In the Rust docs, there is a learning exercise about concurrency, with the following code:
let philosophers = vec![
Philosopher::new("Judith Butler"),
Philosopher::new("Gilles Deleuze"),
Philosopher::new("Karl Marx"),
Philosopher::new("Emma Goldman"),
Philosopher::new("Michel Foucault"),
];
let handles: Vec<_> = philosophers.into_iter().map(|p| {
thread::spawn(move || {
p.eat();
})
}).collect();
for h in handles {
h.join().unwrap();
}
They explain each of its pieces briefly, but they don't explain why there is what seems to be a move directive and a logical OR in the thread::spawn() call:
This closure needs an extra annotation, move, to indicate that the closure is going to take ownership of the values it’s capturing.
However, this 'annotation' doesn't look anything like the other annotations, such as type. What's really going on here, and why? (Searching for that snippet of code doesn't seem to point back to anywhere but the same docs and other blog posts about other types of moveing.)
A closure that captures by reference is of the form |ARGUMENTS| EXPRESSION.
A closure that captures by value is of the form move |ARGUMENTS| EXPRESSION.
move is a keyword that is only used in that location at present.
It is a little unfortunate that a closure accepting no arguments looks like the logical OR operator, but that’s the way it goes. There is no syntactic ambiguity from it.
Related
Is using a variable from outside an observable within an operator considered a (significantly) bad practice?
createObservableExample1(parameter1: string, obs$: Observable<string>): Observable<string> {
return obs$.pipe(
map( x => {
const returnValue = `${parameter1}, ${x}`;
return returnValue;
})
);
}
I understand you can do something like this:
createObservableExample2(parameter1: string, obs$: Observable<string>): Observable<string> {
return combineLatest([
of(parameter1),
obs$
]).pipe(
map( (x, y) => {
const returnValue = `${x}, ${y}`;
return returnValue;
})
);
}
But is it worth it?
Does this just come down to accessing variables from outside the scope of anonymous function? Would this force the context of the enclosing method to exist for longer than it should? I remember a code tool I used to use for C# complaining about something similar to this. I have found somewhat related topics by searching for, "anonymous functions and closures", but as of yet, nothing really discussing the scenario explained above.
I ask because I have been creating some relatively complex observables that have enormous operator chains, and constantly adding the needed variables, using combineLatest and of, from the parent scope can make the code even harder to follow.
When I teach Reactive programming to neophytes, I try to make them grasp : Do not break the reactivity by having uneccessary side effects :
no input that from a state (for example using a class or instance property
no storing outside value.
There is none of these red flags in your example. Your function is pure & idempotent with both implementation, go with what ever you like and if possible be consistant within your code base !
// reflect/value.go
func ValueOf(i interface{}) Value {
if i == nil {
return Value{}
}
// TODO: Maybe allow contents of a Value to live on the stack.
// For now we make the contents always escape to the heap. It
// makes life easier in a few places (see chanrecv/mapassign
// comment below).
escapes(i)
The code above is the source code of Value.go in golang, and the comment above the escapes(i) shows that each time we call the ValueOf function, the i will escape to the heap, that's why? Namely, how to explain the It makes life easier in a few places?
I am still learning go, so I can't describe more, that's why a community wiki answer. But here's what excerpted note says (note above the chanrecv function):
Note: some of the noescape annotations below are technically a lie,
but safe in the context of this package. Functions like chansend
and mapassign don't escape the referent, but may escape anything
the referent points to (they do shallow copies of the referent).
It is safe in this package because the referent may only point
to something a Value may point to, and that is always in the heap
(due to the escapes() call in ValueOf).
Also see:
// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that
// the compiler cannot follow.
func escapes(x interface{}) {
if dummy.b {
dummy.x = x
}
}
var dummy struct {
b bool
x interface{}
}
I hope, this will be helpful.
In the Lua language, I am able to define functions in a table with something such as
table = { myfunction = function(x) return x end }
I wondered if I can created methods this way, instead of having to do it like
function table:mymethod() ... end
I am fairly sure it is possible to add methods this way, but I am unsure of the proper name of this technique, and I cannot find it looking for "lua" and "methods" or such.
My intention is to pass a table to a function such as myfunction({data= stuff, name = returnedName, ?method?init() = stuff}).
Unfortunately I have tried several combinations with the colon method declaration but none of them is valid syntax.
So...anyone here happens to know?
Sure: table:method() is just syntactic sugar for table.method(self), but you have to take care of the self argument. If you do
tab={f=function(x)return x end }
then tab:f(x) won't work, as this actually is tab.f(tab,x) and thus will return tab instead of x.
