Updating matplotlib live graph in wxPython panel with scrolling x-axis - animation

I am trying to animate a live graph in a wx.Panel. I would like to have the x-axis update like this example. Many of the examples I see are basic and don't take into consideration other controls and functions in the class. Others have so many extras that I get lost in the weeds. I can't get the animation command in the right place or update the x-axis. Here is the code:
import wx
import logging
import numpy as np
import matplotlib
import time
import matplotlib.animation as animation
matplotlib.use('WXAgg')
import matplotlib.pyplot as plt
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas
from matplotlib.backends.backend_wx import NavigationToolbar2Wx
from matplotlib.figure import Figure
fTemp = ""
x = 0
class TempClass(wx.Frame):
def __init__(self):
wx.Frame.__init__(self, None, -1, title="", size=(600,500))
panel = wx.Panel(self)
self.fig = Figure(figsize=(6,4), dpi=75, facecolor='lightskyblue', edgecolor='r')
self.canvas = FigureCanvas(self, -1, self.fig)
self.ax = self.fig.add_subplot(111)
self.ax2 = self.ax.twinx()
self.ax.set_ylim(60,90)
self.ax.set_xlim(0,24)
self.ax2.set_ylim(0,100)
# major ticks every 5, minor ticks every 1
xmajor_ticks = np.arange(0, 24, 5)
xminor_ticks = np.arange(0, 24, 1)
self.ax.set_xticks(xmajor_ticks)
self.ax.set_xticks(xminor_ticks, minor=True)
self.ax.grid()
self.ax.set_xlabel('Hour')
self.ax.set_ylabel('Temp')
self.ax2.set_ylabel('Humidity')
self.ax.set_title('Temperature')
# The graph does not show in the panel when this in uncommented
#self.ani = animation.FuncAnimation(self.fig, self.onPlotTemp, interval=1000)
self.fanSensorTimer = wx.Timer(self)
self.Bind(wx.EVT_TIMER, self.onPlotTemp, self.fanSensorTimer)
self.fanSensorBtn = wx.Button(self, -1, "Start Sensor")
self.Bind(wx.EVT_BUTTON, self.onStartTempPlot, self.fanSensorBtn)
font1 = wx.Font(18, wx.DEFAULT,wx.NORMAL,wx.BOLD)
self.displayTemp = wx.StaticText(self, -1, "Current Tempurature")
self.curTempTxt = wx.TextCtrl(self, -1, "0",size=(100,40), style=wx.TE_READONLY|wx.TE_CENTRE|wx.BORDER_NONE)
self.curTempTxt.SetFont(font1)
self.displayHum = wx.StaticText(self, -1, "Current Humidity")
self.curHumTxt = wx.TextCtrl(self, -1,"0", size=(100,40), style=wx.TE_READONLY|wx.TE_CENTRE|wx.BORDER_NONE)
self.curHumTxt.SetFont(font1)
self.displayBox = wx.GridBagSizer(hgap=5,vgap=5)
self.displayBox.Add(self.displayTemp, pos=(0,0), flag=wx.TOP|wx.LEFT, border=5)
self.displayBox.Add(self.displayHum, pos=(0,1), flag=wx.TOP, border=5)
self.displayBox.Add(self.curTempTxt, pos=(1,0), flag=wx.ALL, border=5)
self.displayBox.Add(self.curHumTxt, pos=(1,1), flag=wx.ALL, border=5)
#---------
self.vbox = wx.BoxSizer(wx.VERTICAL)
self.vbox.Add(self.canvas, wx.ALIGN_CENTER|wx.ALL, 1)
self.vbox.Add(self.fanSensorBtn)
self.vbox.Add(self.displayBox, wx.ALIGN_CENTER|wx.ALL, 1)
self.SetSizer(self.vbox)
self.vbox.Fit(self)
def start(self):
# get temp/humidity reading from node
pass
def readTemp(self, data1, data2):
"Populates Current Temp"
global fTemp
self.curTempTxt.Clear()
a = format(data1, '08b')
b = format(data2, '08b')
x = a+b
y = int(x, base=2)
cTemp = ((175.72 * y)/65536)-46.85
fTemp = cTemp *1.8+32
cel = format(cTemp,'.1f')
far = format(fTemp,'.1f')
self.curTempTxt.WriteText(far + (u'\u00b0')+"F")
def rh1(self, data1, data2):
"Populates Current RH"
global relhum
self.curHumTxt.Clear()
a = format(data1, '08b')
b = format(data2, '08b')
x = a+b
y = int(x, base=2)
rh = ((125 * y)/65536)-6
relhum = format(rh,'.1f')
self.curHumTxt.WriteText(relhum + " %")
def onStartTempPlot(self,event):
#set for a short time period for testing purposes
self.fanSensorTimer.Start(5000)
print "Timer Started"
def onPlotTemp(self,event):
global fTemp, x, relhum
x +=1
y = int(fTemp)
y2 = float(relhum)
self.ax.plot(x,y,'r.')
self.ax2.plot(x,y2,'k.')
self.fig.canvas.draw()
# send message to node for another reading of temp/humidity
if __name__ == "__main__":
app = wx.App(False)
frame = TempClass()
frame.Show()
frame.start()
logging.basicConfig(level=logging.DEBUG)
app.MainLoop()
I would like to see the x axis increment as the data is plotted beyond the 24 hour point on the graph; when data for point 25 appears, the first point is dropped and the x axis shows '25'. The animation is commented out because it causes the graph to disappear until a point is plotted.
