generating visitor overloads using boost preprocessor - boost

For visiting a variant using a lambda based visitor I came up to the boost.preprocessor for generating the boilerplate required:
#include <boost/preprocessor.hpp>
#define MY_OVERLOAD(r, data, elem) \
[](elem const& t) { return false; },
#define MY_OVERLOAD_SEQ_MEMBER(typeSeq) \
BOOST_PP_SEQ_FOR_EACH(MY_OVERLOAD, ~, typeSeq)
#define MY_OVERLOAD_MEMBER(typeSeq) \
MY_OVERLOAD_SEQ_MEMBER(typeSeq)
int main()
{
auto visitor = hana::overload(
#if 0 // like to have:
[](int t) { return false; },
[](double t) { return false; },
[](std::string const& t) { false; }
#else
MY_OVERLOAD_MEMBER((int)(double)(std::string))
#endif
);
...
}
This expands as expected so far but failed at last element - there is a trailing comma which fails to compile. I know about BOOST_PP_COMMA_IF, BOOST_PP_ENUM... which do require the number of elements to generate. But this doesn't hold for my use case - the type list is different for each type of visitor of course. Further, I don't be restricted to list the arguments in the manner shown here, a comma separted list as macro argument is also sufficient...
Also note, this code shows only the concept I want to use - in real I don't want to catch POD by reference.
BTW; is the kind of expanding required horizontal or vertically in the term of boost.preprocessor? From feeling horizontal, isn't it?

Related

Passing a temporary stream object to a lambda function as part of an extraction expression

I have a function which needs to parse some arguments and several if clauses inside it need to perform similar actions. In order to reduce typing and help keep the code readable, I thought I'd use a lambda to encapsulate the recurring actions, but I'm having trouble finding sufficient info to determine whether I'm mistakenly invoking undefined behavior or what I need to do to actualize my approach.
Below is a simplified code snippet of what I have currently:
int foo(int argc, char* argv[])
{
Using ss = std::istringstream;
auto sf = [&](ss&& stream) -> ss& {
stream.exceptions(ss::failbit);
return stream;
};
int retVal = 0;
bool valA = false;
bool valB = false;
try
{
for(int i=1; i < argc; i++)
{
std::string arg( argv[i] );
if( !valA )
{
valA = true;
sf( ss(arg) ) >> myInt;
}
else
if( !valB )
{
valB = true;
sf( ss(arg) ) >> std::hex >> myOtherInt;
}
}
}
catch( std::exception& err )
{
retVal = -1;
std::cerr << err.what() << std::endl;
}
return retVal;
}
First, based on what I've read, I don't think that specifying the lambda argument as an rvalue reference (ss&&) is doing quite what I want it to do, however, trying to compile with it declared as a normal reference (ss&) failed with the error cannot bind non-const lvalue reference of type 'ss&'. Changing ss& to ss&& got rid of the error and did not produce any warnings, but I'm not convinced that I'm using that construct correctly.
I've tried reading up on the various definitions for each, but the wording is a bit confusing.
I guess ultimately my questions are:
Can I expect the lifetime of my temporary ss(arg) object to extend through the entire extraction expression?
What is the correct way to define a lambda such that I can use the lambda in the way I demonstrate above, assuming that such a thing is actually possible?

Why do I need to set the lambda capture?

I have not much experience in using lambda's - I was hoping someone could explain what I did below in 'layman's terms' (if possible).
I have a std::vector with a number of objects (or none). Each object has an id. I want to place the object with the id I am interested in at the back of the vector.
I did that like so
std::vector<my_ob> l_obs;
[...] // populate the vector
auto l_elem = std::find_if(l_obs.rbegin(),
l_obs.rend(), [](my_ob const& ob){ return ob.mv_id == 8;});
if(l_elem-l_obs.rbegin())
std::iter_swap(l_elem, l_obs.rbegin());
I am using a reverse iterator as I expect the match to already be at the back of the vector in most cases.
The above worked fine, until I moved it into a method and instead of trying to find '8', I wanted to find a value passed as a const int parameter. The compiler told me that the parameter I used was not captured, and that the lambda had no capture default. So I changed the lambda to
[=](my_ob const& ob){ return ob.mv_id == _arg;}
and this all seems to work now.
Why was this = sign needed?
Lambda expressions produce closure objects, which are function objects (similar to a struct with an overloaded operator()).
In order for closures to use variables in the outer scope, they must know how: either by copying the variable into the closure itself, or by referring to it.
Writing
[=](my_ob const& ob){ return ob.mv_id == _arg;}
is equivalent to
[_arg](my_ob const& ob){ return ob.mv_id == _arg;}
which roughly desugars to
struct LAMBDA
{
int _arg;
LAMBDA(int arg) : _arg{arg} { }
auto operator()(my_ob const& ob) const { return ob.mv_id == _arg; }
};
As you can see, _arg needs to be available in the scope of the generated LAMBDA function object, so it needs to be a data member of the closure.
When you were using a literal, no captures were needed as the generated closure looked like:
struct LAMBDA
{
auto operator()(my_ob const& ob) const { return ob.mv_id == 5; }
};

