I've been studying Big-O for an upcoming interview and I wanted something explained.
So one way I've been determining the run-time of algorithms is by counting the number of for-loops. For example, if an algorithm uses 1 for-loop I'd count that as O(n)
and if it used two for-loops I'd say it was O(n^2). I find that this is generally an easy way to figure out time for simple algorithms. Although in a textbook I am reading they said this algorithm has an O(n^2) run-time.
a=5
b=6
c=10
for i in range(n):
for j in range(n):
x = i * i
y = j * j
z = i * j
for k in range(n):
w = a*k + 45
v = b*b
d = 33
How would this have an O(n^2) run-time? If 𝑇(𝑛)=3+3𝑛2+2𝑛+1=3𝑛2+2𝑛+4 then are we just discarding the last loop (2n) because it does not add to 3n^2?
Thanks for reading!
Let's look at what the curves look like:
You can see here what a curve for just N looks like, along with the curve for N^2 and their sum. Notice anything? The N^2+N curve looks a lot more like an N^2 curve than an N curve, adding the N didn't really change it a whole lot. In fact, if we scale the sum curve by a constant (.93 in this case), we can make them look almost identical:
If we're analyzing algorithms, at least theoretically, we're generally worried about the factors that will dominate our processing time. If adding a factor of N to the runtime doesn't change much, why bother thinking about it? We should worry about the quadratic behavior. This isn't necessarily true in real life, where we might really care if something is a constant 2x factor, but at least for theoretical analysis it is.
This is why big-O notation is an asymptotic measure of performance. We only consider what happens as N gets very large. If we think about the ratio N^2/N as N -> infinity, it's obvious that this will trend to zero. So, the larger n gets, the less important the linear factor is, and thus we discard it.
In my textbook I see the following:
Definition of the order of an algorithm
Algorithm A is order f(n) -- denoted O(f(n)) -- if constants k and n0 exist such that A requires no more than k * f(n) time units to solve a problem of size n >= n0.
I understand: Time requirements for different complexity classes grow at different rates. For instance, with increasing values of n, the time required for O(n) grows much more slowly than O(n2), which grows more slowly than O(n3), and so forth.
I do not understand: How k and n0 fit into this definition.
What is n0? Specifically, why does n have subscript 0, what does this subscript mean?
With question 1 answered, what does a 'a problem of size n >= n0' mean? A larger data set? More loop repetitions? A growing problem size?
What is k then? Why is k being multiplied by f(n)? What does k have to do with increasing the problem size - n?
I've already looked at:
Big Oh Notation - formal definition
Constants in the formal definition of Big O
What is an easy way for finding C and N when proving the Big-Oh of an Algorithm?
Confused on how to find c and k for big O notation if f(x) = x^2+2x+1
1) n > n0 - means that we agree that for small n A might need more than k*f(n) operations. Eg. bubble sort might be faster than quick sort or merge sort for very small inputs. Choice of 0 as a subscript is completely due to author preferences.
2) Larger input size.
3) k is a constant. Suppose one algorithm performs 1000*n operation for input of size n, so it is O(n). Another algorithm needs 5*n^2 operations for input of size n. That means for input of size 100, first algorithm needs 100,000 ops and the second one 50,000 ops. So, for input size about 100 you better choose the second one though it is quadratic, and the first one is linear. On the following picture you can see that n0 = 200, because only with n greater than 200 quadratic function becomes more expensive than linear (here i assume that k equals 1).
n is the problem size, however that is best measured. Thus n0 is a specific constant n, specifically the threshold after which the relationship holds. The specific value is irrelevant for big-oh, being only interested in its existence.
k is also an arbitrary constant, whose bare existence (in conjunction with n0) is important for big-oh.
Naturally, people are also interested in smaller problems, and in fact the perfect algorithm for a big problem might be decidedly inefficient for a small one, due to the constants involved.
It means the first value for n for which the rest holds true (i.e. we're only interested in high enough values for n)
Problem size, usually the size of the input.
It means you don't care about the different (for example) between 3*n^2 and 400*n^2, so any value that is high enough to satisfy the equation is OK.
All of these conditions aim to simplify the O notation, making the difference between simple and complex operations mute (e.g. you don't care if an operation is one or 20 cycles as long as the number is finite).
