SQLite.Swift Expression() initialization for "not null" form? - sqlite.swift

Please note that this question ONLY relates to the popular SQLite.swift library, stephencelis/SQLite.swift
With SQLite.swift you can
let a = Expression<String>("a")
let b = Expression<String>("b")
and so on. But how do you
select a.x, a.y, ifnull(b.q, 'default text'), a.z
from a
left join b on blah
how do you make an expression for an inline sql ifnull clause?
(The doco mentions that Expression has an init(literal:) initializer - maybe it's relevant - but it's undocumented and has unusual binding arguments.)
Please note, I'm completely aware that you could make the value optional
let q = Expression<String?>("q")
and then just put in the default later;
I am asking how to express "ifnull(b.q, 'default text')" as an Expression (or, learn it is impossible) so that value will actually be used in the SQL expression.
Once again, this question relates only to the library /stephencelis/SQLite.swift

I dislike answering my own question,
but honestly the realistic answer here is:
nowadays you have to use GRDB like everyone else, github.com/groue/GRDB.swift
The older SQL-wrapper libraries (as magnificent, awesome, incredible as they were at the time) are honestly just
totally out of date now, technology-wise
not honestly maintained realistically any more
As of late 2017 GRDB is the only real possibility.

Maybe this is too late, but anyway. I've checked the source code, there is function
public func ??<V : Value>(optional: Expression<V?>, defaultValue: V) -> Expression<V> {
return "ifnull".wrap([optional, defaultValue])
}
So you have to make the value optional
row.get(Expression<Double?>("q")) ?? 0 //this will be equals ifnull(q, 0)

Related

Coping with misleading error messages of the Swift compiler (context dependence, type inference)

