Does Enumerable.OrderBy order complete list if only first element is requested - performance

If a sequence is ordered. And you only ask for the first element of the ordered sequence. Is Orderby smart enough not to order the complete sequence?
IEnumerable<MyClass> myItems = ...
MyClass maxItem = myItems.OrderBy(item => item.Id).FirstOrDefault();
So if the first element is asked, only the item with the minimum value is ordered as first element of the sequence. When the next element is asked, the item with the minimum value of the remaining sequence is ordered etc.
Or is the complete sequence completely ordered if you only want the first element?
Addition
Apparently the question is unclear. Let's give an example.
The Sort function could do the following:
Create a linked list containing all the elements
as long as the linked list contains element:
Take the first element of the linked list as the smallest
scan the rest of the linked list once to find any smaller elements
remove the smallest element from the linked list
yield return the smallest element
Code:
public static IEnumerable<TSource> Sort<TSource, TKey>(
this IEnumerable<TSource> source, Func<TSource, TKey> keySelector)
{
if (source == null) throw new ArgumentNullException(nameof(source));
if (keySelector == null) throw new ArgumentNullException(nameof(keySelector));
IComparer<TKey> comparer = Comparer<TKey>.Default;
// create a linkedList with keyValuePairs of TKey and TSource
var keyValuePairs = source
.Select(source => new KeyValuePair<TKey, TSource>(keySelector(source), source);
var itemsToSort = new LinkedList<KeyValuePair<Tkey, TSource>>(keyValuePairs);
while (itemsToSort.Any())
{ // there are still items in the list
// select the first element as the smallest one
var smallest = itemsToSort.First();
// scan the rest of the linkedList to find the smallest one
foreach (var element in itemsToSort.Skip(1))
{
if (comparer.Compare(element.Key, smallest.Key) < 1)
{ // element.Key is smaller than smallest.Key: element becomes the smallest:
smallest = element;
}
}
// remove the smallest element from the linked list and return the value:
itemsToSort.Remove(smallestElement);
yield return smallestElement.Value;
}
Suppose I have a sequence of integers.
Suppose I have the following sequence of integers:
{4, 8, 3, 1, 7}
At the first iteration the iterator internally creates a linked list of key/value pairs and assigns the first element of the list as smallest
Linked List = 4 - 8 - 3 - 1 - 7
Smallest = 4
The linked list is scanned once to see if there is a smaller one.
Linked List = 4 - 8 - 3 - 1 - 7
Smallest = 1
The smallest is removed from the linked list and yield return:
Linked List = 4 - 8 - 3 - 7
return 1
The second iteration the same is done with the shorter linked list
Linked List = 4 - 8 - 3 - 7
smallest = 4
Again the linked list is scanned once to find the smallest one
Linked List = 4 - 8 - 3 - 7
smallest = 3
Remove the smallest from the linked list and return the smallest
Linked List = 4 - 8 - 7
return 3
It's easy to see that if you only ask for first element in the sorted list, the list is scanned only once. Every iteration the list to scan becomes smaller.
Back to my original question:
I understand that if you only want the first element, you have to scan the list at least once. If you don't ask for a second element, the rest of the list is not ordered.
Is the sort that is used by Enumerable.OrderBy thus smart that if doesn't sort the remainder of the list if you only ask for the firs ordered item?

