Wolfram alpha, double integral over a plot or region - wolfram-mathematica

Im trying to do some homework in which they gave me a domain and a double integral.
I was trying to use wolfram alpha or symbolab to know how to do it but I can't get them to work, with wolfram I get to draw the domain but I dont know how to integrate with that domain, because I have the integral, which is ∫∫D( x2 + 5y2 )dxdy and the D is the Domain I have in the plot, so Im trying to search some way to tell wolfram you have this plot and you need to calculate this integral in this domain, but I don't know how.

To get WolframAlpha to integrate the function x^2+5y^2 over the domain you can use WolframAlpha notation to integrate over the outer semicircle and subtract the integral over the inner semicircle
integrate x^2+5 y^2, {x,-4,4},{y,0,sqrt(16-x^2)} - integrate x^2+5 y^2, {x,-2,2},{y,0,sqrt(4-x^2)}
link to the WolframAlpha page
If calculations like this exceed either the line length limit or the computation time limit then you might do these as two separate calculations and then subtract the results as a final step.

In:
a = -10;
b = 10;
f = x^2 + 5 y^2;
Integrate[f, x, y] (*Indefinite Integral*)
Integrate[f, {x, a, b}, {y, a, b}] (*Definite Integral*)
Plot3D[f, {x, a, b}, {y, a, b}](*Plot*)
Out:
(x^3 y)/3 + (5 x y^3)/3
80000

Related

Using Matlab function `trisurf` to display results

I've obtained a solution, u from Gauss-Siedel (solving 2D Poisson's equation), and I want to plot it using trisurf. I can't, however, seem to understand how trisurf works (I have tried playing around with it, but with no luck). I've also taken a look at the Matlab documentation, but I don't understand what peaks is. Currently, I have something like this (but it doesn't work):
ss = a:h:b; %subspace
[X,Y] = meshgrid(ss,ss);
tri = delaunay(X,Y);
Z = peaks(ss);
trisurf(tri,X,Y,Z);
Where I plug in the solution values (the vector u)? And what types of values does peaks have to take in this context?
Details:
a = lower bound
b = upper bound
h = step size
u = solution
from Gauss-Siedel. Its size depends on the number of points I
evaluate on the mesh. The solution should converge as I It's obtained from running i many iterations.
First off, let me give you my output from whos
triangle_obj 1x1 540 TriScatteredInterp
u 15x1 120 double
X 15x1 120 double
Y 15x1 120 double
Try the approach below. I think you might find that this works for you (assuming that none of your points are collinear). You might have been confused because of the [X, Y] argument confusion in TriScatteredInterp.
triangle_obj = TriScatteredInterp([X, Y], u);
figure
trisurf(triangle_obj, X, Y, u);

Convolution of 2D Gauss with Cylinder in Mathematica

I want to convolute a 2D Gaussian with a cylinder function in Mathematica. Mathematica will however just create an empty function without error messages (i.e. it behaves normally), thus when plotting the function or using it for calculations, nothing happens at all. Here is the 2D Gauss:
GaussFkt2D[x_, y_, mux_, muy_, sigmax_, sigmay_, A_] :=
A*E^-((x - mux)^2/(2 sigmax^2) + (y - muy)^2/(2 sigmay^2))
And here is the cylinder function:
cylFkt2D[x_, y_, w_] :=
Piecewise[{{0, x^2 + y^2 > (w)^2}, {1, x^2 + y^2 <= (w)^2}}]
To convolute, I use:
ConvolutionCylinderGauss2D[u_, v_, mux_, muy_, sigmax_, sigmay_, A_,w_] =
Convolve[
GaussFkt2D[x, y, mux, muy, sigmax, sigmay, A],
cylFkt2D[x, y, w], {x, y}, {u, v}
];
Is there a possibility to implement the convolution in such a way that Mathematica will not spoil the convolution? I suppose the problem could be that Mathematica is just overloaded when doing the convolution.

Area under a curve in Mathematica

Problem:
I have a two separated list of values, X={x1,x2....x2059} and Y={Y1,Y2....Y2059}. Using the Mathematica function "Transpose" i can obtain a new list Z = {{x1,y1},{x2,y2},...{x2059,y2059}}. Using ListLinePlot[Z] i made the plot.
Now, the problem is: How i can calculate the area under the plotted curve. I can't use NIntegrate, or Integrate. Can I use the interpolation function? how?
Even using the Trapezoidal Rule (implemente by me) i didn't obtain a good resul.
The data comes from an Load-deformation plot. This means that for the first half part of the data, the curve growth. From the second part of data the curve come back to zero (close to zero). In particular, X = deformation and Y=Load.
(*create a simulation for your points*)
npts = 2058;
x = Sort#RandomReal[100, npts];
y = Join[Sort#RandomReal[100, npts/2], Reverse#Sort#RandomReal[100, npts/2]];
f = Interpolation[Transpose#{x, y}, InterpolationOrder -> 1];
(*Plot and Integrate*)
Plot[f[t], {t, Min#x, Max#x}, Filling -> Axis]
NIntegrate[f[t], {t, Min#x, Max#x}, Method -> "LocalAdaptive"]
answer:
(* 5006.01 *)

