How the instructions and data are organised in a MicroBlaze MCS? - vhdl

I'm actually studying into the MicroBlaze micro controller system that I've implemented in my FPGA. But I want to understand how is working this MCU. Let's consider this block diagram :
MicroBlaze MCS block diagram
We can see that the processor is connect though 2 bus of 32 bits into a BRAM module. One of these bus is the ILMB (Instruction Local Memory Bus) and the other is DLMB (Data Local Memory Bus). We can see that both are connect to different port of the BRAM Module. So there is my question : In an Harvard Architecture, the program instructions and the random access memory is not supposed to be separated ? When we generate the system with the Xilinx IP Core Generator, the memory size that we put in is the size for the program instructions, the RAM or both ?
Memory size?
I've searched into the define in the xparameters.h header file to find the adress in memory of the ILMB and the DLMB and I've found that both are the same adress range.
#define XPAR_DLMB_CNTLR_BASEADDR 0x00000000
#define XPAR_DLMB_CNTLR_HIGHADDR 0x00003FFF
#define XPAR_ILMB_CNTLR_BASEADDR 0x00000000
#define XPAR_ILMB_CNTLR_HIGHADDR 0x00003FFF
The fact that both Instruction and Data are referred at the same adress confused me. Can someone tell me where I'm wrong ?

Both ILMB and DLMB buses in this case are sharing the same physical memory space. The same applies to the memory size parameter. By default Mircoblaze system is configured to have shared data and instruction memory space.
But the fact there are 2 separate busses allows you to configure your system to have data and instructions residing in totally different address spaces (or physical devices). For example, ILMB can be configured to address on a ROM memory and data can access completely different hardware block of RAM memory.
Microblaze is highly configurable CPU, and separate memory busses is one of these configuration points that needs to be configured in very rare cases. Most of the time these share the same address space of the BRAM memory.

Related

How does the address translation between Main Memory and Disk storage work?

This question comes up when I learn about virtual memory and memory management.
The following describes what I understand so far:
The memory hierarchy, which benefits from locality principle, briefly includes (from top to bottom):
register
cache (SRAM)
main memory (DRAM)
disk storage
A page table provides the address translation from virtual address to physical address
The virtual memory provides an abstraction for physical memory
Page(Frame) is the basic unit when memory management unit (MMU) manipulates memory between main memory and disk.
A process can only understand the addresses inside the virtual address space.
Each process has its own virtual address space.
Each process has its own page table, and all page tables are maintained by the kernel.
a physical address describes a location inside main memory
Translation Lookaside Buffer (TLB) is introduced as a cache-version page table.
Cache stores a tag field for each cache line to determine its mapping to main memory
Cache line is the basic unit when MMU manipulates memory between main memory and cache.
In each cache line, it stores a tag field and a valid bit to determine what range of physical addresses (e.g. what part of main memory) resides in the cache line.
After tranlsating virtual address into physical address with TLB or page table, MMU compares the physical address with cache line tag field, and finds the desired memory content (assuming that cache hits).
I believe there's an address translation mechanism between the main memory and the disk for 2 reasons:
The main memory is the locality principle result for the disk.
To reduce main memory miss rate, the main memory applies the full associative placement policy.
However, I only find few material which possiblely relates to the mechanism.
wiki: frame table data says:
Frame table data
The simplest page table systems often maintain a frame table and a page table. The frame table holds information about which frames are mapped.
and wiki: LBA says:
Logical block addressing (LBA) is a common scheme used for specifying the location of blocks of data stored on computer storage devices, generally secondary storage systems such as hard disk drives.
So I guess there's a frame table to store the address translation between physical address and LBA, and MMU would refer to the frame table when page fault occurs.
Please help to point out how does the address translation between Main Memory and Disk storage work.
Thanks for help!
Hard-disk addressing and main memory addressing is done much differently. The CPU doesn't support hard-disk addressing by default. What modern CPUs support is PCI devices that can present an interface to hard-disks like NVME or SATA.
PCI devices have registers that are memory mapped in RAM. The position of these registers is specified in the MCFG which is an ACPI table. ACPI is a convention to represent hardware for software (the os) to be able to determine what is present on the motherboard that it needs to drive. ACPI is also a power management convention which is required for software to even shutdown the computer.
With that said, you can take example on Linux and how it does things to understand how a modern os does to make the link between pages on the hard-disk and the pages in main memory. On the swap management chapter of the kernel.org documentation (https://www.kernel.org/doc/gorman/html/understand/understand014.html), you can read the following:
11.2 Mapping Page Table Entries to Swap Entries
When a page is swapped out, Linux uses the corresponding PTE to store enough information to locate the page on disk again. Obviously a PTE is not large enough in itself to store precisely where on disk the page is located, but it is more than enough to store an index into the swap_info array and an offset within the swap_map and this is precisely what Linux does.
Each PTE, regardless of architecture, is large enough to store a swp_entry_t which is declared as follows in <linux/shmem_fs.h>
16 typedef struct {
17 unsigned long val;
18 } swp_entry_t;
Two macros are provided for the translation of PTEs to swap entries and vice versa. They are pte_to_swp_entry() and swp_entry_to_pte() respectively.
You should probably read the link above along with one of my answers on cs.stackexchange.com: https://cs.stackexchange.com/questions/142525/data-transfer-between-cpu-ram-and-secondary-storage/142553#142553. This will probably provide a fair understanding of what is going on.
Everything is PCI today. You can think of all graphics cards, Intel HD Audio, the AHCI for SATA, the xHCI to drive USB or network cards. That pretty much sums what a current modern computer supports which is audio, USB, SATA, network and graphics. Understanding PCI is thus the key to understand how low level drivers work. The higher level implementation detail is unimportant and varies between os.

