add a new element 5
0 = 1 = 2
3 = 4
5
and enforcing the equivalence 5=3, the data structure becomes
0 = 1 = 2
3 = 4 = 5
From this, one should be able to iterate efficiently through the equivalence set for any element. For 5, this set would be [3,4,5].
Boost already provides a convenient data structure called disjoint_sets that seems to meet most of my requirements. Consider this simple program that illustates how to implement the above example:
#include <cstdio>
#include <vector>
#include <boost/pending/disjoint_sets.hpp>
#include <boost/unordered/unordered_set.hpp>
/*
Equivalence relations
0 = 1 = 2
3 = 4
*/
int main(int , char* [])
{
typedef std::vector<int> VecInt;
typedef boost::unordered_set<int> SetInt;
VecInt rank (100);
VecInt parent (100);
boost::disjoint_sets<int*,int*> ds(&rank[0], &parent[0]);
SetInt elements;
for (int i=0; i<5; ++i) {
ds.make_set(i);
elements.insert(i);
}
ds.union_set(0,1);
ds.union_set(1,2);
ds.union_set(3,4);
printf("Number of sets:\n\t%d\n", (int)ds.count_sets(elements.begin(), elements.end()));
// normalize set so that parent is always the smallest number
ds.normalize_sets(elements.begin(), elements.end());
for (SetInt::const_iterator i = elements.begin(); i != elements.end(); ++i) {
printf("%d %d\n", *i, ds.find_set(*i));
}
return 0;
}
As seen above one can efficiently add elements, and dynamically expand the disjoint sets. How can one efficiently iterate over the elements of a single disjoint set, without having to iterate over all the elements?
Most probably you can't do that, disjoint_sets doesn't support iteration over one set only. The underlying data structure and algorithms wouldn't be able to do it efficiently anyway, i.e. even if there was support built in to disjoint_sets for iteration over one set only, that would be just as slow as iterating over all sets, and filtering out wrong sets.
Either I am missing something, you forgot to mention something, or maybe you were overthinking this ;)
Happily, equivalence is not equality. For A & B to be equivalent; they only need to share an attribute with the same value. this could be a scalar or even a vector. Anyway, I think your posted requirements can be achieved just using std::multiset and it's std::multiset::equal_range() member function.
//////////////////////////////////////
class E
{
//could be a GUID or something instead but the time complexity of
//std::multiset::equal_range with a simple int comparison should be logarithmic
static size_t _faucet;
public:
struct LessThan
{
bool operator()(const E* l, const E* r) const { return (l->eqValue() < r->eqValue()); }
};
using EL=std::vector<const E*>;
using ES=std::multiset<const E*, E::LessThan>;
using ER=std::pair<ES::iterator, ES::iterator>;
static size_t NewValue() { return ++_faucet; }
~E() { eqRemove(); }
E(size_t val) : _eqValue(val) {}
E(std::string name) : Name(name), _eqValue(NewValue()) { E::Elementals.insert(this); }
//not rly a great idea to use operator=() for this. demo only..
const E& operator=(const class E& other) { eqValue(other); return *this; }
//overriddable default equivalence interface
virtual size_t eqValue() const { return _eqValue; };
//clearly it matters how mutable you need your equivalence relationships to be,,
//in this implementation, if an element's equivalence relation changes then
//the element is going to be erased and re-inserted.
virtual void eqValue(const class E& other)
{
if (_eqValue == other._eqValue) return;
eqRemove();
_eqValue=other._eqValue;
E::Elementals.insert(this);
};
ES::iterator eqRemove()
{
auto range=E::Elementals.equal_range(this);
//worst-case complexity should be aprox linear over the range
for (auto it=range.first; it!=range.second; it++)
if (this == (*it))
return E::Elementals.erase(it);
return E::Elementals.end();
}
std::string Name; //some other attribute unique to the instance
static ES Elementals; //canonical set of elements with equivalence relations
protected:
size_t _eqValue=0;
};
size_t E::_faucet=0;
E::ES E::Elementals{};
//////////////////////////////////////
//random specialisation providing
//dynamic class-level equivalence
class StarFish : public E
{
public:
static void EqAssign(const class E& other)
{
if (StarFish::_id == other.eqValue()) return;
E el(StarFish::_id);
auto range=E::Elementals.equal_range(&el);
StarFish::_id=other.eqValue();
E::EL insertList(range.first, range.second);
E::Elementals.erase(range.first, range.second);
E::Elementals.insert(insertList.begin(), insertList.end());
}
StarFish() : E("starfish") {}
//base-class overrides
virtual size_t eqValue() const { return StarFish::_id; };
protected: //equivalence is a the class level
virtual void eqValue(const class E& other) { assert(0); }
private:
static size_t _id;
};
size_t StarFish::_id=E::NewValue();
//////////////////////////////////////
void eqPrint(const E& e)
{
std::cout << std::endl << "elementals equivalent to " << e.Name << ": ";
auto range=E::Elementals.equal_range(&e);
for (auto it=range.first; it!=range.second; it++)
std::cout << (*it)->Name << " ";
std::cout << std::endl << std::endl;
}
//////////////////////////////////////
void eqPrint()
{
for (auto it=E::Elementals.begin(); it!=E::Elementals.end(); it++)
std::cout << (*it)->Name << ": " << (*it)->eqValue() << " ";
std::cout << std::endl << std::endl;
}
//////////////////////////////////////
int main()
{
E e0{"zero"}, e1{"one"}, e2{"two"}, e3{"three"}, e4{"four"}, e5{"five"};
//per the OP
e0=e1=e2;
e3=e4;
e5=e3;
eqPrint(e0);
eqPrint(e3);
eqPrint(e5);
eqPrint();
StarFish::EqAssign(e3);
StarFish starfish1, starfish2;
starfish1.Name="fred";
eqPrint(e3);
//re-assignment
StarFish::EqAssign(e0);
e3=e0;
{ //out of scope removal
E e6{"six"};
e6=e4;
eqPrint(e4);
}
eqPrint(e5);
eqPrint(e0);
eqPrint();
return 0;
}
online demo
NB: C++ class inheritance also provides another kind of immutable equivalence that can be quite useful ;)

Resources