Here is a runnable example of what I am trying to achieve with the x axis:
import numpy
from matplotlib.pylab import *
from mpl_toolkits.axes_grid1 import host_subplot
import matplotlib.animation as animation
# Sent for figure
font = {'size' : 9}
matplotlib.rc('font', **font)
# Setup figure and subplots
f0 = figure(num = 0, figsize = (6, 4))#, dpi = 100)
f0.suptitle("Oscillation decay", fontsize=12)
ax01 = subplot2grid((2, 2), (0, 0))
# Set titles of subplots
ax01.set_title('Position vs Time')
# set y-limits
ax01.set_ylim(0,2)
# sex x-limits
ax01.set_xlim(0,1)
# Turn on grids
ax01.grid(True)
# set label names
ax01.set_xlabel("x")
ax01.set_ylabel("py")
# Data Placeholders
yp1=zeros(0)
yv1=zeros(0)
yp2=zeros(0)
yv2=zeros(0)
t=zeros(0)
# set plots
p011, = ax01.plot(t,yp1,'b-', label="yp1")
p012, = ax01.plot(t,yp2,'g-', label="yp2")
# set lagends
ax01.legend([p011,p012], [p011.get_label(),p012.get_label()])
# Data Update
xmin = 0
xmax = 24
x = 0
def updateData(self):
global x
global yp1
global yv1
global yp2
global yv2
global t
tmpp1 = 1 + exp(-x) *sin(2 * pi * x)
tmpv1 = - exp(-x) * sin(2 * pi * x) + exp(-x) * cos(2 * pi * x) * 2 * pi
yp1=append(yp1,tmpp1)
yv1=append(yv1,tmpv1)
yp2=append(yp2,0.5*tmpp1)
yv2=append(yv2,0.5*tmpv1)
t=append(t,x)
x += 1
p011.set_data(t,yp1)
p012.set_data(t,yp2)
if x >= xmax-1:
p011.axes.set_xlim(x-xmax+1,x+1)
return p011
# interval: draw new frame every 'interval' ms
# frames: number of frames to draw
simulation = animation.FuncAnimation(f0, updateData, blit=False, frames=200, interval=20, repeat=False)
plt.show()

You are not incrementing the X axis limit or the ticks.
def onPlotTemp(self,event):
global fTemp, x, relhum
x +=1
y = int(fTemp)
y2 = float(relhum)
if x >= 24-1:
self.ax.set_xlim(x-24+1,x+1)
xmajor_ticks = np.arange(x-24+1,x+5, 5)
xminor_ticks = np.arange(x-24+1, x+1,1)
self.ax.set_xticks(xmajor_ticks)
self.ax.set_xticks(xminor_ticks, minor=True)
self.ax.plot(x,y,'r.')
self.ax2.plot(x,y2,'k.')
self.fig.canvas.draw()
I'm not sure if the above resets the ticks the way you want them but you get the idea. Obviously I have hard-coded 24 as your limit, you may want to create a variable to sort that out.

Related

Pygame window doesn't show on Mac OS Catalina

Running:
MacOS Catalina 10.15.3
Python 3.7.6.
Pygame 1.9.6
I just started programming and I am trying to run a reinforcement learning Pygame code (link: https://github.com/harvitronix/reinforcement-learning-car). When I run python3.7 -m pygame.examples.aliens I see the test window + sound and everything works.
However when I try to run the code for the game I am trying to get working I at first only saw the loading wheel, I fixed the loading wheel by putting in the following loop. `
pygame.display.update()
while True:
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
quit()
When I try to run it now, I only see a black pygame window pop-up, so no loading wheel but also not the game, it also seems like the game doesn't run in the background (this was the case without the above loop). See the complete original code below:
import random
import math
import numpy as np
import pygame
from pygame.color import THECOLORS
import sys
import pymunk
from pymunk.vec2d import Vec2d
from pymunk.pygame_util import draw
# PyGame init
width = 1000
height = 700
pygame.init()
screen = pygame.display.set_mode((width, height))
clock = pygame.time.Clock()
# Turn off alpha since we don't use it.
screen.set_alpha(None)
# Showing sensors and redrawing slows things down.
show_sensors = True
draw_screen = True
class GameState:
def __init__(self):
# Global-ish.
self.crashed = False
# Physics stuff.
self.space = pymunk.Space()
self.space.gravity = pymunk.Vec2d(0., 0.)
