different behaviors between Eigen::Ref and Eigen::MatrixBase - eigen

I am wondering why the following code generates a compile-time error:
void f(const double e) {}
void f(const Eigen::Ref<const MatrixX<double>>& g) {}
int main {
Eigen::Matrix<double, 2, 1> m1;
Eigen::Matrix<double, 2, 1> m2;
m1 << 1.0, 2.0;
m2 << 1.0, 2.0;
f(m1.transpose() * m2); // error: call to 'f' is ambiguous
}
while the following one doesn't.
void f(const double e) {}
template <typename Derived>
void f(const Eigen::MatrixBase<Derived>& m) {}
int main {
Eigen::Matrix<double, 2, 1> m1;
Eigen::Matrix<double, 2, 1> m2;
m1 << 1.0, 2.0;
m2 << 1.0, 2.0;
f(m1.transpose() * m2); // no error
}

This because in your case m1.transpose() * m2 is an inner product that is allowed to be assigned to a scalar:
double v = m1.transpose() * m2;
This is the unique situation where a 1x1 matrix expression is allowed to be converted to a scalar. In the second version there is no ambiguity because the type of the expression m1.transpose() * m2 inherits MatrixBase.

Related

Boost A* throwing segmentation fault

this is the continuation of another question I asked regarding boost graphs. (GraphML in Boost).
After successfully reading the graph, I am trying to apply boost A* on some random start and goal nodes but its throwing segmentation fault.
Following are the details of my graph.
using Graph = boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS, VertexProperties, EdgeProperties>;
struct VertexProperties {
std::vector<double> joint_angles;
VertexProperties() : joint_angles(3){}
};
struct EdgeProperties {
double weight;
};
I used A* cities file from Boost as reference (A* Cities) to code my distance heuristic and astar_goal_visitor.
struct found_goal {}; // exception for termination
// visitor that terminates when we find the goal
template <typename Vertex>
class astar_goal_visitor : public boost::default_astar_visitor
{
public:
astar_goal_visitor(Vertex goal) : m_goal(goal) {}
template <class Graph>
void examine_vertex(Vertex u, Graph& g) {
if(u == m_goal)
throw found_goal();
}
private:
Vertex m_goal;
};
// euclidean distance heuristic
template <class Graph>
class distance_heuristic : public boost::astar_heuristic<typename Graph::Graph, double>
{
public:
typedef typename boost::graph_traits<typename Graph::Graph>::vertex_descriptor Vertex;
distance_heuristic(Vertex goal, Graph &graph)
: m_goal(goal), m_graph(graph) {}
double operator()(Vertex u)
{
double dx = m_graph.getGraph()[m_goal].joint_angles[0] - m_graph.getGraph()[u].joint_angles[0];
double dy = m_graph.getGraph()[m_goal].joint_angles[1] - m_graph.getGraph()[u].joint_angles[1];
double dz = m_graph.getGraph()[m_goal].joint_angles[2] - m_graph.getGraph()[u].joint_angles[2];
return ::sqrt(dx * dx + dy * dy + dz * dz);
}
private:
Graph m_graph;
Vertex m_goal;
};
As for astar_search parameters, the predecessor map is defined as below.
typedef boost::property_map < Graph, boost::vertex_index_t >::type IndexMap;
typedef boost::iterator_property_map < Vertex*, IndexMap, Vertex, Vertex& > PredecessorMap;
BoostGraph::PredecessorMap BoostGraph::getPredecessorMap(){
IndexMap indexMap = boost::get(boost::vertex_index, graph);
std::vector<Vertex> p(boost::num_vertices(graph));
PredecessorMap predecessorMap(&p[0], indexMap);
return predecessorMap;
}
The final code for search is
std::vector<double> d(boost::num_vertices(graph.getGraph()));
std::mt19937 gen(time(0));
BoostGraph::Vertex start = boost::random_vertex(graph.getGraph(), gen);
BoostGraph::Vertex goal = boost::random_vertex(graph.getGraph(), gen);
auto weightmap = boost::get(&EdgeProperties::weight, graph.getGraph());
try {
// call astar named parameter interface
boost::astar_search
(graph.getGraph(), start,
distance_heuristic<BoostGraph>
(goal, graph),