My algorithm class's homework claims that O(n3) is more efficient than O(2n).
When I put these functions into a graphing calculator, f(x)=2x appears to be consistently more efficient for very large n (starting from around n = 982).
Considering that for a function f(n) = O(g(n)), it must be smaller for all n greater than some n0, wouldn't this mean that from n = 982 we could say that O(2n) is more efficient?
2^n grows extremely faster than n^3. Maybe you have input wrong values into your calculator or something like that. Also note that more efficient means less time which means a lower value on the y-axis.
Let me show you some correct plots for those functions (using Wolfram Alpha):
First 2^n is smaller (but just for a tiny range), after that you can see how 2^n grows beyond it.
After this intersection the situation never changes again and 2^n remains extremely greater than n^3. That also holds for the range you analysed, so > 982, like seen in the next plot (the plot for n^3 is near the x-axis):
Also note that in the Big-O-Notation we always compare functions based on their growth. This is why something like O(n^3) does not contain functions f : f(x) <= n^3 but rather f : f(x) <= C * n^3 where C is an arbitrary constant, it could be big, it could be small. This accounts for the growth-factor in the comparison. Also note that it is allowed that the condition does not hold for a finite amount of x but there must exist some bound x' from where on the condition holds, so for every x > x'.
Compare this explanation to the complete mathematical definition from Wikipedia where C is k, x is n and x' is n_0:
Which defines, if true, that f(n) is in the set O(g(n)).
You confuse O(2n) and 2n. O(2n) is actually C*2n, where C is an arbitrary chosen positive constant. Likewise, O(n3) is D*n3, where D is another arbitrary chosen positive constant. The claim "O(n3) is more efficient than O(2n)" means that, given any fixed C and D, it is always possible to find such n0 that for any n >= n0, D*n3
< C*2n.
for the above 2 big O's, what happens if n>>m . How does the big O change? Does it become O(n) in the first case. If yes ,why?
It depends on what you know about what the maximum value of m could be (depending on n).
If both m and n are independent variables O(mn) is O(mn) and cannot be further simplified. If you know that m will never be greater than n, but nothing else, you can also write it as O(n^2). If you know for example that m will never be greater than log n (which would satisfy n >> m), O(mn) can be written as O(n log n).
O(mnlgn) will always be greater than O(mn) regardless of the relative sizes of m and n. You would only remove terms or simplify if one of the terms is considered to be bounded or a fixed constant. According to those statements, n and m are independent dimensions that jointly bound the runtime of an algorithm. They both continue to matter in big-O notation unless one of them has a finite bound. Even in that case, it may still be useful to leave in the bounded dimension m if comparing the runtime bounds of different algorithms that may vary in their complexity relative to m.
O(mnlgn) and O(mn) will not converge even if n >> m. They will always be separated by a factor of m. If m is variable and unbounded, then the rules of Big-O require that it stay.
When n>>m O(mnlgn) would be greater than O(mn).Just solve by taking an example assume n=2^x.Yes when n>>m
O(mn) would converge to O(n).
So given the following program:
Is the time complexity of this program O(0)? In other words, is 0 O(0)?
I thought answering this in a separate question would shed some light on this question.
EDIT: Lots of good answers here! We all agree that 0 is O(1). The question is, is 0 O(0) as well?
From Wikipedia:
A description of a function in terms of big O notation usually only provides an upper bound on the growth rate of the function.
From this description, since the empty algorithm requires 0 time to execute, it has an upper bound performance of O(0). This means, it's also O(1), which happens to be a larger upper bound.
Edit:
More formally from CLR (1ed, pg 26):
For a given function g(n), we denote O(g(n)) the set of functions
O(g(n)) = { f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0 }
The asymptotic time performance of the empty algorithm, executing in 0 time regardless of the input, is therefore a member of O(0).
Edit 2:
We all agree that 0 is O(1). The question is, is 0 O(0) as well?
Based on the definitions, I say yes.
Furthermore, I think there's a bit more significance to the question than many answers indicate. By itself the empty algorithm is probably meaningless. However, whenever a non-trivial algorithm is specified, the empty algorithm could be thought of as lying between consecutive steps of the algorithm being specified as well as before and after the algorithm steps. It's nice to know that "nothingness" does not impact the algorithm's asymptotic time performance.