C++: std::bind -> std::function

I have several functions which receive the following type:
function<double(int,int,array2D<vector<double *>>*)>
Where array2D is a custom type. Further, I have a function which takes the following as arguments:
double ising_step_distribution(double temp,int i,int j,array2D<vector<double *>>* model)
Right now, in order to bind the first value, temp, and return a functor which has the correct signature, I am writing:
double temp = some_value;
function<double(int,int,array2D<vector<double *>>*)> step_func =
[temp](int i, int j, array2D<vector<double *>>* model){
return ising_step_distribution(temp,i,j,model);
}
}
And this works. However, the following breaks:
auto step_func =
[temp](int i, int j, array2D<vector<double *>>* model){
return ising_step_distribution(temp,i,j,model);
}
}
With the following error:
candidate template ignored:
could not match
'function<double (int, int, array2D<vector<type-parameter-0-0 *, allocator<type-parameter-0-0 *> > > *)>'
against
'(lambda at /Users/cdonlan/home/mcmc/main.cpp:200:25)'
void mix_2D_model(function<double(int,int,array2D<vector<T*>>*)> step_distribution_func,...
And so, the code clump is ugly, obfuscative and repetitive (because I am making many of these).
I have been reading the documentation, and I understand that I should be able to write:
function<double(int,int,array2D<vector<double *>>*)> step_func =
bind(ising_step_distribution,temp,_1,_2,_3);
However, the only examples I have seen are for functions of type function<void()>. This one fails with an error:
// cannot cast a bind of type
// double(&)(double,int,int,array2D<vector<double *>>*)
// as function<double(int,int,...)
How do I get a visually clean bind and cast?
How do I get a visually clean bind and cast?
One way is:
using F = function<double(int,int,array2D<vector<double *>>*)>;
auto step_func =
[temp](int i, int j, array2D<vector<double *>>* model){
return ising_step_distribution(temp,i,j,model);
}
}
And then:
auto step_func_2 = F(step_func);
mix_2D_model(step_func_2, ...);
Or:
mix_2D_model(F(step_func), ...);

What is the point of window_magic in SDL?

While browsing the SDL source code that interfaces with the system window manager, I encountered struct SDL_VideoDevice with a mystical Uint8 window_magic field. There doesn't seem to be any documentation for this field. What is the purpose of this field? It plays a role in the following functions/macros (all defined in SDL_video.c).
The macro CHECK_WINDOW_MAGIC:
#define CHECK_WINDOW_MAGIC(window, retval) \
if (!_this) { \
SDL_UninitializedVideo(); \
return retval; \
} \
if (!window || window->magic != &_this->window_magic) { \
SDL_SetError("Invalid window"); \
return retval; \
}
The function SDL_GetWindowWMInfo:
SDL_GetWindowWMInfo(SDL_Window * window, struct SDL_SysWMinfo *info)
{
CHECK_WINDOW_MAGIC(window, SDL_FALSE);
if (!info) {
SDL_InvalidParamError("info");
return SDL_FALSE;
}
info->subsystem = SDL_SYSWM_UNKNOWN;
if (!_this->GetWindowWMInfo) {
SDL_Unsupported();
return SDL_FALSE;
}
return (_this->GetWindowWMInfo(_this, window, info));
}
The function SDL_CreateWindow:
SDL_Window *
SDL_CreateWindow(const char *title, int x, int y, int w, int h, Uint32 flags)
{
...
window->magic = &_this->window_magic;
...
}
_this is a pointer to an SDL_VideoDevice, which is initialized when the user calls SDL_Init. When the user calls SDL_CreateWindow, SDL assignes window->magic to the address of _this->window_magic. As far as I can tell, _this->window_magic is never initialized anywhere in SDL. What could possibly be the role of this value?
It uses address of _this->window_magic, not its value. Variable don't have to be initialised to have an address, especially if it is a structure field.
Its purpose is to quickly check against uninitialised window, or not a window at all. No guarantees but hit rate is very high - it is very unlikely that anything will accidentially match the address of SDL's internal structure.