# Create the car.
self.create_car(100, 100, 0.5)
# Record steps.
self.num_steps = 0
# Create walls.
static = [
pymunk.Segment(
self.space.static_body,
(0, 1), (0, height), 1),
pymunk.Segment(
self.space.static_body,
(1, height), (width, height), 1),
pymunk.Segment(
self.space.static_body,
(width-1, height), (width-1, 1), 1),
pymunk.Segment(
self.space.static_body,
(1, 1), (width, 1), 1)
]
for s in static:
s.friction = 1.
s.group = 1
s.collision_type = 1
s.color = THECOLORS['red']
self.space.add(static)
# Create some obstacles, semi-randomly.
# We'll create three and they'll move around to prevent over-fitting.
self.obstacles = []
self.obstacles.append(self.create_obstacle(200, 350, 100))
self.obstacles.append(self.create_obstacle(700, 200, 125))
self.obstacles.append(self.create_obstacle(600, 600, 35))
# Create a cat.
self.create_cat()
def create_obstacle(self, x, y, r):
c_body = pymunk.Body(pymunk.inf, pymunk.inf)
c_shape = pymunk.Circle(c_body, r)
c_shape.elasticity = 1.0
c_body.position = x, y
c_shape.color = THECOLORS["blue"]
self.space.add(c_body, c_shape)
return c_body
def create_cat(self):
inertia = pymunk.moment_for_circle(1, 0, 14, (0, 0))
self.cat_body = pymunk.Body(1, inertia)
self.cat_body.position = 50, height - 100
self.cat_shape = pymunk.Circle(self.cat_body, 30)
self.cat_shape.color = THECOLORS["orange"]
self.cat_shape.elasticity = 1.0
self.cat_shape.angle = 0.5
direction = Vec2d(1, 0).rotated(self.cat_body.angle)
self.space.add(self.cat_body, self.cat_shape)
def create_car(self, x, y, r):
inertia = pymunk.moment_for_circle(1, 0, 14, (0, 0))
self.car_body = pymunk.Body(1, inertia)
self.car_body.position = x, y
self.car_shape = pymunk.Circle(self.car_body, 25)
self.car_shape.color = THECOLORS["green"]
self.car_shape.elasticity = 1.0
self.car_body.angle = r
driving_direction = Vec2d(1, 0).rotated(self.car_body.angle)
self.car_body.apply_impulse(driving_direction)
self.space.add(self.car_body, self.car_shape)
def frame_step(self, action):
if action == 0: # Turn left.
self.car_body.angle -= .2
elif action == 1: # Turn right.
self.car_body.angle += .2
# Move obstacles.
if self.num_steps % 100 == 0:
self.move_obstacles()
# Move cat.
if self.num_steps % 5 == 0:
self.move_cat()
driving_direction = Vec2d(1, 0).rotated(self.car_body.angle)
self.car_body.velocity = 100 * driving_direction
# Update the screen and stuff.
screen.fill(THECOLORS["black"])
draw(screen, self.space)
self.space.step(1./10)
if draw_screen:
pygame.display.flip()
clock.tick()
# Get the current location and the readings there.
x, y = self.car_body.position
readings = self.get_sonar_readings(x, y, self.car_body.angle)
normalized_readings = [(x-20.0)/20.0 for x in readings]
state = np.array([normalized_readings])
# Set the reward.
# Car crashed when any reading == 1
if self.car_is_crashed(readings):
self.crashed = True
reward = -500
self.recover_from_crash(driving_direction)
else:
# Higher readings are better, so return the sum.
reward = -5 + int(self.sum_readings(readings) / 10)
self.num_steps += 1
return reward, state
def move_obstacles(self):
# Randomly move obstacles around.
for obstacle in self.obstacles:
speed = random.randint(1, 5)
direction = Vec2d(1, 0).rotated(self.car_body.angle + random.randint(-2, 2))
obstacle.velocity = speed * direction
def move_cat(self):
speed = random.randint(20, 200)
self.cat_body.angle -= random.randint(-1, 1)
direction = Vec2d(1, 0).rotated(self.cat_body.angle)
self.cat_body.velocity = speed * direction
def car_is_crashed(self, readings):
if readings[0] == 1 or readings[1] == 1 or readings[2] == 1:
return True
else:
return False
def recover_from_crash(self, driving_direction):
"""
We hit something, so recover.