While the Swift compiler (Xcode 7.2) seems perfectly correct in diagnosing an error for some source text equivalent to the following, it took long to detect the actual error made. Reason: the programmer needs to look not at the text marked, but elsewhere, thus mislead, wondering why an optional string and a non-optional string can not be operands of ??...
struct Outer {
var text : String
}
var opt : String?
var context : Outer
context = opt ?? "abc"
Obviously, the last line should have had context.text as the variable to be assigned. This is diagnosed:
confusion2.swift:9:19: error: binary operator '??' cannot be applied\
to operands of type 'String?' and 'String'
context = opt ?? "abc"
~~~ ^ ~~~~~
The message is formally correct. (I am assuming that type checking the left hand side establishes an expected type (Outer) for the right hand side, and this, then, renders the expression as not working, type-wise.) Taken literally, though, the diagnosis is wrong, as is seen when fixing the left hand side: ?? can be applied to operands of type String? and String.
Now, if this is as good as it gets, currently, in terms of compiler messages, what are good coping strategies? Is remembering
Type inference!
Context!
…
a start? Is there a more systematical approach? A check list?
Update (I'm adding to the list as answers come in. Thanks!)
break statements apart, so as to have several lines checked separately (#vacawama)
Beware of optionals (such as values got from dictionaries), see testSwitchOpt below
Another one
enum T {
case Str(String)
case Integer(Int)
}
func testSwitchOpt(x : T?) -> Int {
switch x {
case .Integer(let r): return r
default: return 0
}
}
The compiler says
optandswitch.swift:8:15: error: enum case 'Integer' not found in type 'T?'
case .Integer(let r): return r
A fix is to write switch x! (or a more cautious let), so as to make type checking address the proper type, I guess.
I could, perhaps should, file some report at Apple, but the issue seems to represent a recurring subject—I have seen this with other compilers—and I was hoping for some general and re-usable hints, if you don't mind sharing them.
Swift's type inference system is great in general, but it can lead to very confusing to outright wrong error messages.
When you get one of these Swift error messages that makes no sense, a good strategy is to break the line into parts. This will allow Swift to return a better error message before it goes too far down the wrong path.
For example, in your case, if you introduce a temporary variable, the real problem becomes clear:
// context = opt ?? "abc"
let temp = opt ?? "abc"
context = temp
Now the error message reads:
Cannot assign value of type 'String' to type 'Outer'

What is the purpose of the `move ||` idiom?

In the Rust docs, there is a learning exercise about concurrency, with the following code:
let philosophers = vec![
Philosopher::new("Judith Butler"),
Philosopher::new("Gilles Deleuze"),
Philosopher::new("Karl Marx"),
Philosopher::new("Emma Goldman"),
Philosopher::new("Michel Foucault"),
];
let handles: Vec<_> = philosophers.into_iter().map(|p| {
thread::spawn(move || {
p.eat();
})
}).collect();
for h in handles {
h.join().unwrap();
}
They explain each of its pieces briefly, but they don't explain why there is what seems to be a move directive and a logical OR in the thread::spawn() call:
This closure needs an extra annotation, move, to indicate that the closure is going to take ownership of the values it’s capturing.
However, this 'annotation' doesn't look anything like the other annotations, such as type. What's really going on here, and why? (Searching for that snippet of code doesn't seem to point back to anywhere but the same docs and other blog posts about other types of moveing.)
A closure that captures by reference is of the form |ARGUMENTS| EXPRESSION.
A closure that captures by value is of the form move |ARGUMENTS| EXPRESSION.
move is a keyword that is only used in that location at present.
It is a little unfortunate that a closure accepting no arguments looks like the logical OR operator, but that’s the way it goes. There is no syntactic ambiguity from it.

Why does using Linq's .Select() return IEnumerable<dynamic> even though the type is clearly defined?

I'm using Dapper to return dynamic objects and sometimes mapping them manually. Everything's working fine, but I was wondering what the laws of casting were and why the following examples hold true.
(for these examples I used 'StringBuilder' as my known type, though it is usually something like 'Product')
Example1: Why does this return an IEnumerable<dynamic> even though 'makeStringBuilder' clearly returns a StringBuilder object?
Example2: Why does this build, but 'Example1' wouldn't if it was IEnumerable<StringBuilder>?
Example3: Same question as Example2?
private void test()
{
List<dynamic> dynamicObjects = {Some list of dynamic objects};
IEnumerable<dynamic> example1 = dynamicObjects.Select(s => makeStringBuilder(s));
IEnumerable<StringBuilder> example2 = dynamicObjects.Select(s => (StringBuilder)makeStringBuilder(s));
IEnumerable<StringBuilder> example3 = dynamicObjects.Select(s => makeStringBuilder(s)).Cast<StringBuilder>();
}
private StringBuilder makeStringBuilder(dynamic s)
{
return new StringBuilder(s);
}
With the above examples, is there a recommended way of handling this? and does casting like this hurt performance? Thanks!
When you use dynamic, even as a parameter, the entire expression is handled via dynamic binding and will result in being "dynamic" at compile time (since it's based on its run-time type). This is covered in 7.2.2 of the C# spec:
However, if an expression is a dynamic expression (i.e. has the type dynamic) this indicates that any binding that it participates in should be based on its run-time type (i.e. the actual type of the object it denotes at run-time) rather than the type it has at compile-time. The binding of such an operation is therefore deferred until the time where the operation is to be executed during the running of the program. This is referred to as dynamic binding.
In your case, using the cast will safely convert this to an IEnumerable<StringBuilder>, and should have very little impact on performance. The example2 version is very slightly more efficient than the example3 version, but both have very little overhead when used in this way.
While I can't speak very well to the "why", I think you should be able to write example1 as:
IEnumerable<StringBuilder> example1 = dynamicObjects.Select<dynamic, StringBuilder>(s => makeStringBuilder(s));
You need to tell the compiler what type the projection should take, though I'm sure someone else can clarify why it can't infer the correct type. But I believe by specifying the projection type, you can avoid having to actually cast, which should yield some performance benefit.

Code style = when to use comparision value first in 'if' statement

I have seen a few examples lately where if statements are written as follows:
if ( false === $testValue) {
//do something
}
as opposed to the more general:
if ($testValue === false) {
//do something
}
Clearly it is a style issue and it has no bearing on the result, but my question is can anyone say why anyone would use this style and where it comes from.
The code examples I have seen with this style have been from seriously good programmers so I dont think its a necessarily a bad style.
It's so that if you accidentally type = (assignment) instead of == (comparison), the compiler complains that the constant cannot be assigned to.
Compare:
if (false = $testValue) {
// does not compile, cannot assign to constant
}
to:
if ($testValue = false) {