Address in Program Counter Register

We know that the Program Counter contains the address of the next instruction to be executed. I am trying to understand which address this is - logical (CPU) or physical (RAM).
The address is virtual, i.e. it contains the address the CPU sees at that moment. That is true in most PCs and architectures that contain an MMU. In a microcontroller (e.g.: Arduino CPU, STM32 etc), program counter will always contain physical addresses.
On all the architectures I know, it's a logical (virtual) address. That's really the only way that's useful. You want page translation to apply to instruction fetches just like data accesses, so that all the features of paging can be used for code as well as data. And for architectures that can do PC-relative data addressing, you want virtual addresses there too - since all data instructions are subject to page translation, you can't really do anything useful with a physical address.
(Just to acknowledge dirac3000's point - if the machine doesn't have an MMU or it's disabled, like x86 in real mode, then all addresses are physical and the distinction between "logical" and "physical" doesn't exist, so the question becomes moot.)

Difference between physical/logical/virtual memory address

I am a little confused about the terms physical/logical/virtual addresses in an Operating System(I use Linux- open SUSE)
Here is what I understand:
Physical Address- When the processor is in system mode, the address used by the processor is physical address.
Logical Address- When the processor is in user mode, the address used is the logical address. these are anyways mapped to some physical address by adding a base register with the offset value.It in a way provides a sort of memory protection.
I have come across discussion that virtual and logical addresses/address space are the same. Is it true?
Any help is deeply appreciated.
My answer is true for Intel CPUs running on a modern Linux system, and I am speaking about user-level processes, not kernel code. Still, I think it'll give you some insight enough to think about the other possibilities
Address Types
Regarding question 3:
I have come across discussion that virtual and logical
addresses/address space are the same. Is it true?
As far as I know they are the same, at least in modern OS's running on top of Intel processors.
Let me try to define two notions before I explain more:
Physical Address: The address of where something is physically located in the RAM chip.
Logical/Virtual Address: The address that your program uses to reach its things. It's typically converted to a physical address later by a hardware chip (mostly, not even the CPU is aware really of this conversion).
Virtual/Logical Address
The virtual address is well, a virtual address, the OS along with a hardware circuit called the MMU (Memory Management Unit) delude your program that it's running alone in the system, it's got the whole address space(having 32-bits system means your program will think it has 4 GBs of RAM; roughly speaking).
Obviously, if you have more than one program running at the time (you always do, GUI, Init process, Shell, clock app, calendar, whatever), this won't work.
What will happen is that the OS will put most of your program memory in the hard disk, the parts it uses the most will be present in the RAM, but hey, that doesn't mean they'll have the address you and your program know.
Example: Your process might have a variable named (counter) that's given the virtual address 0xff (imaginably...) and another variable named (oftenNotUsed) that's given the virtual address (0xaa).
If you read the assembly of your compiled code after all linking's happened, you'll be accessing them using those addresses but well, the (oftenNotUsed) variable won't be really there in RAM at 0xaa, it'll be in the hard disk because the process is not using it.
Moreover, the variable (counter) probably won't be physically at (0xff), it'll be somewhere else in RAM, when your CPU tries to fetch what's in 0xff, the MMU and a part of the OS, will do a mapping and get that variable from where it's really available in the RAM, the CPU won't even notice it wasn't in 0xff.
Now what happens if your program asks for the (oftenNotUsed) variable? The MMU+OS will notice this 'miss' and will fetch it for the CPU from the Harddisk into RAM then hand it over to the CPU as if it were in the address (0xaa); this fetching means some data that was present in RAM will be sent back to the Harddisk.