"""
while self.crashed:
# Go backwards.
self.car_body.velocity = -100 * driving_direction
self.crashed = False
for i in range(10):
self.car_body.angle += .2 # Turn a little.
screen.fill(THECOLORS["grey7"]) # Red is scary!
draw(screen, self.space)
self.space.step(1./10)
if draw_screen:
pygame.display.flip()
clock.tick()
def sum_readings(self, readings):
"""Sum the number of non-zero readings."""
tot = 0
for i in readings:
tot += i
return tot
def get_sonar_readings(self, x, y, angle):
readings = []
"""
Instead of using a grid of boolean(ish) sensors, sonar readings
simply return N "distance" readings, one for each sonar
we're simulating. The distance is a count of the first non-zero
reading starting at the object. For instance, if the fifth sensor
in a sonar "arm" is non-zero, then that arm returns a distance of 5.
"""
# Make our arms.
arm_left = self.make_sonar_arm(x, y)
arm_middle = arm_left
arm_right = arm_left
# Rotate them and get readings.
readings.append(self.get_arm_distance(arm_left, x, y, angle, 0.75))
readings.append(self.get_arm_distance(arm_middle, x, y, angle, 0))
readings.append(self.get_arm_distance(arm_right, x, y, angle, -0.75))
if show_sensors:
pygame.display.update()
return readings
def get_arm_distance(self, arm, x, y, angle, offset):
# Used to count the distance.
i = 0
# Look at each point and see if we've hit something.
for point in arm:
i += 1
# Move the point to the right spot.
rotated_p = self.get_rotated_point(
x, y, point[0], point[1], angle + offset
)
# Check if we've hit something. Return the current i (distance)
# if we did.
if rotated_p[0] <= 0 or rotated_p[1] <= 0 \
or rotated_p[0] >= width or rotated_p[1] >= height:
return i # Sensor is off the screen.
else:
obs = screen.get_at(rotated_p)
if self.get_track_or_not(obs) != 0:
return i
if show_sensors:
pygame.draw.circle(screen, (255, 255, 255), (rotated_p), 2)
# Return the distance for the arm.
return i
def make_sonar_arm(self, x, y):
spread = 10 # Default spread.
distance = 20 # Gap before first sensor.
arm_points = []
# Make an arm. We build it flat because we'll rotate it about the
# center later.
for i in range(1, 40):
arm_points.append((distance + x + (spread * i), y))
return arm_points
def get_rotated_point(self, x_1, y_1, x_2, y_2, radians):
# Rotate x_2, y_2 around x_1, y_1 by angle.
x_change = (x_2 - x_1) * math.cos(radians) + \
(y_2 - y_1) * math.sin(radians)
y_change = (y_1 - y_2) * math.cos(radians) - \
(x_1 - x_2) * math.sin(radians)
new_x = x_change + x_1
new_y = height - (y_change + y_1)
return int(new_x), int(new_y)
def get_track_or_not(self, reading):
if reading == THECOLORS['black']:
return 0
else:
return 1
if __name__ == "__main__":
game_state = GameState()
while True:
game_state.frame_step((random.randint(0, 2)))
I don't think the issue is with my python version because the test runs normal. Anybody see the issue?
Thanks!
Problem solved. I put the loop in the beginning of the code but it should have gone beneath:
if draw_screen:
pygame.display.flip()

Matplotlib animate space vs time plot

I'm currently working on traffic jams analysis and was wondering if there's a way to animate the generation of a plot of such jams.
A plot of this things grow from up to the lower end of the figure, each 'row' is a time instance. The horizontal axis is just the road indicating at each point the position of each vehicle and, with a certain numeric value, the velocity of it. So applying different colors to different velocities, you get a plot that shows how a jam evolves through time in a given road.
My question is, how can I use matplotlib to generate an animation of each instance of the road in time to get such a plot?
The plot is something like this:
I'm simulating a road with vehicles with certain velocities through time, so I wish to animate a plot showing how the traffic jams evolve...
EDIT:
I add some code to make clear what I'm already doing
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation, rc
plt.rcParams['animation.ffmpeg_path'] = u'/usr/bin/ffmpeg'
# model params
vmax = 5
lenroad = 50
prob = 0.4
# sim params
numiters = 10
# traffic model
def nasch():
gaps = np.full(road.shape, -1)
road_r4 = np.full(road.shape, -1)
for n,x in enumerate(road):
if x > -1:
d = 1
while road[(n+d) % len(road)] < 0:
d += 1
d -= 1
gaps[n] = d
road_r1 = np.where(road!=-1, np.minimum(road+1, vmax), -1)
road_r2 = np.where(road_r1!=-1, np.minimum(road_r1, gaps), -1)
road_r3 = np.where(road_r2!=-1, np.where(np.random.rand() < prob, np.maximum(road-1, 0), road), -1)
for n,x in enumerate(road_r3):
if x > -1:
road_r4[(n+x) % len(road_r3)] = x
return road_r4
def plot_nasch(*args):
road = nasch()
plot.set_array([road])
return plot,
# init road
road = np.random.randint(-10, vmax+1, [lenroad])
road = np.where(road>-1, road, -1)
# simulate
fig = plt.figure()
plot = plt.imshow([road], cmap='Pastel2', interpolation='nearest')
for i in range(numiters):
ani = animation.FuncAnimation(fig, plot_nasch, frames=100, interval=500, blit=True)
plt.show()
And I get the following figure, just one road instead of each road painted at the bottom of the previous one:
This is possibly what you want, although I'm not sure why you want to animate the time, since time is already one of the axes in the plot.