using a union-like class in an std::initializer_list

In the code below I show union-like class S which contains two non-related structs B and C. I show how to instantiate the non-POD std::string and delete it again and then switch S to S::CC and set the num int.
#include <vector>
#include <string>
#include <iostream>
#include <memory>
struct B
{
B() {}
~B() {}
std::string str;
void Func1() {}
};
struct C
{
C() {}
~C() {}
int num;
void Func2() {}
};
struct S
{
S() { tag = CC; }
S( const S& s )
{
switch( s.tag )
{
case BB:
new ( &b.str ) std::string;
b.str = s.b.str;
break;
case CC:
c.num = s.c.num;
default:
break;
}
}
~S()
{
switch( tag )
{
case BB:
b.str.~basic_string< char >();
break;
case CC:
c.num = 0;
break;
default:
break;
}
}
enum { BB, CC } tag;
union
{
B b;
C c;
};
};
struct H
{
H( std::initializer_list< S > initializerList ) : initListVect( initializerList ) {}
std::vector< S > initListVect;
};
int main()
{
S s;
s.tag = S::BB;
new ( &s.b.str ) std::string; // docs say use new placement to create memory
s.b.str = "bbb";
s.b.str.~basic_string< char >(); // string usage in B ok
s.tag = S::CC;
s.c.num = 333; // int usage in C ok
H h { }; // what should the init list be if I wanted 3 list elements S::BB, S::CC, S::BB?
return 0;
}
My goal, however, is to use S in an std::initializer_list. I don’t know what the format should be for initializeing h. What should the arguments be if I wanted to initialize h with these S::BB, S::CC, S::BB?
My compiler is VS2015.
Edit:
This post’s history: my posting comes from a need for a definitive answer to the question of storing compile-time-deduceable heterogeneous objects in an std::initializer_list. This question has been asked many times before and there have been many attempts at answers (see Heterogeneous containers in C++). The most simplistic answer is to use polymorphism, but this ignores the power of being able to define a type at compile time (templates). Besides, heterogeneous, non-related objects grouped together polymorphically means a lot of derived data members are useless, which sows usage and maintenance confusion downstream. Other advice given was to use boost::any or boost::variant, but this has the same weakness as polymorphism and reduces message declaration clarity. Another attempt at container object heterogeneity was the use of std::tuple, but although an initializer_list can certainly contain tuples, this approach too ignores compile-time type resolution. I even found a paper written in 1999 called Heterogeneous, Nested STL Containers in C++ which uses template template arguments to solve the heterogeneity problem. After all this, I settled on class-like unions which led to my posting here. Class-like unions for non-related/heterogeneous container objects has perfect message declaration clarity, no object size ambiguity, and is compile time template-able, and it leads to excellent downstream maintenance scenarios.
Edit2: (5 weeks later) Here is what has happened. 1) I implemented a full class-like union solution given the advice in this posting. The result was tedious and unwieldy with ‘tag’ being used to identify which sub-method to call for each new functionality. Low grade regarding code maintenance. 2) c++17 has accepted std::variant. Since that is currently not yet implemented in VS2015 Update 2, I set about using boost::variant. See What is the right c++ variant syntax for calling a member function set to a particular variant? which uses the Visitor pattern to allow access to initialized variant members and member functions. This eliminates the ‘tag’ switches and variant ‘get’ calls. Bottom line: I dropped my class-like union and adopted variant for creating maintainable code that uses initializer_list to store variant member functionality all being initializable at compile time (read: highly maintainable).
Alright, I'm feeling generous and I've made custom unions myself so he're some stuff that'll get you set up. I've rewritten your S structure to be more compliant and usable. (I've made changes marked by comments)
struct S
{
S() : tag(CC) // initializer
{
new (&c) C; // make C object
}
S(int num) : tag(CC) // added integer constructor
{
new (&c) C;
c.num = num;
}
S(const std::string& str) : tag(BB) // added string constructor
{
new (&b) B;
b.str = str;
}
S( const S& s ) : tag(s.tag)
{
if (tag == CC)
{
new (&c) C; // construct c
c.num = s.c.num;
}
else if (tag == BB)
{
new (&b) B; // construct b, not b.str
b.str = s.b.str;
}
}
S& operator= (const S& s) // added assignment operator
{
if (tag == s.tag) // just copy b or c
{
if (tag == CC)
c = s.c;
else
b = s.b;
}
else // reconstruct b or c
{
if (tag == CC)
{
c.~C(); // destroy c
new (&b) B; // construct b
b.str = s.b.str;
}
else
{
b.~B(); // destroy b
new (&c) C; // construct c
c.num = s.c.num;
}
tag = s.tag;
}
return *this;
}
~S()
{
if (tag == CC)
{
c.~C(); // destroy c
}
else if (tag == BB)
{
b.~B(); // destroy b, not b.str
}
}
enum { BB, CC } tag;
union
{
B b;
C c;
};
};
One of the things that you were doing improperly was skipping the construction and destruction of B and C and going straight for the internal variables. You should always create and destroy types properly even when they may be trivial. While this may work out, not initializing these objects properly is only asking for trouble (It also makes it easier should you change B or C in the future).
To make using the class easier, I added in the proper constructors for std::string and int as well as an assignment operator. Because now that we can construct the objects how we want, your main() could look like this:
int main()
{
S s; // default S
s = std::string("bbb"); // set to string
s = 333; // set to number
// use initialization list
H h { std::string("bb"), 33, std::string("bb") };
return 0;
}
I encourage you to modify B and C to use constructors to build their internals rather than relying on S.

Resources