Simple deeplearning4J Java based Spark example? - hadoop

I need to run a simple Java based deeplearning4j example in hadoop cluster and I found one here. My need to specify the input from command line (which should be a path on HDFS) and output should go to HDFS, for later view
However, in the example there is no mention, it is hard coding the input from local file system and output goes to local file system.
Can anyone help me here?

Maybe some combination of this recent pull request on our examples:
https://github.com/deeplearning4j/dl4j-examples/pull/384
and Spring-hadoop could help you?
http://projects.spring.io/spring-hadoop/
I mean conceptually all you'd do is change the file system type.
The FileSystem api in hadoop can point to either local or an hdfs url so there shouldn't be much change.

Related

Sync config files between nodes on hadoop cluster

I have a hadoop cluster consisting of 4 nodes on which I am running a pyspark script. I have a config.ini file which contains details like locations of certificates, passwords, server names etc which are needed by the script. Each time this file is updated I need to sync the changes across all 4 nodes. Is there a way to avoid that?
I have needed to sync or update changes to my script. Making them on just one node and running it from there is enough. Is the same possible for the config file?
The most secure answer is likely to learn how to use a keystore with spark.
A little less secure but still good. Have you considered you could just put the file in HDFS and then just reference it? (lower security but easier to use)
Unsecure methods that are easy to use:
You can also pass it as a file to spark-submit to transfer the file for you.
Or you could add the values to your spark submit.

How to archive data stored in HDFS files on another (non-distributed) server?

I have a project folder containing approx. 50 GB of parquet files on a hadoop cluster (CDH 5.14), which I need to archive and move to another host (non-distributed with Windows or Linux). This is only a one time job - I do not plan to bring the data back to HDFS any time soon, however there should be a way to deploy it back to a distributed file system. What would be the optimal way to do it? Unfortunately, I don't have another hadoop cluster or a cloud environment where I could place this data.
I would appreciate any hints.
The optimal solution can depend on the actual data (e.g. Tables, many/few flat files). If you know how they got in there, looking at the inverse could be a logical first step.
For example, if you just use put to place the files, consider using get.
If you use Nifi to get it in, try Nifi to get it out.
After the data is on your Linux box, you can use SCP or something like FTP or a mounted drive to move it to the desired computer.

HDFS configuration & what is the user directory for?