Now imagine this running for every process in your system. Every process thinks they have 4GB of RAMs, no one actually have that but everything works because everyone has some parts of their program available physically in the RAM but most of the program resides in the HardDisk. Don't confuse this part of the program memory being put in HD with the program data you can access through file operations.
Summary
Virtual address: The address you use in your programs, the address that your CPU use to fetch data, is not real and gets translated via MMU to some physical address; everyone has one and its size depends on your system(Linux running 32-bit has 4GB address space)
Physical address: The address you'll never reach if you're running on top of an OS. It's where your data, regardless of its virtual address, resides in RAM. This will change if your data is sent back and forth to the hard disk to accommodate more space for other processes.
All of what I have mentioned above, although it's a simplified version of the whole concept, is what's called the memory management part of the the computer system.
Consequences of this system
Processes cannot access each other memory, everyone has their separate virtual addresses and every process gets a different translation to different areas even though sometimes you may look and find that two processes try to access the same virtual address.
This system works well as a caching system, you typically don't use the whole 4GB you have available, so why waste that? let others share it and let them use it too; when your process needs more, the OS will fetch your data from the HD and replace other process' data, at an expense of course.
Physical Address- When the processor is in system mode, the address used by the processor is physical address.
Not necessarily true. It depends on the particular CPU. On x86 CPUs, once you've enabled page translation, all code ceases to operate with physical addresses or addresses trivially convertible into physical addresses (except, SMM, AFAIK, but that's not important here).
Logical Address- When the processor is in user mode, the address used is the logical address. these are anyways mapped to some physical address by adding a base register with the offset value.
Logical addresses do not necessarily apply to the user mode exclusively. On x86 CPUs they exist in the kernel mode as well.
I have come across discussion that virtual and logical addresses/address space are the same. Is it true?
It depends on the particular CPU. x86 CPUs can be configured in such a way that segments aren't used explicitly. They are used implicitly and their bases are always 0 (except for thread-local-storage segments). What remains when you drop the segment selector from a logical address is a 32-bit (or 64-bit) offset whose value coincides with the 32-bit (or 64-bit) virtual address. In this simplified set-up you may consider the two to be the same or that logical addresses don't exist. It's not true, but for most practical purposes, good enough of an approximation.
I am referring to below answer base on intel x86 CPU
Difference Between Logical to Virtual Address
Whenever your program is under execution CPU generates logical address for instructions which contains (16 bit Segment Selector and 32 bit offset ).Basically Virtual(Linear address) is generated using logical address fields.
Segment selector is 16 bit field out of which first 13bit is index (Which is a pointer to the segment descriptor resides in GDT,described below) , 1 bit TI field ( TI = 1, Refer LDT , TI=0 Refer GDT )
Now Segment Selector OR say segment identifier refers to Code Segment OR Data Segment OR Stack Segment etc. Linux contains one GDT/LDT (Global/Local Descriptor Table) Which contains 8 byte descriptor of each segments and holds the base (virtual) address of the segment.
So for for each logical address, virtual address is calculated using below steps.
1) Examines the TI field of the Segment Selector to determine which Descriptor
Table stores the Segment Descriptor. This field indicates that the Descriptor is
either in the GDT (in which case the segmentation unit gets the base linear
address of the GDT from the gdtr register) or in the active LDT (in which case the
segmentation unit gets the base linear address of that LDT from the ldtr register).
2) Computes the address of the Segment Descriptor from the index field of the Segment
Selector. The index field is multiplied by 8 (the size of a Segment Descriptor),
and the result is added to the content of the gdtr or ldtr register.
3) Adds the offset of the logical address to the Base field of the Segment Descriptor,
thus obtaining the linear(Virtual) address.