The idea here is to store the simulation results of a time-step row by row in an array and replot this array. Thereby previous simulation results are not lost.
import numpy as np
from matplotlib import pyplot as plt
from matplotlib import animation, rc
# model params
vmax = 5
lenroad = 50
prob = 0.4
# sim params
numiters = 25
# traffic model
def nasch():
global road
gaps = np.full(road.shape, -1)
road_r4 = np.full(road.shape, -1)
for n,x in enumerate(road):
if x > -1:
d = 1
while road[(n+d) % len(road)] < 0:
d += 1
d -= 1
gaps[n] = d
road_r1 = np.where(road!=-1, np.minimum(road+1, vmax), -1)
road_r2 = np.where(road_r1!=-1, np.minimum(road_r1, gaps), -1)
road_r3 = np.where(road_r2!=-1, np.where(np.random.rand() < prob, np.maximum(road-1, 0), road), -1)
for n,x in enumerate(road_r3):
if x > -1:
road_r4[(n+x) % len(road_r3)] = x
return road_r4
def plot_nasch(i):
print i
global road
road = nasch()
#store result in array
road_over_time[i+1,:] = road
# plot complete array
plot.set_array(road_over_time)
# init road
road = np.random.randint(-10, vmax+1, [lenroad])
road = np.where(road>-1, road, -1)
# initiate array
road_over_time = np.zeros((numiters+1, lenroad))*np.nan
road_over_time[0,:] = road
fig = plt.figure()
plot = plt.imshow(road_over_time, cmap='Pastel2', interpolation='nearest', vmin=-1.5, vmax=6.5)
plt.colorbar()
ani = animation.FuncAnimation(fig, plot_nasch, frames=numiters, init_func=lambda : 1, interval=400, blit=False, repeat=False)
plt.show()

Optimize resizing picture on a button with PIL

self.image2Code:
from tkinter import *
from tkinter import font
from PIL import Image, ImageTk
class App(Tk):
def __init__(self):
Tk.__init__(self)
self.variables()
self.makeUI()
def variables(self):
self.buttonlist = []
self.font = font.Font(family = "Consolas", size = 12, weight = "bold")
def makeUI(self):
self.title("Changing font")
self.geometry("300x300")
self.minsize(200, 200)
self.maxsize(1000, 1000)
self.columnconfigure(0, weight = 1)
self.rowconfigure(0, weight = 1)
self.buttonlist.append(Button(self, height = 2, width = 4, font = self.font))
self.buttonlist[0].grid(row = 0, column = 0, sticky = W+E+S+N, padx = 2, pady = 2)
self.update()
self.image2 = Image.open("1.png")
self.image = ImageTk.PhotoImage(self.image2.resize((self.buttonlist[0].winfo_width(), self.buttonlist[0].winfo_height()), Image.ANTIALIAS))
self.buttonlist[0].configure(image = self.image)
self.buttonlist[0].bind("<Configure>", self.changeimage)
def changeimage(self, *args):
self.update()
#use smaller size
x = self.buttonlist[0].winfo_width()
y = self.buttonlist[0].winfo_height()
x = x if x < y else y
self.image = ImageTk.PhotoImage(self.image2.resize((x, x), Image.ANTIALIAS))
self.buttonlist[0].configure(image = self.image)
def main():
root = App()
root.mainloop()
if __name__ == "__main__":
main()
The problem:
The code works, the problem is that the program is slow on a quite powerful PC. It is making unnecessary calculations. My image is called "1.png".I don't know if I'm using the right approach.

Matplotlib Animation: updating radial view limit for polar plot

I'm trying to create an animated polar plot that, where the radial view limit increases/decreases to accommodate the radius. The yaxis updates just fine if I set polar=False, but it doesn't work correctly for a polar axis.
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def data_gen():
t = data_gen.t
cnt = 0
while cnt < 1000:
cnt+=1
t += 0.05
yield t, 1.1 + np.sin(2*np.pi*t) * np.exp(t/10.)