// assigns false to $testValue, never evaluates to true
}
The former doesn't compile, the latter does and has a bug.
I used to see checks like this in C and C++:
if (null == x)
The reason for it was that mistyping = for == would make no sense to the compiler, because assignment to null or a constant would be an error.
In something like C++ (I'm not sure what language you're using there with the ===) if you have
if(x == 2), and you write it if(x=2) (so the value is assigned an not checked for equality) this doesn't cause a compiler error (most compilers today will warn you about it), but if you write if (2=x) instead of if(2==x) that will defintely produce an error.
It's to prevent assignment when comparison was intended.
I don't like this style myself but I see it a lot from our Indian developers so maybe it's being taught over there.
It's completely unnecessary if a '0 warnings, 0 errors' build policy was adhered to, and anyone who uses this style is not likely to provide clean building code.

What's so great about Func<> delegate?

Sorry if this is basic but I was trying to pick up on .Net 3.5.
Question: Is there anything great about Func<> and it's 5 overloads? From the looks of it, I can still create a similar delgate on my own say, MyFunc<> with the exact 5 overloads and even more.
eg: public delegate TResult MyFunc<TResult>() and a combo of various overloads...
The thought came up as I was trying to understand Func<> delegates and hit upon the following scenario:
Func<int,int> myDelegate = (y) => IsComposite(10);
This implies a delegate with one parameter of type int and a return type of type int. There are five variations (if you look at the overloads through intellisense). So I am guessing that we can have a delegate with no return type?
So am I justified in saying that Func<> is nothing great and just an example in the .Net framework that we can use and if needed, create custom "func<>" delegates to suit our own needs?
Thanks,
The greatness lies in establishing shared language for better communication.
Instead of defining your own delegate types for the same thing (delegate explosion), use the ones provided by the framework. Anyone reading your code instantly grasps what you are trying to accomplish.. minimizes the time to 'what is this piece of code actually doing?'
So as soon as I see a
Action = some method that just does something and returns no output
Comparison = some method that compares two objects of the same type and returns an int to indicate order
Converter = transforms Obj A into equivalent Obj B
EventHandler = response/handler to an event raised by some object given some input in the form of an event argument
Func = some method that takes some parameters, computes something and returns a result
Predicate = evaluate input object against some criteria and return pass/fail status as bool
I don't have to dig deeper than that unless it is my immediate area of concern. So if you feel the delegate you need fits one of these needs, use them before rolling your own.
Disclaimer: Personally I like this move by the language designers.
Counter-argument : Sometimes defining your delegate may help communicate intent better. e.g. System.Threading.ThreadStart over System.Action. So it’s a judgment call in the end.
The Func family of delegates (and their return-type-less cousins, Action) are not any greater than anything else you'd find in the .NET framework. They're just there for re-use so you don't have to redefine them. They have type parameters to keep things generic. E.g., a Func<T0,bool> is the same as a System.Predicate<T> delegate. They were originally designed for LINQ.
You should be able to just use the built-in Func delegate for any value-returning method that accepts up to 4 arguments instead of defining your own delegate for such a purpose unless you want the name to reflect your intention, which is cool.
Cases where you would absolutely need to define your delegate types include methods that accept more than 4 arguments, methods with out, ref, or params parameters, or recursive method signatures (e.g., delegate Foo Foo(Foo f)).
In addition to Marxidad's correct answer:
It's worth being aware of Func's related family, the Action delegates. Again, these are types overloaded by the number of type parameters, but declared to return void.
If you want to use Func/Action in a .NET 2.0 project but with a simple route to upgrading later on, you can cut and paste the declarations from my version comparison page. If you declare them in the System namespace then you'll be able to upgrade just by removing the declarations later - but then you won't be able to (easily) build the same code in .NET 3.5 without removing the declarations.
Decoupling dependencies and unholy tie-ups is one singular thing that makes it great. Everything else one can debate and claim to be doable in some home-grown way.
I've been refactoring slightly more complex system with an old and heavy lib and got blocked on not being able to break compile time dependency - because of the named delegate lurking on "the other side". All assembly loading and reflection didn't help - compiler would refuse to just cast a delegate() {...} to object and whatever you do to pacify it would fail on the other side.
Delegate type comparison which is structural at compile time turns nominal after that (loading, invoking). That may seem OK while you are thinking in terms of "my darling lib is going to be used forever and by everyone" but it doesn't scale to even slightly more complex systems. Fun<> templates bring a degree of structural equivalence back into the world of nominal typing . That's the aspect you can't achieve by rolling out your own.
Example - converting:
class Session (
public delegate string CleanBody(); // tying you up and you don't see it :-)
public static void Execute(string name, string q, CleanBody body) ...
to:
public static void Execute(string name, string q, Func<string> body)
Allows completely independent code to do reflection invocation like:
Type type = Type.GetType("Bla.Session, FooSessionDll", true);
MethodInfo methodInfo = type.GetMethod("Execute");
Func<string> d = delegate() { .....} // see Ma - no tie-ups :-)
Object [] params = { "foo", "bar", d};
methodInfo.Invoke("Trial Execution :-)", params);
Existing code doesn't notice the difference, new code doesn't get dependence - peace on Earth :-)
One thing I like about delegates is that they let me declare methods within methods like so, this is handy when you want to reuse a piece of code but you only need it within that method. Since the purpose here is to limit the scope as much as possible Func<> comes in handy.
For example:
string FormatName(string pFirstName, string pLastName) {
Func<string, string> MakeFirstUpper = (pText) => {
return pText.Substring(0,1).ToUpper() + pText.Substring(1);
};
return MakeFirstUpper(pFirstName) + " " + MakeFirstUpper(pLastName);
}
It's even easier and more handy when you can use inference, which you can if you create a helper function like so:
Func<T, TReturn> Lambda<T, TReturn>(Func<T, TReturn> pFunc) {
return pFunc;
}
Now I can rewrite my function without the Func<>:
string FormatName(string pFirstName, string pLastName) {
var MakeFirstUpper = Lambda((string pText) => {
return pText.Substring(0,1).ToUpper() + pText.Substring(1);
});
return MakeFirstUpper(pFirstName) + " " + MakeFirstUpper(pLastName);
}
Here's the code to test the method:
Console.WriteLine(FormatName("luis", "perez"));
Though it is an old thread I had to add that func<> and action<> also help us use covariance and contra variance.
http://msdn.microsoft.com/en-us/library/dd465122.aspx

Resources