You might take a look on the lua users wiki on object orientation or PiL chapter 16.
Sorry if this is basic but I was trying to pick up on .Net 3.5.
Question: Is there anything great about Func<> and it's 5 overloads? From the looks of it, I can still create a similar delgate on my own say, MyFunc<> with the exact 5 overloads and even more.
eg: public delegate TResult MyFunc<TResult>() and a combo of various overloads...
The thought came up as I was trying to understand Func<> delegates and hit upon the following scenario:
Func<int,int> myDelegate = (y) => IsComposite(10);
This implies a delegate with one parameter of type int and a return type of type int. There are five variations (if you look at the overloads through intellisense). So I am guessing that we can have a delegate with no return type?
So am I justified in saying that Func<> is nothing great and just an example in the .Net framework that we can use and if needed, create custom "func<>" delegates to suit our own needs?
Thanks,
The greatness lies in establishing shared language for better communication.
Instead of defining your own delegate types for the same thing (delegate explosion), use the ones provided by the framework. Anyone reading your code instantly grasps what you are trying to accomplish.. minimizes the time to 'what is this piece of code actually doing?'
So as soon as I see a
Action = some method that just does something and returns no output
Comparison = some method that compares two objects of the same type and returns an int to indicate order
Converter = transforms Obj A into equivalent Obj B
EventHandler = response/handler to an event raised by some object given some input in the form of an event argument
Func = some method that takes some parameters, computes something and returns a result
Predicate = evaluate input object against some criteria and return pass/fail status as bool
I don't have to dig deeper than that unless it is my immediate area of concern. So if you feel the delegate you need fits one of these needs, use them before rolling your own.
Disclaimer: Personally I like this move by the language designers.
Counter-argument : Sometimes defining your delegate may help communicate intent better. e.g. System.Threading.ThreadStart over System.Action. So it’s a judgment call in the end.
The Func family of delegates (and their return-type-less cousins, Action) are not any greater than anything else you'd find in the .NET framework. They're just there for re-use so you don't have to redefine them. They have type parameters to keep things generic. E.g., a Func<T0,bool> is the same as a System.Predicate<T> delegate. They were originally designed for LINQ.
You should be able to just use the built-in Func delegate for any value-returning method that accepts up to 4 arguments instead of defining your own delegate for such a purpose unless you want the name to reflect your intention, which is cool.
Cases where you would absolutely need to define your delegate types include methods that accept more than 4 arguments, methods with out, ref, or params parameters, or recursive method signatures (e.g., delegate Foo Foo(Foo f)).
In addition to Marxidad's correct answer:
It's worth being aware of Func's related family, the Action delegates. Again, these are types overloaded by the number of type parameters, but declared to return void.
If you want to use Func/Action in a .NET 2.0 project but with a simple route to upgrading later on, you can cut and paste the declarations from my version comparison page. If you declare them in the System namespace then you'll be able to upgrade just by removing the declarations later - but then you won't be able to (easily) build the same code in .NET 3.5 without removing the declarations.
Decoupling dependencies and unholy tie-ups is one singular thing that makes it great. Everything else one can debate and claim to be doable in some home-grown way.
I've been refactoring slightly more complex system with an old and heavy lib and got blocked on not being able to break compile time dependency - because of the named delegate lurking on "the other side". All assembly loading and reflection didn't help - compiler would refuse to just cast a delegate() {...} to object and whatever you do to pacify it would fail on the other side.
Delegate type comparison which is structural at compile time turns nominal after that (loading, invoking). That may seem OK while you are thinking in terms of "my darling lib is going to be used forever and by everyone" but it doesn't scale to even slightly more complex systems. Fun<> templates bring a degree of structural equivalence back into the world of nominal typing . That's the aspect you can't achieve by rolling out your own.
Example - converting:
class Session (
public delegate string CleanBody(); // tying you up and you don't see it :-)
public static void Execute(string name, string q, CleanBody body) ...
to:
public static void Execute(string name, string q, Func<string> body)
Allows completely independent code to do reflection invocation like:
Type type = Type.GetType("Bla.Session, FooSessionDll", true);
MethodInfo methodInfo = type.GetMethod("Execute");
Func<string> d = delegate() { .....} // see Ma - no tie-ups :-)
Object [] params = { "foo", "bar", d};
methodInfo.Invoke("Trial Execution :-)", params);
Existing code doesn't notice the difference, new code doesn't get dependence - peace on Earth :-)
One thing I like about delegates is that they let me declare methods within methods like so, this is handy when you want to reuse a piece of code but you only need it within that method. Since the purpose here is to limit the scope as much as possible Func<> comes in handy.