Edit 3:
Adam Crume makes the following claim:
For any function f(x), f(x) is in O(f(x)).
Proof: let S be a subset of R and T be a subset of R* (the non-negative real numbers) and let f(x):S ->T and c ≥ 1. Then 0 ≤ f(x) ≤ f(x) which leads to 0 ≤ f(x) ≤ cf(x) for all x∈S. Therefore f(x) ∈ O(f(x)).
Specifically, if f(x) = 0 then f(x) ∈ O(0).
It takes the same amount of time to run regardless of the input, therefore it is O(1) by definition.
Several answers say that the complexity is O(1) because the time is a constant and the time is bounded by the product of some coefficient and 1. Well, it is true that the time is a constant and it is bounded that way, but that doesn't mean that the best answer is O(1).
Consider an algorithm that runs in linear time. It is ordinarily designated as O(n) but let's play devil's advocate. The time is bounded by the product of some coefficient and n^2. If we consider O(n^2) to be a set, the set of all algorithms whose complexity is small enough, then linear algorithms are in that set. But it doesn't mean that the best answer is O(n^2).
The empty algorithm is in O(n^2) and in O(n) and in O(1) and in O(0). I vote for O(0).
I have a very simple argument for the empty algorithm being O(0): For any function f(x), f(x) is in O(f(x)). Simply let f(x)=0, and we have that 0 (the runtime of the empty algorithm) is in O(0).
On a side note, I hate it when people write f(x) = O(g(x)), when it should be f(x) ∈ O(g(x)).
Big O is asymptotic notation. To use big O, you need a function - in other words, the expression must be parametrized by n, even if n is not used. It makes no sense to say that the number 5 is O(n), it's the constant function f(n) = 5 that is O(n).
So, to analyze time complexity in terms of big O you need a function of n. Your algorithm always makes arguably 0 steps, but without a varying parameter talking about asymptotic behaviour makes no sense. Assume that your algorithm is parametrized by n. Only now you may use asymptotic notation. It makes no sense to say that it is O(n2), or even O(1), if you don't specify what is n (or the variable hidden in O(1))!
As soon as you settle on the number of steps, it's a matter of the definition of big O: the function f(n) = 0 is O(0).
Since this is a low-level question it depends on the model of computation.
Under "idealistic" assumptions, it is possible you don't do anything.
But in Python, you cannot say def f(x):, but only def f(x): pass. If you assume that every instruction, even pass (NOP), takes time, then the complexity is f(n) = c for some constant c, and unless c != 0 you can only say that f is O(1), not O(0).
It's worth noting big O by itself does not have anything to do with algorithms. For example, you may say sin x = x + O(x3) when discussing Taylor expansion. Also, O(1) does not mean constant, it means bounded by constant.
All of the answers so far address the question as if there is a right and a wrong answer. But there isn't. The question is a matter of definition. Usually in complexity theory the time cost is an integer --- although that too is just a definition. You're free to say that the empty algorithm that quits immediately takes 0 time steps or 1 time step. It's an abstract question because time complexity is an abstract definition. In the real world, you don't even have time steps, you have continuous physical time; it may be true that one CPU has clock cycles, but a parallel computer could easily have asynchronoous clocks and in any case a clock cycle is extremely small.
That said, I would say that it's more reasonable to say that the halt operation takes 1 time step rather than that it takes 0 time steps. It does seem more realistic. For many situations it's arguably very conservative, because the overhead of initialization is typically far greater than executing one arithmetic or logical operation. Giving the empty algorithm 0 time steps would only be reasonable to model, for example, a function call that is deleted by an optimizing compiler that knows that the function won't do anything.
It should be O(1). The coefficient is always 1.
Consider:
If something grows like 5n, you don't say O(5n), you say O(n) [in other words, O(1n)]
If something grows like 7n^2, you don't say O(7n^2), you say O(n^2) [in other words, O(1n^2)]
Likewise you should say O(1), not O(some other constant)
There is no such thing as O(0). Even an oracle machine or a hypercomputer require the time for one operation, i.e. solve(the_goldbach_conjecture), ergo:
All machines, theoretical or real, finite or infinite produce algorithms with a minimum time complexity of O(1).
But then again, this code right here is O(0):
// Hello world!