Now it is the job of Pagging unit to translate physical address from virtual address.
Refer : Understanding the linux Kernel , Chapter 2 Memory Addressing
User virtual addresses
These are the regular addresses seen by user-space programs. User addresses are either 32 or 64 bits in length, depending on the underlying hardware architecture, and each process has its own virtual address space.
Physical addresses
The addresses used between the processor and the system's memory. Physical addresses are 32- or 64-bit quantities; even 32-bit systems can use 64-bit physical addresses in some situations.
Bus addresses
The addresses used between peripheral buses and memory. Often they are the same as the physical addresses used by the processor, but that is not necessarily the case. Bus addresses are highly architecture dependent, of course.
Kernel logical addresses
These make up the normal address space of the kernel. These addresses map most or all of main memory, and are often treated as if they were physical addresses. On most architectures, logical addresses and their associated physical addresses differ only by a constant offset. Logical addresses use the hardware's native pointer size, and thus may be unable to address all of physical memory on heavily equipped 32-bit systems. Logical addresses are usually stored in variables of type unsigned long or void *. Memory returned from kmalloc has a logical address.
Kernel virtual addresses
These differ from logical addresses in that they do not necessarily have a direct mapping to physical addresses. All logical addresses are kernel virtual addresses; memory allocated by vmalloc also has a virtual address (but no direct physical mapping). The function kmap returns virtual addresses. Virtual addresses are usually stored in pointer variables.
If you have a logical address, the macro __pa() (defined in ) will return its associated physical address. Physical addresses can be mapped back to logical addresses with __va(), but only for low-memory pages.
Reference.
Normally every address issued (for x86 architecture) is a logical address which is translated to a linear address via the segment tables. After the translation into linear address, it is then translated to physical address via page table.
A nice article explaining the same in depth:
http://duartes.org/gustavo/blog/post/memory-translation-and-segmentation/
Physical Address is the address that is seen by the memory unit, i.e., one loaded into memory address register.
Logical Address is the address that is generated by the CPU.
The user program can never see the real physical address.Memory mapping unit converts the logical address to physical address.
Logical address generated by user process must be mapped to physical memory before they are used.
Logical memory is relative to the respective program i.e (Start point of program + offset)
Virtual memory uses a page table that maps to ram and disk. In this way each process can promise more memory for each individual process.
In the Usermode or UserSpace all the addresses seen by program are Virtual addresses.
When in kernel mode addresses seen by kernel are still virtual but termed as logical as they are equal to physical + pageoffset .
Physical addresses are the ones which are seen by RAM .
With Virtual memory every address in program goes through page tables.
when u write a small program eg:
int a=10;
int main()
{
printf("%d",a);
}
compile: >gcc -c fname.c
>ls
fname.o //fname.o is generated
>readelf -a fname.o >readelf_obj.txt
/readelf is a command to understand the object files and executabe file which will be in 0s and 1s. output is written in readelf_onj.txt file/
`>vim readelf_obj.txt`
/* under "section header" you will see .data .text .rodata sections of your object file. every starting or the base address is started from 0000 and grows to the respective size till it reach the size under the heading "size"----> these are the logical addresses.*/
>gcc fname.c
>ls
a.out //your executabe
>readelf -a a.out>readelf_exe.txt
>vim readelf_exe.txt
/* here the base address of all the sections are not zero. it will start from particular address and end up to the particular address. The linker will give the continuous adresses to all the sections (observe in the readelf_exe.txt file. observe base address and size of each section. They start continuously) so only the base addresses are different.---> this is called the virtual address space.*/
Physical address-> the memory ll have the physical address. when your executable file is loaded into memory it ll have physical address. Actually the virtual adresses are mapped to physical addresses for the execution.