Parametrizing 3D geometry for shape optimization

I am trying to parametrize a 3D geometry for shape optimization. The structure looks like the following. Another real example is here.
Currently I am using BSplines to create the lower part and using symmetry to create the whole down part of the foil. Here is what I get.
Now I have many control points to take care in order to run a shape optimization. I also don't know how to join the upper part with the bottom hydrofoil part in a sensible way. I don't know how to design a good middle part of the foil (fat nose part of the foil) where the upper part is linked to. I also need to accompany a flap with in the geometry.
Please offer some suggestion for parametrization of such a surface so that we can manipulate the geometry from MMA. The less control points are there better the situation is for optimization. May be combination of some analytic function in 3D. But I doubt if that is possible.
BR
I think you have two choices: 1) create the second part of the geometry and then write a face-face intersection algorithm to merge them. 2) create the second part of the geometry and write two functions that return -1 if a query point is inside the geometry and +1 if it is out side (other values will do). Then use RegionPlot3D[ f1[x,y,z]<0 || f2[x,y,z]<0,....]. The idea is the to extract the GraphicsComplex and use that. The question is going to be how well you can approximate the corners with that. Here is an illustration of what I mean.
if1[x_, y_, z_] := If[x^2 + y^2 + z^2 <= 1, -1, 1]
if2[x_, y_, z_] := If[(x - 1)^2 + y^2 <= 1 && -1.5 <= z <= 1.5, -1, 1]
res = RegionPlot3D[
if1[x, y, z] < 0 || if2[x, y, z] < 0, {x, -2, 2}, {y, -2,
2}, {z, -2, 2}, PlotPoints -> 100, Boxed -> False, Axes -> False]
Then extract the coords and the polygons.
coords = res[[1, 1]];
poly = Cases[res[[1]], _Polygon, Infinity];
Graphics3D[GraphicsComplex[coords, poly], Boxed -> False]
Hope this helps.

"Center of Mass" between a set of points on a Toroidally-Wrapped Map that minimizes average distance to all points