I am currently "playing around" with Hadoop in a VM (CDH4.1.3 image from cloudera). What I am wondering about is the following (and the documentation did not really help me in that regard).
Following the tutorial, I would format a NameNode first - OK, that is already done if one uses the cloudera image. Likewise the HDFS file structure is already present. In the hdfs-site.xml the datanode data dir is set to:
/var/lib/hadoop-hdfs/cache/${user.name}/dfs/data
which is obviously where the blocks are supposed to be copied to in a real distributed setting. In the cloudera tutorial, one is told to create hdfs "home directories" for each user (/users/<username>), which I do not understand what they are for. Are they just for local test-runs in a single-node setup?
Say I really had petabytes of data on type not fitting into my local storage. This data would have to be distributed straight away, rendering a local "home directory" entirely useless.
Could someone tell me, just to give me an intuition, how a real Hadoop workflow with massive data would look like? What kind of distinct nodes would I have running for a start?
There's the master (JobTracker) with its slave file (where would I put that) allowing the master to resolve all the DataNodes. Then there is my NameNode that keeps track of where the block IDs are stored. The DataNodes are also carry TaskTracker responsibility. In the config files, the NameNode's URI is included -- am I correct so far? Then there is still the ${user.name} variable in the configuration which apparently, if I understood it right, has something to do with WebHDFS, which would also be great if someone could explain to me. In the running examples, the directions tend to be hardcoded to
/var/lib/hadoop-hdfs/cache/1/dfs/data, /var/lib/hadoop-hdfs/cache/2/dfs/data and so on.
So, back to the example: Say, I have my tape and want to import data into my HDFS (and I am required to stream data into the filesystem because I lack the local storage to save it locally on a single machine). Where would I start with the migration process? On an arbitrary DataNode? On the NameNode that distributes the chunks? After all, I cannot assume the data just to "be there", because the name node has to be aware of the block IDs.
It would be great if someone could shortly elaborate on these topics:
What is the home directory really for?
Do I migrate data to the home directory first and to the real distributed system afterwards?
How does WebHDFS work and what role does it play with regards to the user.name variable
How would I migrate "big data" into my HDFS on the fly - or even if it's not big data, how do I populate my file system in a proper way (meaning, that the chunks get randomly distributed across the cluster?
What is the home directory really for?
You have a small confusion here. Just like /home exists for local filesystems on Linux, where users are given their own storage space, /users is a home mount ON the HDFS (Distributed FS). The tutorial needs you to administratively create a home directory for the user you wish to later be running data loads and queries as, such that they get adequate permissions and storage access onto the HDFS. The tutorial is not asking you to create these directories locally.
Do I migrate data to the home directory first and to the real distributed system afterwards?
I believe my above answer should clarify this for you. You should create your home directory on the HDFS, and then load all your data inside of that directory.
How does WebHDFS work and what role does it play with regards to the user.name variable
WebHDFS is one of the various ways to access HDFS. Regular clients to talk to HDFS require use of Java APIs. WebHDFS (and also HttpFs) techniques were added to HDFS to let other languages have their own set of APIs by providing a REST front-end to HDFS. WebHDFS allows user-authentication, to help persist the permission and security models.
How would I migrate "big data" into my HDFS on the fly - or even if it's not big data, how do I populate my file system in a proper way (meaning, that the chunks get randomly distributed across the cluster?
The large part of problem HDFS solves for you is that of managing distribution of data. When loading files or data streams to HDFS (via CLI tools, sinks from Apache Flume, etc.), the blocks are spread in an ideal distribution by HDFS itself, and the chunking is managed by it as well. All you need to do is use the user-side regular FileSystem style APIs and forget about what goes where underneath - its all managed for you.

Access hdfs from outside hadoop

I want to run some executables outside of hadoop (but on the same cluster) using input files that are stored inside HDFS.
Do these files need to be copied locally to the node? or is there a way to access HDFS outside of hadoop?
Any other suggestions on how to do this are fine. Unfortunately my executables can not be run within hadoop though.
Thanks!
There are a couple typical ways:
You can access HDFS files through the HDFS Java API if you are writing your program in Java. You are probably looking for open. This will give you a stream that acts like a generic open file.
You can stream your data with hadoop cat if your program takes input through stdin: hadoop fs -cat /path/to/file/part-r-* | myprogram.pl. You could hypothetically create a bridge with this command line command with something like popen.
Also check WebHDFS which made into the 1.0.0 release and will be in the 23.1 release also. Since it's based on rest API, any language can access it and also Hadoop need not be installed on the node on which the HDFS files are required. Also. it's equally fast as the other options mentioned by orangeoctopus.
The best way is install "hadoop-0.20-native" package on the box where you are running your code.
hadoop-0.20-native package can access hdfs filesystem. It can act as a hdfs proxy.
I had similar issue and asked appropriate question. I needed to access HDFS / MapReduce services outside of cluster. After I found solution I posted answer here for HDFS. Most painfull issue there happened to be user authentication which in my case was solved in most simple case (complete code is in my question).
If you need to minimize dependencies and don't want to install hadoop on clients here is nice Cloudera article how to configure Maven to build JAR for this. 100% success for my case.
Main difference in Remote MapReduce job posting comparing to HDFS access is only one configuration setting (check for mapred.job.tracker variable).