Difference between Kernel Virtual Address and Kernel Logical Address?

I am not able to exactly difference between kernel logical address and virtual address. In Linux device driver book it says that all logical address are kernel virtual address, and virtual address doesn't have any linear mapping. But logically wise when we say it is logical and when we say virtual and in which situation we use these two ?
The Linux kernel maps most of the virtual address space that belongs to the kernel to perform 1:1 mapping with an offset of the first part of physical memory. (slightly less then for 1Gb for 32bit x86, can be different for other processors or configurations). For example, for kernel code on x86 address 0xc00000001 is mapped to physical address 0x1.
This is called logical mapping - a 1:1 mapping (with an offset) that allows the kernel to access most of the physical memory of the machine.
But this is not enough - sometime we have more then 1Gb physical memory on a 32bit machine, sometime we want to reference non contiguous physical memory blocks as contiguous to make thing simple, sometime we want to map memory mapped IO regions which are not RAM.
For this, the kernel keeps a region at the top of its virtual address space where it does a "random" page to page mapping. The mapping there do not follow the 1:1 pattern of the logical mapping area. This is what we call the virtual mapping.
It is important to add that on many platforms (x86 is an example), both the logical and virtual mapping are done using the same hardware mechanism (TLB controlling virtual memory). In many cases, the "logical mapping" is actually done using virtual memory facility of the processor, so this can be a little confusing. The difference therefore is the pattern according to which the mapping is done: 1:1 for logical, something random for virtual.
Basically there are 3 kinds of addressing, namely
Logical Addressing : Address is formed by base and offset. This is nothing but segmented addressing, where the address (or offset) in the program is always used with the base value in the segment descriptor
Linear Addressing : Also called virtual address. Here adresses are contigous, but the physical address are not. Paging is used to implement this.
Physical addressing : The actual address on the Main Memory!
Now, in linux, Kernel memory (in address space) is beyond 3 GB ( 3GB to 4GB), i.e. 0xc000000..The addresses used by Kernel are not Physical addresses. To map the virtual address it uses PAGE_OFFSET. Care must be taken that no page translation is involved. i.e. these addresses are contiguous in nature. However there is a limit to this, i.e. 896 MB on x86. Beyond which paging is used for translation. When you use vmalloc, these addresses are returned to access the allocated memory.
In short, when someone refers to Virtual Memory in context of User Space, then it is through Paging. If Kernel Virtual Memory is mentioned then it is either PAGE_OFFSETed or vmalloced address.
(Reference - Understanding Linux Kernel - 2.6 based )
Shash
Kernel logical addresses are mappings accessible to kernel code through normal CPU memory access functions. On 32-bit systems, only 4GB of kernel logical address space exists, even if more physical memory than that is in use. Logical address space backed by physical memory can be allocated with kmalloc.
Virtual addresses do not necessarily have corresponding logical addresses. You can allocate physical memory with vmalloc and get back a virtual address that has no corresponding logical address (on 32-bit systems with PAE, for example). You can then use kmap to assign a logical address to that virtual address.
Simply speaking, virtual address would include "high memory", which doesn't do the 1:1 mapping for the physical address,if your RAM size is more than the address range of kernel(typically,For 1G/3G in X86,your RAM is 3G but your kernel addressing range is 1G) and also the address return from kmap() and vmalloc(), which requires the kernel to establish page table for the memory mapping. since logic address is always memory mapped by the kernel(1:1 mapping), you don't need to explicitly call kernel API,like set_pte to set up the page table entry for the particular page.
so virtual address can't be logic address all the time.