:)
I would say it's O(1) by definition, but O(0) if you want to get technical about it: since O(k1g(n)) is equivalent to O(k2g(n)) for any constants k1 and k2, it follows that O(1 * 1) is equivalent to O(0 * 1), and therefore O(0) is equivalent to O(1).
However, the empty algorithm is not like, for example, the identity function, whose definition is something like "return your input". The empty algorithm is more like an empty statement, or whatever happens between two statements. Its definition is "do absolutely nothing with your input", presumably without even the implied overhead of simply having input.
Consequently, the complexity of the empty algorithm is unique in that O(0) has a complexity of zero times whatever function strikes your fancy, or simply zero. It follows that since the whole business is so wacky, and since O(0) doesn't already mean something useful, and since it's slightly ridiculous to even discuss such things, a reasonable special case for O(0) is something like this:
The complexity of the empty algorithm is O(0) in time and space. An algorithm with time complexity O(0) is equivalent to the empty algorithm.
So there you go.
Given the formal definition of Big O:
Let f(x) and g(x) be two functions defined over the set of real numbers. Then, we write:
f(x) = O(g(x)) as x approaches infinity iff there exists a real M and a real x0 so that:
|f(x)| <= M * |g(x)| for every x > x0
As I see it, if we substitute g(x) = 0 (in order to have a program with complexity O(0)), we must have:
|f(x)| <= 0, for every x > x0 (the constraint of existence of a real M and x0 is practically lifted here)
which can only be true when f(x) = 0.
So I would say that not only the empty program is O(0), but it is the only one for which that holds. Intuitively, this should've been true since O(1) encompasses all algorithms that require a constant number of steps regardless of the size of its task, including 0. It's essentially useless to talk about O(0); it's already in O(1). I suspect it's purely out of simplicity of definition that we use O(1), where it could as well be O(c) or something similar.
0 = O(f) for all function f, since 0 <= |f|, so it is also O(0).
Not only is this a perfectly sensible question, but it is important in certain situations involving amortized analysis, especially when "cost" means something other than "time" (for example, "atomic instructions").
Let's say there is a datastructure featuring multiple operation types, for which an amortized analysis is being conducted. It could well happen that one type of operation can always be funded fully using "coins" deposited during previous operations.
There is a simple example of this: the "multipop queue" described in Cormen, Leiserson, Rivest, Stein [CLRS09, 17.2, p. 457], and also on Wikipedia. Each time an item is pushed, a coin is put on the item, for a total amortized cost of 2. When (multi) pops occur, they can be fully paid for by taking one coin from each item popped, so the amortized cost of MULTIPOP(k) is O(0). To wit:
Note that the amortized cost of MULTIPOP is a constant (0)
...
Moreover, we can also charge MULTIPOP operations nothing. To pop the
first plate, we take the dollar of credit off the plate and use it to
pay the actual cost of a POP operation. To pop a second plate, we
again have a dollar of credit on the plate to pay for the POP
operation, and so on. Thus, we have always charged enough up front to
pay for MULTIPOP operations. In other words, since each plate on the
stack has 1 dollar of credit on it, and the stack always has a
nonnegative number of plates, we have ensured that the amount of
credit is always nonnegative.
Thus O(0) is an important "complexity class" for certain amortized operations.
O(1) means the algorithm's time complexity is always constant.
Let's say we have this algorithm (in C):
void doSomething(int[] n)
{
int x = n[0]; // This line is accessing an array position, so it is time consuming.
int y = n[1]; // Same here.
return x + y;
}
I am ignoring the fact that the array could have less than 2 positions, just to keep it simple.
If we count the 2 most expensive lines, we have a total time of 2.
2 = O(1), because:
2 <= c * 1, if c = 2, for every n > 1
If we have this code:
public void doNothing(){}
And we count it as having 0 expansive lines, there is no difference in saying it has O(0) O(1), or O(1000), because for every one of these functions, we can prove the same theorem.
Normally, if the algorithm takes a constant number of steps to complete, we say it has O(1) time complexity.
I guess this is just a convention, because you could use any constant number to represent the function inside the O().
No. It's O(c) by convention whenever you don't have dependence on input size, where c is any positive constant (typically 1 is used - O(1) = O(12.37)).