boost::predecessor_map(graph.getPredecessorMap()).distance_map(boost::make_iterator_property_map(d.begin(), boost::get(boost::vertex_index, graph.getGraph()))).
weight_map(weightmap).
visitor(astar_goal_visitor<BoostGraph::Vertex>(goal)));
} catch(found_goal fg) { // found a path to the goal
std::list<BoostGraph::Vertex> shortest_path;
for(BoostGraph::Vertex v = goal;; v = p[v]) {
shortest_path.push_front(v);
if(p[v] == v)
break;
}
}
The getGraph function of Class BoostGraph is defined below where graph is the protected member of class BoostGraph.
protected:
Graph graph;
const BoostGraph::Graph& BoostGraph::getGraph() const{
return graph;
}
The segmentation fault is coming in stl_tree.h and I have no idea what has gone wrong. Any help would be appreciated. Thanks
Your heuristic holds a copy of the graph. You're indexing using vertex descriptors belonging to different graphs.
Your predecessor map is a local variable (the vector), and the map is a dangling reference to it after getPredecessorMap returns. Just make the vector a member, and then getPredecessorMap can be eliminated, because it doesn't really add much.
Also, you're indexing into joint_angles without bounds checking. Prefer .at(n) over [n] if you want to be safer. In fact, consider using std::array<double, 3> instead of std::vector<double>.
All in all I get the impression that you've been trying to hide complexity in a class and member functions, however it leads to the code becoming fragmented and inviting lots of unnecessary lifetime issues.
There are also parts of the code you do not show. They likely hold more problems (e.g. getGraph() is crucial).
Here's my simplified take:
Coliru
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/astar_search.hpp>
#include <boost/graph/random.hpp>
using JointAngles = std::vector<double>;
struct VertexProperties {
JointAngles joint_angles{0, 0, 0};
};
struct EdgeProperties {
double weight = 0;
};
using Graph = boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS,
VertexProperties, EdgeProperties>;
using Vertex = Graph::vertex_descriptor;
// visitor that terminates when we find the goal
struct goal_visitor : boost::default_astar_visitor {
struct found {}; // exception for termination
Vertex m_goal;
goal_visitor(Vertex g) : m_goal(g) {}
template <class Graph> void examine_vertex(Vertex u, Graph&) {
if (u == m_goal)
throw found{};
}
};
// euclidean distance heuristic
struct distance_heuristic : boost::astar_heuristic<Graph, double> {
distance_heuristic(Vertex goal, Graph& graph)
: m_graph(graph)
, m_goal(graph[goal].joint_angles) {}
double operator()(Vertex u) const {
auto& c = m_graph[u].joint_angles;
auto //
dx = m_goal.at(0) - c.at(0), //
dy = m_goal.at(1) - c.at(1), //
dz = m_goal.at(2) - c.at(2);
using std::sqrt; // allow ADL, good practice
return sqrt(dx * dx + dy * dy + dz * dz);
}
private:
Graph& m_graph; // reference!
JointAngles m_goal;
};
#include <random>
#include <fmt/ranges.h>
int main() {
Graph graph(4);
graph[0] = VertexProperties{{0, 0, 0}};
graph[1] = VertexProperties{{1, 1, 1}};
graph[2] = VertexProperties{{2, 2, 2}};
add_edge(0, 1, graph);
add_edge(1, 2, graph);
std::vector<Vertex> predecessors(num_vertices(graph));
std::vector<double> distances(num_vertices(graph));
auto index = get(boost::vertex_index, graph);
auto pmap = make_safe_iterator_property_map(predecessors.begin(), predecessors.size(), index);
auto dmap = make_safe_iterator_property_map(distances.begin(), distances.size(), index);
auto weightmap = get(&EdgeProperties::weight, graph);
std::mt19937 gen(std::random_device{}());
Vertex start = random_vertex(graph, gen);
Vertex goal = random_vertex(graph, gen);
try {
// call astar named parameter interface
astar_search( //
graph, start, distance_heuristic{goal, graph},
boost::predecessor_map(pmap) //
.distance_map(dmap)
.weight_map(weightmap)
.visitor(goal_visitor{goal}));
fmt::print("{} -> {}: No path\n", start, goal);