For example:
string FormatName(string pFirstName, string pLastName) {
Func<string, string> MakeFirstUpper = (pText) => {
return pText.Substring(0,1).ToUpper() + pText.Substring(1);
};
return MakeFirstUpper(pFirstName) + " " + MakeFirstUpper(pLastName);
}
It's even easier and more handy when you can use inference, which you can if you create a helper function like so:
Func<T, TReturn> Lambda<T, TReturn>(Func<T, TReturn> pFunc) {
return pFunc;
}
Now I can rewrite my function without the Func<>:
string FormatName(string pFirstName, string pLastName) {
var MakeFirstUpper = Lambda((string pText) => {
return pText.Substring(0,1).ToUpper() + pText.Substring(1);
});
return MakeFirstUpper(pFirstName) + " " + MakeFirstUpper(pLastName);
}
Here's the code to test the method:
Console.WriteLine(FormatName("luis", "perez"));
Though it is an old thread I had to add that func<> and action<> also help us use covariance and contra variance.
http://msdn.microsoft.com/en-us/library/dd465122.aspx
I've been doing a massive code review and one pattern I notice all over the place is this:
public bool MethodName()
{
bool returnValue = false;
if (expression)
{
// do something
returnValue = MethodCall();
}
else
{
// do something else
returnValue = Expression;
}
return returnValue;
}
This is not how I would have done this I would have just returned the value when I knew what it was. which of these two patterns is more correct?
I stress that the logic always seems to be structured such that the return value is assigned in one plave only and no code is executed after it's assigned.
A lot of people recommend having only one exit point from your methods. The pattern you describe above follows that recommendation.
The main gist of that recommendation is that if ou have to cleanup some memory or state before returning from the method, it's better to have that code in one place only. having multiple exit points leads to either duplication of cleanup code or potential problems due to missing cleanup code at one or more of the exit points.
Of course, if your method is couple of lines long, or doesn't need any cleanup, you could have multiple returns.
I would have used ternary, to reduce control structures...
return expression ? MethodCall() : Expression;
I suspect I will be in the minority but I like the style presented in the example. It is easy to add a log statement and set a breakpoint, IMO. Plus, when used in a consistent way, it seems easier to "pattern match" than having multiple returns.
I'm not sure there is a "correct" answer on this, however.
Some learning institutes and books advocate the single return practice.
Whether it's better or not is subjective.
That looks like a part of a bad OOP design. Perhaps it should be refactored on the higher level than inside of a single method.
Otherwise, I prefer using a ternary operator, like this:
return expression ? MethodCall() : Expression;
It is shorter and more readable.
Return from a method right away in any of these situations:
You've found a boundary condition and need to return a unique or sentinel value: if (node.next = null) return NO_VALUE_FOUND;
A required value/state is false, so the rest of the method does not apply (aka a guard clause). E.g.: if (listeners == null) return null;
The method's purpose is to find and return a specific value, e.g.: if (nodes[i].value == searchValue) return i;
You're in a clause which returns a unique value from the method not used elsewhere in the method: if (userNameFromDb.equals(SUPER_USER)) return getSuperUserAccount();
Otherwise, it is useful to have only one return statement so that it's easier to add debug logging, resource cleanup and follow the logic. I try to handle all the above 4 cases first, if they apply, then declare a variable named result(s) as late as possible and assign values to that as needed.
They both accomplish the same task. Some say that a method should only have one entry and one exit point.
I use this, too. The idea is that resources can be freed in the normal flow of the program. If you jump out of a method at 20 different places, and you need to call cleanUp() before, you'll have to add yet another cleanup method 20 times (or refactor everything)
I guess that the coder has taken the design of defining an object toReturn at the top of the method (e.g., List<Foo> toReturn = new ArrayList<Foo>();) and then populating it during the method call, and somehow decided to apply it to a boolean return type, which is odd.
Could also be a side effect of a coding standard that states that you can't return in the middle of a method body, only at the end.
Even if no code is executed after the return value is assigned now it does not mean that some code will not have to be added later.
It's not the smallest piece of code which could be used but it is very refactoring-friendly.
Delphi forces this pattern by automatically creating a variable called "Result" which will be of the function's return type. Whatever "Result" is when the function exits, is your return value. So there's no "return" keyword at all.
function MethodName : boolean;
begin
Result := False;
if Expression then begin
//do something
Result := MethodCall;
end
else begin
//do something else
Result := Expression;
end;
//possibly more code
end;
The pattern used is verbose - but it's also easier to debug if you want to know the return value without opening the Registers window and checking EAX.