data_gen.t = 0
plt.rc ('grid', color='g', lw=1, ls='-')
plt.rc ('xtick', labelsize=15, color='b')
plt.rc ('ytick', labelsize=15, color='b')
fig = plt.figure(figsize=(8,8))
ax1 = fig.add_axes([.05, .90, .9, .08], polar=False, axisbg='#BFBFBF', xticks=[], yticks=[])
ax2 = fig.add_axes([.05, .05, .9, .8], polar=True, axisbg='k')
#ax = fig.add_axes([.1,.1,.8,.8], polar=False, axisbg='k')
line, = ax2.plot([], [], lw=2)
ax2.set_ylim(0, 2.2)
ax2.set_xlim(0, 140)
ax2.grid(1)
xdata, ydata = [], []
title = ax1.text (0.02, 0.5, '', fontsize=14, transform=ax1.transAxes)
def init():
line.set_data([], [])
title.set_text ('')
return line, title
def run(data):
# update the data
t,y = data
xdata.append(t)
ydata.append(y)
ymin, ymax = ax2.get_ylim()
if y >= ymax:
ax2.set_ylim (ymin, 2*ymax)
ax2.figure.canvas.draw()
title.set_text ("time = %.3f, y(t) = 1.1 + sin(2*pi*t) + exp(t/10) = %.3f" % (t, y))
line.set_data(xdata, ydata)
return line, title
ani = animation.FuncAnimation(fig, run, data_gen, init, blit=True, interval=100, repeat=False)
Actually, the view limit does adjust, but the tick labels stay the same. Inserting raw_input() after the canvas is redrawn reveals that everything is redrawn correctly, but then the tick labels revert back to what they were before. Stranger still, this doesn't occur until the update() function is called a second time and returns.
I didn't have this problem when I animated the plot the old way, by calling draw() repeatedly. But I'd rather do it the right way with the animation module, as the old way had performance problems (The above code block is only to demonstrate the problem, and isn't the actual program that I'm writing).
I should note that I'm still learning MPL, so I apologize if some of my terminology is wrong.
If you use blit, the background is saved in cache for fast draw, you can clear the cache when the axis range is changed, add ani._blit_cache.clear():
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
def data_gen():
t = data_gen.t
cnt = 0
while cnt < 1000:
cnt+=1
t += 0.05
yield t, 1.1 + np.sin(2*np.pi*t) * np.exp(t/10.)
data_gen.t = 0
plt.rc ('grid', color='g', lw=1, ls='-')
plt.rc ('xtick', labelsize=15, color='b')
plt.rc ('ytick', labelsize=15, color='b')
fig = plt.figure(figsize=(8,8))
ax1 = fig.add_axes([.05, .90, .9, .08], polar=False, axisbg='#BFBFBF', xticks=[], yticks=[])
ax2 = fig.add_axes([.05, .05, .9, .8], polar=True, axisbg='k')
#ax = fig.add_axes([.1,.1,.8,.8], polar=False, axisbg='k')
line, = ax2.plot([], [], lw=2)
ax2.set_ylim(0, 2.2)
ax2.set_xlim(0, 140)
ax2.grid(1)
xdata, ydata = [], []
title = ax1.text (0.02, 0.5, '', fontsize=14, transform=ax1.transAxes)
def init():
line.set_data([], [])
title.set_text ('')
return line, title
def run(data):
# update the data
t,y = data
xdata.append(t)
ydata.append(y)
ymin, ymax = ax2.get_ylim()
if y >= ymax:
ax2.set_ylim (ymin, 2*ymax)
ani._blit_cache.clear() # <- add to clear background from blit cache
title.set_text('') # <- eliminate text artifact in title
ax2.figure.canvas.draw()
title.set_text ("time = %.3f, y(t) = 1.1 + sin(2*pi*t) + exp(t/10) = %.3f" % (t, y))
line.set_data(xdata, ydata)
return line, title
ani = animation.FuncAnimation(fig, run, data_gen, init, blit=True, interval=100, repeat=False)

Animate like Google Finance charts in Matplotlib?

I just started toying around with Matplotlib's Animation capabilities in order to produce a Google Finance looking chart.
I combined two examples I found on the project website (Draggable rectangle exercise, api example code: date_demo.py) and tweaked them a bit to come up with the code listed at the bottom.
While it doesn't look too bad, I would like the top chart (master) update dynamically as the bottom chart (slave) selection is moved around, and not only when the bottom selection is released. How can I do this? I tried to move the self.rect.figure.canvas.draw() bit to the on_motion method, but it seems to interfere with the blit stuff as the bottom selection won't render properly.
So I would assume the solution would be to do the intelligent animation for the bottom chart, i.e., the blit-ing bit, while the top chart is just re-drawn altogether. The issue is that the only way I can redraw anything is through the re-drawing the whole canvas, and this would include the bottom chart. I did find the draw() method for matplotlib.axes, but I can't get it to work. As I said above, preferably I would like to just re-draw the top chart while the bottom one is blit-ed the clever way. Does anyone know how to do this?