} catch (goal_visitor::found) {
std::list<Vertex> path;
for (auto cursor = goal;;) {
path.push_front(cursor);
auto previous = std::exchange(cursor, predecessors.at(cursor));
if (cursor == previous)
break;
}
fmt::print("{} -> {}: {}\n", start, goal, path);
}
}
Which prints e.g.
2 -> 1: [2, 1]
Encapsulation?
If you want to encapsulate, do it along the functional boundaries, instead of artificial boundaries that gave you the lifetime headaches you didn't need. If performance is no concern, you can reduce code with a facility like vector_property_map. For example:
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/astar_search.hpp>
#include <boost/graph/graph_utility.hpp>
#include <boost/graph/random.hpp>
#include <boost/property_map/transform_value_property_map.hpp>
#include <boost/property_map/vector_property_map.hpp>
#include <fmt/ranges.h>
#include <random>
class BoostGraph {
private:
using JointAngles = std::vector<double>;
struct VertexProperties {
JointAngles joint_angles{0, 0, 0};
};
struct EdgeProperties {
double weight = 0;
};
using Graph = boost::adjacency_list<boost::setS, boost::vecS, boost::undirectedS,
VertexProperties, EdgeProperties>;
using Vertex = Graph::vertex_descriptor;
public:
BoostGraph() : m_graph(4) {
// TODO read graph
m_graph[0] = VertexProperties{{0, 0, 0}};
m_graph[1] = VertexProperties{{1, 1, 1}};
m_graph[2] = VertexProperties{{2, 2, 2}};
add_edge(0, 1, m_graph);
add_edge(1, 2, m_graph);
}
friend std::ostream& operator<<(std::ostream& os, BoostGraph const& bg) {
auto name = boost::make_transform_value_property_map(
[ja = get(&VertexProperties::joint_angles, bg.m_graph)](Vertex v) {
return fmt::format("Vertex #{} ({})", v, ja[v]);
},
get(boost::vertex_index, bg.m_graph));
print_graph(bg.m_graph, name, os);
return os;
}
Vertex random_vertex() { return boost::random_vertex(m_graph, m_prng); }
std::list<Vertex> find_path(Vertex start, Vertex goal) const {
std::list<Vertex> path;
auto pmap = make_vector_property_map<Vertex>(get(boost::vertex_index, m_graph));
try {
astar_search( //
m_graph, start, distance_heuristic{goal, m_graph},
boost::predecessor_map(pmap) //
.weight_map(get(&EdgeProperties::weight, m_graph))
.visitor(finder{goal}));
} catch (finder::found) {
for (auto cursor = goal;;) {
path.push_front(cursor);
auto previous = std::exchange(cursor, pmap[cursor]);
if (cursor == previous)
break;
}
}
return path;
}
private:
// visitor that terminates when we find the goal
struct finder : boost::default_astar_visitor {
struct found {}; // exception for termination
Vertex m_goal;
finder(Vertex g) : m_goal(g) {}
void examine_vertex(Vertex u, Graph const&) const {
if (u == m_goal)
throw found{};
}
};
// euclidean distance heuristic
struct distance_heuristic : boost::astar_heuristic<Graph, double> {
distance_heuristic(Vertex goal, Graph const& graph)
: m_graph(graph)
, m_goal(graph[goal].joint_angles) {}
double operator()(Vertex u) const {
auto& c = m_graph[u].joint_angles;
auto //
dx = m_goal.at(0) - c.at(0), //
dy = m_goal.at(1) - c.at(1), //
dz = m_goal.at(2) - c.at(2);
using std::sqrt; // allow ADL, good practice
return sqrt(dx * dx + dy * dy + dz * dz);
}
private:
Graph const& m_graph; // reference!
JointAngles m_goal;
};
Graph m_graph;
std::mt19937 m_prng{std::random_device{}()};
};
int main() {
BoostGraph bg;
std::cout << "Graph: " << bg << "\n";
for (auto i = 0; i < 10; ++i) {
auto start = bg.random_vertex(), goal = bg.random_vertex();
auto path = bg.find_path(start, goal);
fmt::print("{} -> {}: {}\n", start, goal, path);
}
}
Printing e.g.
Graph: Vertex #0 ([0, 0, 0]) <--> Vertex #1 ([1, 1, 1])
Vertex #1 ([1, 1, 1]) <--> Vertex #0 ([0, 0, 0]) Vertex #2 ([2, 2, 2])
Vertex #2 ([2, 2, 2]) <--> Vertex #1 ([1, 1, 1])
Vertex #3 ([0, 0, 0]) <-->
2 -> 2: [2]
1 -> 0: [1, 0]
0 -> 1: [0, 1]
2 -> 0: [2, 1, 0]
3 -> 0: []
0 -> 3: []
0 -> 3: []
1 -> 0: [1, 0]
1 -> 0: [1, 0]
3 -> 1: []