It depends on the version.
In the framework versions (4.0, 4.5, etc.) then:
The entire source is loaded into a buffer.
Produce a map of keys (so that they key production is only once per element).
A map of integers is produced and then sorted according to those keys (using a map means swap operations have cheaper copies if the source elements are large value types).
The FirstOrDefault attempts to obtain the first item according to this mapping by using MoveNext and Current on the resulting object. Either it finds one, or (if the buffer is empty because the source was empty) returns default(TSource).
In .NET Core, then:
The FirstOrDefault operation on the IOrderedEnumerable scans through the source. If there are no elements it returns default(TSource) otherwise it holds onto the first element found and the key produced by the key generator and compares it with all subsequent, replacing that held-onto value and key with the next found if the next found compares as lower than the current value.
The held-onto value will be the same element as the Framework version would have found by first sorting, so it is returned.
This means that in the Framework version myItems.OrderBy(item => item.Id).FirstOrDefault() is O(n log n) time complexity (worse case O(n²)) and O(n) space complexity, but in the .NET Core version it is O(n) time complexity and O(1) space complexity.
The main difference here is that in .NET Core FirstOrDefault() has knowledge of how the results of OrderBy (and ThenBy etc.) differ from other possible sources and has code to handle it*, while in the framework version it does not.
Both scan the entire sequence (you can't know the last element in myItems isn't the first by the sorting rules until you've examined it) but they differ in the mechanism and efficiency after that point.
When the next element is asked, the item with the minimum value of the remaining sequence is ordered etc.
If the next element is asked, then not only would any sorting be done again, but it would have to be done again as the contents of myItems could have change in the meantime.
If you were trying to obtain it with myItems.OrderBy(item => item.Id).ElementAtOrDefault(i) then the framework version would find the element by first doing a sort (O(n log n)) and then a scan (O(n) relative to i) while the .NET Core version would find it with a quickselect (O(n) though the constant factors are bigger than for FirstOrDefault() and can be as high as O(n²) in the same cases that sorting is, so its a slower O(n) than with that (it's smart enough to turn ElementAtOrDefault(0) into FirstOrDefault() for that reason). Both versions also use space complexity of O(n) (unless .NET Core can turn it into FirstOrDefault()).
If you were finding the first few values with myItems.OrderBy(item => item.Id).Take(k) then the Framework version would again do a sort (O(n log n)) and the put a limit on the subsequent enumeration of the results so that it stopped returning elements after k were obtained. The .NET Core version would do a partial sort, not bothering to sort elements it realised were always going to come after the portion taken, which is O(n + k log k) time complexity. .NET Core would also do a single partial sort for combinations of Take and Skip reducing the amount of sorting necessary further.
In theory the sorting of just OrderBy(cmp) could be lazier as per:
Load the elements into the buffer.
Do a sort, probably favouring the "left" partition as partitioning is happening.
yield elements as soon as it is found that they are the next to enumerate.
This would improve time-to-first-result (low time-to-first-result is often a nice feature of other Linq operations), and particularly benefit consumers who may stop working on the result part way through. However it adds extra constant costs to the sorting operation and either prevents picking the next partition to work on in such a way as to reduce the amount of recursion (an important optimisation of partition-based sorting) or else would often not actually yield anything until near the end anyway (making the exercise rather pointless). It would also make the sorting much more complicated. While I experimented with this approach the pay-offs to some cases didn't justify the costs to others, especially as it seemed likely to hurt more people than it benefited.
*Strictly speaking, the results of several linq operations have knowledge of how to find the first element in a way that is optimised for each of them, and FirstOrDefault() knows how to detect any of those cases.

If a sequence is ordered ...
That is fine but not a property of IEnumerable so OrderBy can never 'know' this directly.
There are precedents for this though, Count() will check at runtime if its IEnumerable<> source is actually pointing at a List and then take a shortcut to the Count property.
Likewise, OrderBy could look to see if it's called on a SortedList or something but there is no clear marker interface and those collections are used far too infrequently to make this worth the effort.
There are other ways to optimize this, .OrderBy().First() could conceivably map to a .Min() but again, nobody has bothered till now as far as I knew. See Jon's answer.

No, it's not. How can it know that the list is in order without iterating through the entire list?
Here's a simple test:
void Main()
{
Console.WriteLine(OrderedEnumerable().OrderBy(x => x).First());
}
public IEnumerable<int> OrderedEnumerable()
{
Console.WriteLine(1);
yield return 1;
Console.WriteLine(2);
yield return 2;
Console.WriteLine(3);
yield return 3;
}
This, as expected, outputs:
1
2
3
1

If you look at the reference source and follow the classes you will see that all keys will be computed and then a quick sort algorithm will sort the index table according to the keys.
So the sequence is read once, all the keys are computed, then an index is sorted according to the keys and then you get your first output.