Here is my code so far. Please excuse the code, it's a bit untidy.
import datetime
import numpy as np
import sys
import time
import wx
import matplotlib
from matplotlib.figure import Figure
import matplotlib.dates as mdates
import matplotlib.ticker as mtickers
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas
import matplotlib.patches as mpatches
class DraggableRectangle:
lock = None
def __init__(self, rect, master, xMin, xMax):
self.rect = rect
self.press = None
self.background = None
self.xMax = xMax
self.xMin = xMin
self.master = master
def connect(self):
self.cidpress = self.rect.figure.canvas.mpl_connect('button_press_event', self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect('button_release_event', self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect('motion_notify_event', self.on_motion)
def on_press(self, event):
if event.inaxes != self.rect.axes: return
if DraggableRectangle.lock is not None: return
contains, attrd = self.rect.contains(event)
if not contains: return
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata
DraggableRectangle.lock = self
canvas = self.rect.figure.canvas
axes = self.rect.axes
self.rect.set_animated(True)
canvas.draw()
self.background = canvas.copy_from_bbox(self.rect.axes.bbox)
axes.draw_artist(self.rect)
canvas.blit(axes.bbox)
def on_motion(self, event):
if DraggableRectangle.lock is not self: return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = 0
if x0+dx > self.xMax:
self.rect.set_x(self.xMax)
elif x0+dx < self.xMin:
self.rect.set_x(self.xMin)
else:
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)
canvas = self.rect.figure.canvas
axes = self.rect.axes
canvas.restore_region(self.background)
self.master.set_xlim(self.rect.get_x(), self.rect.get_x() + 92)
axes.draw_artist(self.rect)
canvas.blit(axes.bbox)
def on_release(self, event):
if DraggableRectangle.lock is not self: return
self.press = None
DraggableRectangle.lock = None
self.rect.set_animated(False)
self.background = None
self.rect.figure.canvas.draw()
def disconnect(self):
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)
class MplCanvasFrame(wx.Frame):
def __init__(self):
wx.Frame.__init__(self, None, wx.ID_ANY, title='First Chart', size=(800, 700))
datafile = matplotlib.get_example_data('goog.npy')
r = np.load(datafile).view(np.recarray)
datesFloat = matplotlib.dates.date2num(r.date)
figure = Figure()
xMaxDatetime = r.date[len(r.date)-1]
xMinDatetime = r.date[0]
xMaxFloat = datesFloat[len(datesFloat)-1]
xMinFloat = datesFloat[0]
yMin = min(r.adj_close) // 5 * 5
yMax = (1 + max(r.adj_close) // 5) * 5
master = figure.add_subplot(211)
master.plot(datesFloat, r.adj_close)
master.xaxis.set_minor_locator(mdates.MonthLocator())
master.xaxis.set_major_locator(mdates.MonthLocator(bymonth=(1,4,7,10)))
master.xaxis.set_major_formatter(mdates.DateFormatter('%b-%y'))
master.set_xlim(datesFloat[120], datesFloat[120]+92)
master.yaxis.set_minor_locator(mtickers.MultipleLocator(50))
master.yaxis.set_major_locator(mtickers.MultipleLocator(100))
master.set_ylim(yMin, yMax)
master.set_position([0.05,0.20,0.92,0.75])
master.xaxis.grid(True, which='minor')
master.yaxis.grid(True, which='minor')
slave = figure.add_subplot(212, yticks=[])
slave.plot(datesFloat, r.adj_close)
slave.xaxis.set_minor_locator(mdates.MonthLocator())
slave.xaxis.set_major_locator(mdates.YearLocator())
slave.xaxis.set_major_formatter(mdates.DateFormatter('%b-%y'))
slave.set_xlim(xMinDatetime, xMaxDatetime)
slave.set_ylim(yMin, yMax)
slave.set_position([0.05,0.05,0.92,0.10])
rectangle = mpatches.Rectangle((datesFloat[120], yMin), 92, yMax-yMin, facecolor='yellow', alpha = 0.4)
slave.add_patch(rectangle)
canvas = FigureCanvas(self, -1, figure)
drag = DraggableRectangle(rectangle, master, xMinFloat, xMaxFloat - 92)
drag.connect()
app = wx.PySimpleApp()
frame = MplCanvasFrame()
frame.Show(True)
app.MainLoop()
I had a chance to work on this this morning (we are having a 2nd blizzard for the last 3 days). You are right, if you try to redraw the entire figure in the on_motion, it messes up the animation of the yellow rectangle. The key is to also blit the line on the master sub plot.