What are the different areas of Memory & Disk?

I'm neither sure about if this is a right place to ask nor sure about how to put my query.
Let me put it this way:
Main Memory starting at 0x00000 to 0xFFFFF.
Diskspace starting at 0x00000000 to 0xFFFFFFFF.
But what we'll be able to access will not be from 0th byte till last byte right?
On hardisk I guess at the 0th byte we have MBR. & at someplace we have Filesystem (we are able to acess only this). What else?
Similarly with the Main memory. We have some Kernel Memory & User Memory(in which each processes live). What else?
My question is what are all the regions from 0th byte till the last byte? I don't know what to search for or where to find such information? If any one can post some links, that would be great.
EDIT:
I'm using x86 32Bit on Windows. Actually I was reading a book on Computer security where author mentions that a malware can either live on the disk or in the memory.(which is very true). But when we say computer is infected that doesn't mean only files (which are part of filesystem) is infected. There are other area's which are not mean't for user, like MBR. or Kernel Memory.
So, the question popped up in my mind. What are all such areas that I may not be aware about?
Apart from the fact that the answer to this question is highly dependent on the OS, disk space is not at all part of the main memory. On Intel architectures, disk access takes some I/O address space (which is different from memory address) per channel. And the exact number of words depends on what channel: IDE/ATA/SATA/SCSI. On other architectures which are memory mapped like the PowerPC disk access do take some memory address space, but still not much.
To illustrate (and be warned that this is a very simplified example, not the real world), assume a memory mapped CPU* like the PowerPC trying to access a disk with LBA addressing. The disk really only need 2 to 3 words of memory to hold multiple Gigabytes of data. That is, we only need 12 bytes to store and retrieve Gigabytes of data:
2 words (8 bytes) to tell the disk where to seek to, that is, at what address do we want to read form or write to.
1 word (4 bytes) to actually do the read and write. Every time you read from this address, the 2 word pointer automagically increment by 1 character (or 4 if you read in 32 bits).
But the above is an abstracted view of what really happens. Most disk controllers have several more registers to control power management, disk spin speed, enter and exit sleep modes etc.
And what are the addresses of these memory locations? Well, it depends on what I/O channel you're talking about. The old-school ISA bus depends on the user setting jumpers on cards to set the addresses. So for those you need to ask the user. The PCI bus auto-negotiates the addresses with the disk controllers at boot time and then, depending on architecture, either tells your bios what devices exist or pass them as parameters to the bootloader or store them in some temporary registers on the system bus. USB works like PCI but negotiates with the OS instead of the BIOS... etc.
As you can see, there is no simple answer to this even if you limit it to only specific cases like Windows7 running on 64 bit AMD CPU running on Dell motherboards.
*note: since you're worried about memory locations.
Your question is complex, and hard to answer without knowing the scope of where the view of memory is.
Pretending we're in ring-0 with direct mapped memory, a PC-compatible has multiple memory regions. Lower memory, BIOS mapped code, IO ports, video memory, etc. They all live in the same memory space. You communicate with peripherals by reading and writing from specific memory addresses (which are mapped to those components). These addresses are setup by the hardware in question and the drivers in use.
Once we enter user mode, you have to deal with virtual memory. Addresses are symbolic, and may or may not map to any particular part of physical memory. I'd suggest reading up on Virtual memory

Resources