Creating a C++ template function that allows multiple types of array containers

In modern C++ you can create arrays by three primary methods shown below.
// Traditional method
int array_one[] = {1, 2, 3, 4}
// Vector container
std::vector<int> array_two = {1, 2, 3, 4}
// array container
std::array<int, 4> array_three = {1, 2, 3, 4}
While each array method contains the same data, they are inherently different containers. I am writing a very simple Unit Test class with template functions to make it easier to pass multiple data types. I have an example shown below for the .hpp and .cpp calling file. The one method shown in the file takes a std::vector and compares it to another std::vector indice by indice to ensure that each value is within a certain tolerance of the other.
// main.cpp
#include <iostream>
#include <string>
#include <vector>
#include <array>
#include "unit_test.hpp"
int main(int argc, const char * argv[]) {
int array_one[] = {1, 2, 3, 4};
std::vector<int> array_two = {1, 2, 3, 4};
std::vector<float> array_four = {0.99, 1.99, 2.99, 3.99};
std::array<int, 4> array_three {1, 2, 3, 4};
std::string c ("Vector Test");
UnitTest q;
double unc = 0.1;
q.vectors_are_close(array_two, array_four, unc, c);
return 0;
}
and
#ifndef unit_test_hpp
#define unit_test_hpp
#endif /* unit_test_hpp */
#include <string>
#include <typeinfo>
#include <iostream>
#include <cmath>
class UnitTest
{
public:
template <class type1, class type2>
void vectors_are_close(const std::vector<type1> &i, const std::vector<type2> &j,
double k, std::string str);
private:
template <class type1, class type2>
void is_close(type1 &i, type2 &j, double k);
};
template <class type1, class type2>
void UnitTest::vectors_are_close(const std::vector<type1> &i, const std::vector<type2> &j,
double k, std::string str)
{
unsigned long remain;
remain = 50 - str.length();
if (i.size() != j.size()) {
std::cout << str + std::string(remain, '.') +
std::string("FAILED") << std::endl;
}
else {
try {
for (int a = 0; a < i.size(); a++){
is_close(i[a], j[a], k);
}
std::cout << str + std::string(remain, '.') +
std::string("PASSED") << std::endl;
} catch (const char* msg) {
std::cout << str + std::string(remain, '.') +
std::string("FAILED") << std::endl;
}
}
}
template <class type1, class type2>
void UnitTest::is_close(type1 &i, type2 &j, double k)
{
double percent_diff = abs((j - i) / ((i + j) / 2.0));
if (percent_diff > k) {
throw "Number not in Tolerance";
}
}
In this example the code compares two vectors; however, if I want to compare std::array containers I will have to crate a whole new function to do that, and if I want to compare two generic arrays, I will have to yet again create another function to do that. In addition, if I want to compare data in a std::array container to a std::vector container, again, I will have to create another function. I would like to create a single templated member function that I can pass any type of container to the function and have it compare it against any other type of container. In other words instead of;
void UnitTest::vectors_are_close(const std::vector<type1> &i, const std::vector<type2> & j);
I would like a simpler function such as;
void UnitTest::arrays_are_close(const type1, const type2);
where type1 and type2 do not just refer to the data in the container, but also the type of container as well. In this way I could pass a std::vector to type1 and std::array to type, or other combinations of the traditional way of creating arrays, array containers and vector containers. Is there any way to facilitate this behavior?
With a few changes to your implementation it is possible to do that:
template <class container1, class container2>
void UnitTest::vectors_are_close(const container1 &i, const container2 &j,
double k, std::string str)
{
unsigned long remain;
remain = 50 - str.length();
if (std::size(i) != std::size(j)) {
std::cout << str + std::string(remain, '.') +
std::string("FAILED") << std::endl;
}
else {
try {
for (int a = 0; a < std::size(i); a++){
is_close(i[a], j[a], k);
}
std::cout << str + std::string(remain, '.') +
std::string("PASSED") << std::endl;
} catch (const char* msg) {
std::cout << str + std::string(remain, '.') +
std::string("FAILED") << std::endl;
}
}
}
This function should work for std::vector, std::array and C-style arrays.