edit As someone has pointed out, what I'm looking for is actually the point minimizing total geodesic distance between all other points
My map is topographically similar to the ones in Pac Man and Asteroids. Going past the top will warp you to the bottom, and going past the left will warp you to the right.
Say I have two points (of the same mass) on the map and I wanted to find their center of mass. I could use the classical definition, which basically is the midpoint.
However, let's say the two points are on opposite ends of the mass. There is another center of mass, so to speak, formed by wrapping "around". Basically, it is the point equidistant to both other points, but linked by "wrapping around" the edge.
Example
b . O . . a . . O .
Two points O. Their "classical" midpoint/center of mass is the point marked a. However, another midpoint is also at b (b is equidistant to both points, by wrapping around).
In my situation, I want to pick the one that has lower average distance between the two points. In this case, a has an average distance between the two points of three steps. b has an average distance of two steps. So I would pick b.
One way to solve for the two-point situation is to simply test both the classical midpoint and the shortest wrapped-around midpoint, and use the one that has a shorter average distance.
However! This does not easily generalize to 3 points, or 4, or 5, or n points.
Is there a formula or algorithm that I could use to find this?
(Assume that all points will always be of equal mass. I only use "center of mass" because it is the only term I knew to loosely describe what I was trying to do)
If my explanation is unclear, I will try to explain it better.
The notion of center of mass is a notion relevant on affine spaces. The n-dimensional torus has no affine structure.
What you want is a point which minimizes (geodesic) distance to all the other points.
I suggest the following: let x_1...x_n be a collection of points on the d-dimensional torus (or any other metric space for that purpose).
Your problem:
find a point mu such that sum(dist(mu, x_k)^2) is minimal.
In the affine-euclidian case, you get the usual notion of center of mass back.
This is a problem you will be able to solve (for instance, there are probably better options) with the conjugate gradient algorithm, which performs well in this case. Beware that you need moderate n (say n < 10^3) since the algorithm needs n^2 in space and n^3 in time.
Perhaps better suited is the Levenberg-Marquardt algorithm, which is tailored for minimization of sum of squares.
Note that if you have a good initial guess (eg. the usual center of mass of the points seen as points in R^d instead of the torus) the method will converge faster.
Edit:
If (x1...xd) and (y1...yd) are points on the torus, the distance is given by
dist(x, y)^2 = alpha1^2 + ... + alphad^2
where alphai = min((xi - yi) mod 1, (yi - xi) mod 1)
I made a little program to check the goodness of the involved functions and found that you should be very carefull with the minimization process.
Below you can see two sets of plots showing the points distribution, the function to minimize in the euclidean case, and the one corresponding to the "toric metric".
As you may see, the euclidean distance is very well-behaved, while the toric present several local minima that difficult the finding of the global minima. Also, the global minimum in the toric case is not unique.
Just in case, the program in Mathematica is:
Clear["Global`*"];
(*Define non wrapping distance for dimension n*)
nwd[p1_, p2_, n_] := (p1[[n]] - p2[[n]])^2;
(*Define wrapping distance for dimension n *)
wd[p1_, p2_, max_,n_] := (max[[n]] - Max[p1[[n]], p2[[n]]] + Min[p1[[n]], p2[[n]]])^2;
(*Define minimal distance*)
dist[p1_, p2_, max_] :=
Min[nwd[p1, p2, 1], wd[p1, p2, max, 1]] +
Min[nwd[p1, p2, 2], wd[p1, p2, max, 2]];
(*Define Euclidean distance*)
euclDist[p1_, p2_, max_] := nwd[p1, p2, 1] + nwd[p1, p2, 2];
(*Set torus dimensions *)
MaxX = 20;
MaxY = 15;
(*Examples of Points sets *)
lCircle =
Table[{10 Cos[fi] + 10, 5 Sin[fi] + 10}, {fi, 0, 2 Pi - .0001, Pi/20}];
lRect = Join[
Table[{3, y}, {y, MaxY - 1}],
Table[{MaxX - 1, y}, {y, MaxY - 1}],
Table[{x, MaxY/2}, {x, MaxY - 1}],
Table[{x, MaxY - 1}, {x, MaxX - 1}],
Table[{x, 1}, {x, MaxX - 1}]];
(*Find Euclidean Center of mass *)
feucl = FindMinimum[{Total[
euclDist[#, {a, b}, {MaxX, MaxY}] & /# lRect], 0 <= a <= MaxX,
0 <= b <= MaxY}, {{a, 10}, {b, 10}}]
(*Find Toric Center of mass *)
ftoric = FindMinimum[{Total[dist[#, {a, b}, {MaxX, MaxY}] & /# lRect],
0 <= a <= MaxX, 0 <= b <= MaxY}, {{a, 10}, {b, 10}}]
In the 1 dimensional case, your problem would be analagous to finding a mean angle.
The mean of angles a and b can be computed by
mean = remainder( a + remainder( b-a, C)/2.0, C)
where C is the measure of a whole circle (ie 2*PI if you're using radians).
If you have n angles a[], the mean can be computed by
mean = a[0];
for i=1..n mean=remainder( mean + remainder( a[i]-mean, C)/(i+1), C)
So I reckon
meanX = X[0]; meanY = Y[0]
for i=1..n
meanX = remainder( meanX + remainder( X[i]-meanX, W)/(i+1), W)
meanY = remainder( meanY + remainder( Y[i]-meanY, H)/(i+1), H)
might do the job.
But note that this will result in -W/2<=meanX
IANATopologist, and I don't know how clear I'm making myself in this, but for what it's worth, these are some thoughts on the matter:
Using mass and gravity to calculate this sort of thing might indeed be elegant -- ISTR that there are a number of libraries and efficient algorithms to find the gravity vectors for any number of masses.
If you were using a spherical map, I'd suggest finding within the sphere the actual center of gravity for your N mass points. You then draw a line from the center outward through this inner center of gravity to find the point on the sphere's surface where your mass points wish to congregate.
However, a toroidal map makes this difficult.
My suggestion, then, is to flatten and copy your map to give you a 3 x 3 quilt of maps (using an infinite field of maps will give better results, but might be overkill). I'll assign coordinates (0, 0) to (2, 2) to them, with (1, 1) being your source map. Find the point(s) to which the mass points of your inner map (1, 1) are attracted -- if they all go towards the middle of your map, fine: you found your center of gravity. If not, if one of the points close to the edge is going towards some mass accumulation outside of your inner map, say into map (2, 1), then discard this mass point when calculating your center of gravity. Instead you use the mass point from the opposite map ((0, 1) in this case) that wants to wander over into your middle map.
Adding the acceleration vectors for these mass points gives you the center of gravity on your torus.
Done.

Resources