Try this code out:
import datetime
import numpy as np
import sys
import time
import wx
import matplotlib
from matplotlib.figure import Figure
import matplotlib.dates as mdates
import matplotlib.ticker as mtickers
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas
import matplotlib.patches as mpatches
class DraggableRectangle:
lock = None
def __init__(self, rect, master, xMin, xMax):
self.rect = rect
self.press = None
self.slave_background = None
self.master_background = None
self.xMax = xMax
self.xMin = xMin
self.master = master
self.master_line, = self.master.get_lines()
def connect(self):
self.cidpress = self.rect.figure.canvas.mpl_connect('button_press_event', self.on_press)
self.cidrelease = self.rect.figure.canvas.mpl_connect('button_release_event', self.on_release)
self.cidmotion = self.rect.figure.canvas.mpl_connect('motion_notify_event', self.on_motion)
def on_press(self, event):
if event.inaxes != self.rect.axes: return
if DraggableRectangle.lock is not None: return
contains, attrd = self.rect.contains(event)
if not contains: return
x0, y0 = self.rect.xy
self.press = x0, y0, event.xdata, event.ydata
DraggableRectangle.lock = self
canvas = self.rect.figure.canvas
axes = self.rect.axes
# set up our animated elements
self.rect.set_animated(True)
self.master_line.set_animated(True)
self.master.xaxis.set_visible(False) #we are not animating this
canvas.draw()
# backgrounds for restoring on animation
self.slave_background = canvas.copy_from_bbox(self.rect.axes.bbox)
self.master_background = canvas.copy_from_bbox(self.master.axes.bbox)
axes.draw_artist(self.rect)
canvas.blit(axes.bbox)
def on_motion(self, event):
if DraggableRectangle.lock is not self: return
if event.inaxes != self.rect.axes: return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
dy = 0
if x0+dx > self.xMax:
self.rect.set_x(self.xMax)
elif x0+dx < self.xMin:
self.rect.set_x(self.xMin)
else:
self.rect.set_x(x0+dx)
self.rect.set_y(y0+dy)
canvas = self.rect.figure.canvas
axes = self.rect.axes
# restore backgrounds
canvas.restore_region(self.slave_background)
canvas.restore_region(self.master_background)
# set our limits for animated line
self.master.set_xlim(self.rect.get_x(), self.rect.get_x() + 92)
# draw yellow box
axes.draw_artist(self.rect)
canvas.blit(axes.bbox)
#draw line
self.master.axes.draw_artist(self.master_line)
canvas.blit(self.master.axes.bbox)
def on_release(self, event):
if DraggableRectangle.lock is not self: return
self.press = None
DraggableRectangle.lock = None
# unanimate rect and lines
self.rect.set_animated(False)
self.master_line.set_animated(False)
self.slave_background = None
self.master_background = None
# redraw whole figure
self.master.xaxis.set_visible(True)
self.rect.figure.canvas.draw()
def disconnect(self):
self.rect.figure.canvas.mpl_disconnect(self.cidpress)
self.rect.figure.canvas.mpl_disconnect(self.cidrelease)
self.rect.figure.canvas.mpl_disconnect(self.cidmotion)
class MplCanvasFrame(wx.Frame):
def __init__(self):
wx.Frame.__init__(self, None, wx.ID_ANY, title='First Chart', size=(800, 700))
datafile = matplotlib.get_example_data('goog.npy')
r = np.load(datafile).view(np.recarray)
datesFloat = matplotlib.dates.date2num(r.date)
figure = Figure()
xMaxDatetime = r.date[len(r.date)-1]
xMinDatetime = r.date[0]
xMaxFloat = datesFloat[len(datesFloat)-1]
xMinFloat = datesFloat[0]
yMin = min(r.adj_close) // 5 * 5
yMax = (1 + max(r.adj_close) // 5) * 5
master = figure.add_subplot(211)
master.plot(datesFloat, r.adj_close)
master.xaxis.set_minor_locator(mdates.MonthLocator())
master.xaxis.set_major_locator(mdates.MonthLocator(bymonth=(1,4,7,10)))
master.xaxis.set_major_formatter(mdates.DateFormatter('%b-%y'))
master.set_xlim(datesFloat[120], datesFloat[120]+92)
master.yaxis.set_minor_locator(mtickers.MultipleLocator(50))
master.yaxis.set_major_locator(mtickers.MultipleLocator(100))
master.set_ylim(yMin, yMax)
master.set_position([0.05,0.20,0.92,0.75])
master.xaxis.grid(True, which='minor')
master.yaxis.grid(True, which='minor')
slave = figure.add_subplot(212, yticks=[])
slave.plot(datesFloat, r.adj_close)
slave.xaxis.set_minor_locator(mdates.MonthLocator())
slave.xaxis.set_major_locator(mdates.YearLocator())
slave.xaxis.set_major_formatter(mdates.DateFormatter('%b-%y'))
slave.set_xlim(xMinDatetime, xMaxDatetime)
slave.set_ylim(yMin, yMax)
slave.set_position([0.05,0.05,0.92,0.10])
rectangle = mpatches.Rectangle((datesFloat[120], yMin), 92, yMax-yMin, facecolor='yellow', alpha = 0.4)
slave.add_patch(rectangle)
canvas = FigureCanvas(self, -1, figure)
drag = DraggableRectangle(rectangle, master, xMinFloat, xMaxFloat - 92)
drag.connect()
app = wx.PySimpleApp()
frame = MplCanvasFrame()
frame.Show(True)
app.MainLoop()

Resources