Create a copy of a column for a matrix template C++

I am learning C++11 and I would like to create copies of columns for a simple matrix template I created. I don't want to use full-fledged matrix templates like armadillo and others because I don't need sofisticated matrix algebra. The operations I would like to do are:
matrix<int> A(3,3,{1,0,1,2,2,2,1,0,1});
matrix<int> A1(3,1));
A1 = A.col_cpy(1);
// do something with the column vector
A1[2] += 5;
// and then assign back
A.col(1) = A1;
my naive first attempt with col_cpy was to return a column matrix which is wrong because the local variable is destroyed.
template<typename T >
class matrix {
T* m_elems;
size_t m_rows;
size_t m_cols;
public:
matrix(size_t rows, size_t cols)
: m_elems((T*)std::malloc(rows * cols * sizeof(T))), m_rows(rows), m_cols(cols) {}
matrix(size_t rows, size_t cols, std::initializer_list<T> const& xs)
: m_elems((T*)std::malloc(rows * cols * sizeof(T))), m_rows(rows), m_cols(cols) {
T* es = m_elems;
for (auto x : xs) {
*es = x;
++es;
}
}
auto col_cpy(size_t col) const -> T* {
auto c = (T*)std::malloc(m_rows * sizeof(T));
col_cpy(col, c);
return c;
}
auto col_cpy(size_t col) const -> matrix& {
matrix <T> c(m_rows,1);
for(auto i=0u; i<m_rows; i++)
c(i) = m_elems[col * m_rows + i];
return c;
}
Another way was to create a friend function and pass matrix by reference
template<typename T>
void col_cpy( size_t col, matrix<T> const& D, matrix<T> & A ) {
A(D.m_rows,1);
D.col_cpy(col,A.m_elems);
}
So I could do
col_cpy(1,A,A1);
It works but I think is not the safest neither elegant way to do it.
The full example is here http://coliru.stacked-crooked.com/a/546db2c1b520bdc7

Operator overflow with two types

I got a problem regarding operators.
class Fraction{
public:
Bruch(int z = 0, int n = 1);
void operator*(Fraction &b);
void calculate(char operation, Fraction &b);
private:
}
void Fraction::calculate(char operation, Fraction &b) {
switch(operation) {
case '*': operator*(b); break;
}
Fraction::Fraction(int z, int n){
zaehler = z;
nenner = n;
}
void Fraction::operator*(Fraction &b){
zaehler = zaehler * b.zaehler;
nenner = nenner * b.nenner;
}
int main(){
Fraction a(7, 5);
lont int b = 3.0;
Fraction d = a*b;
}
I want to be able to use the operator* not only with two members of class Fraction but also with one of type long int.
Error: "no known conversion for argument 2 from ‘long int’ to ‘Fraction&’"
Anybody some advice?

Mixing Scalar Types in Eigen

#include <iostream>
#include <Eigen/Core>
namespace Eigen {
// float op double -> double
template <typename BinaryOp>
struct ScalarBinaryOpTraits<float, double, BinaryOp> {
enum { Defined = 1 };
typedef double ReturnType;
};
// double op float -> double
template <typename BinaryOp>
struct ScalarBinaryOpTraits<double, float, BinaryOp> {
enum { Defined = 1 };
typedef double ReturnType;
};
}
int main() {
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic> m1(2, 2);
m1 << 1, 2, 3, 4;
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> m2(2, 2);
m2 << 1, 2, 3, 4;
std::cerr << m1 * m2 <<std::endl; // <- boom!!
}
I'd like to know why the above code does not compile. Here is the full error messages. Please note that if I define m1 and m2 to have fixed sizes, it works fine.
I'm using Eigen3.3.1. It's tested on a Mac running OSX-10.12 with Apple's clang-800.0.42.1.
This is because the general matrix-matrix product is highly optimized with aggressive manual vectorization, pipelining, multi-level caching, etc. This part does not support mixing float and double. You can bypass this heavily optimized implementation with m1.lazyProduct(m2) that corresponds to the implementations used fro small fixed-size matrices, but there is only disadvantages of doing so: the ALUs does not support mixing float and double, so float values have to be promoted to double anyway and you will loose vectorization. Better cast the float to double explicitly:
m1.cast<double>() * m2

Resources