Writing data to Hadoop

I need to write data in to Hadoop (HDFS) from external sources like a windows box. Right now I have been copying the data onto the namenode and using HDFS's put command to ingest it into the cluster. In my browsing of the code I didn't see an API for doing this. I am hoping someone can show me that I am wrong and there is an easy way to code external clients against HDFS.
There is an API in Java. You can use it by including the Hadoop code in your project.
The JavaDoc is quite helpful in general, but of course you have to know, what you are looking for *g *
http://hadoop.apache.org/common/docs/
For your particular problem, have a look at:
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/fs/FileSystem.html
(this applies to the latest release, consult other JavaDocs for different versions!)
A typical call would be:
Filesystem.get(new JobConf()).create(new Path("however.file"));
Which returns you a stream you can handle with regular JavaIO.
For the problem of loading the data I needed to put into HDFS, I choose to turn the problem around.
Instead of uploading the files to HDFS from the server where they resided, I wrote a Java Map/Reduce job where the mapper read the file from the file server (in this case via https), then write it directly to HDFS (via the Java API).
The list of files is read from the input. I then have an external script that populates a file with the list of files to fetch, uploads the file into HDFS (using hadoop dfs -put), then start the map/reduce job with a decent number of mappers.
This gives me excellent transfer performance, since multiple files are read/written at the same time.
Maybe not the answer you were looking for, but hopefully helpful anyway :-).
About 2 years after my last answer, there are now two new alternatives - Hoop/HttpFS, and WebHDFS.
Regarding Hoop, it was first announced in Cloudera's blog and can be downloaded from a github repository. I have managed to get this version to talk successfully to at least Hadoop 0.20.1, it can probably talk to slightly older versions as well.
If you're running Hadoop 0.23.1 which at time of writing still is not released, Hoop is instead part of Hadoop as its own component, the HttpFS. This work was done as part of HDFS-2178. Hoop/HttpFS can be a proxy not only to HDFS, but also to other Hadoop-compatible filesystems such as Amazon S3.
Hoop/HttpFS runs as its own standalone service.
There's also WebHDFS which runs as part of the NameNode and DataNode services. It also provides a REST API which, if I understand correctly, is compatible with the HttpFS API. WebHDFS is part of Hadoop 1.0 and one of its major features is that it provides data locality - when you're making a read request, you will be redirected to the WebHDFS component on the datanode where the data resides.
Which component to choose depends a bit on your current setup and what needs you have. If you need a HTTP REST interface to HDFS now and you're running a version that does not include WebHDFS, starting with Hoop from the github repository seems like the easiest option. If you are running a version that includes WebHDFS, I would go for that unless you need some of the features Hoop has that WebHDFS lacks (access to other filesystems, bandwidth limitation, etc.)
Install Cygwin, install Hadoop locally (you just need the binary and configs that point at your NN -- no need to actually run the services), run hadoop fs -copyFromLocal /path/to/localfile /hdfs/path/
You can also use the new Cloudera desktop to upload a file via the web UI, though that might not be a good option for giant files.
There's also a WebDAV overlay for HDFS but I don't know how stable/reliable that is.
It seems there is a dedicated page now for this at http://wiki.apache.org/hadoop/MountableHDFS:
These projects (enumerated below) allow HDFS to be mounted (on most
flavors of Unix) as a standard file system using the mount command.
Once mounted, the user can operate on an instance of hdfs using
standard Unix utilities such as 'ls', 'cd', 'cp', 'mkdir', 'find',
'grep', or use standard Posix libraries like open, write, read, close
from C, C++, Python, Ruby, Perl, Java, bash, etc.
Later it describes these projects
contrib/fuse-dfs is built on fuse, some C glue, libhdfs and the hadoop-dev.jar
fuse-j-hdfs is built on fuse, fuse for java, and the hadoop-dev.jar
hdfs-fuse - a google code project is very similar to contrib/fuse-dfs
webdav - hdfs exposed as a webdav resource mapR - contains a closed source hdfs compatible file system that supports read/write
NFS access
HDFS NFS Proxy - exports HDFS as NFS without use of fuse. Supports Kerberos and re-orders writes so they are written to hdfs
sequentially.
I haven't tried any of these, but I will update the answer soon as I have the same need as the OP
You can now also try to use Talend, which includes components for Hadoop integration.
you can try mounting HDFS on your machine(call it machine_X) where you are executing your code and machine_X should have infiniband connectivity with the HDFS Check this out, https://wiki.apache.org/hadoop/MountableHDFS
You can also use HadoopDrive (http://hadoopdrive.effisoft.eu). It's a Windows shell extension.

Resources