Related

Binary search with gaps

Let's imagine two arrays like this:
[8,2,3,4,9,5,7]
[0,1,1,0,0,1,1]
How can I perform a binary search only in numbers with an 1 below it, ignoring the rest?
I know this can be in O(log n) comparisons, but my current method is slower because it has to go through all the 0s until it hits an 1.
If you hit a number with a 0 below, you need to scan in both directions for a number with a 1 below until you find it -- or the local search space is exhausted. As the scan for a 1 is linear, the ratio of 0s to 1s determines whether the resulting algorithm can still be faster than linear.
This question is very old, but I've just discovered a wonderful little trick to solve this problem in most cases where it comes up. I'm writing this answer so that I can refer to it elsewhere:
Fast Append, Delete, and Binary Search in a Sorted Array
The need to dynamically insert or delete items from a sorted collection, while preserving the ability to search, typically forces us to switch from a simple array representation using binary search to some kind of search tree -- a far more complicated data structure.
If you only need to insert at the end, however (i.e., you always insert a largest or smallest item), or you don't need to insert at all, then it's possible to use a much simpler data structure. It consists of:
A dynamic (resizable) array of items, the item array; and
A dynamic array of integers, the set array. The set array is used as a disjoint set data structure, using the single-array representation described here: How to properly implement disjoint set data structure for finding spanning forests in Python?
The two arrays are always the same size. As long as there have been no deletions, the item array just contains the items in sorted order, and the set array is full of singleton sets corresponding to those items.
If items have been deleted, though, items in the item array are only valid if the there is a root set at the corresponding position in the set array. All sets that have been merged into a single root will be contiguous in the set array.
This data structure supports the required operations as follows:
Append (O(1))
To append a new largest item, just append the item to the item array, and append a new singleton set to the set array.
Delete (amortized effectively O(log N))
To delete a valid item, first call search to find the adjacent larger valid item. If there is no larger valid item, then just truncate both arrays to remove the item and all adjacent deleted items. Since merged sets are contiguous in the set array, this will leave both arrays in a consistent state.
Otherwise, merge the sets for the deleted item and adjacent item in the set array. If the deleted item's set is chosen as the new root, then move the adjacent item into the deleted item's position in the item array. Whichever position isn't chosen will be unused from now on, and can be nulled-out to release a reference if necessary.
If less than half of the item array is valid after a delete, then deleted items should be removed from the item array and the set array should be reset to an all-singleton state.
Search (amortized effectively O(log N))
Binary search proceeds normally, except that we need to find the representative item for every test position:
int find(item_array, set_array, itemToFind) {
int pos = 0;
int limit = item_array.length;
while (pos < limit) {
int testPos = pos + floor((limit-pos)/2);
if (item_array[find_set(set_array, testPos)] < itemToFind) {
pos = testPos + 1; //testPos is too low
} else {
limit = testPos; //testPos is not too low
}
}
if (pos >= item_array.length) {
return -1; //not found
}
pos = find_set(set_array, pos);
return (item_array[pos] == itemToFind) ? pos : -1;
}

Algorithm / Data structure for largest set intersection in a collection of sets with a given set

I have a large collection of several million sets, C. The elements of my sets come from a universe of about 2000 possible elements. I need to know, for a given set, s, which set in C has the largest intersection with s? (Or the k sets in C with the k-largest intersections). I will be making many of these queries, sequentially, for different s.
I know that the obvious way to do this is to just to loop over every set in C and compute the intersection and take the max. Are there any smart data structures / programming tricks that can speed up my search? It would be great if I could do this faster than O(C).
EDIT: approximate answers would be alright too
I don't think there's a clever data structure that will help with asymptotic performance. But this is a perfect map reduce problem. A GPGPU would do nicely. For a universe of 2048 elements, a set as a bitmap is only 256 bytes. 4 million is only a gigabyte. Even a modestly spec'ed Nvidia has that. E.g. programming in CUDA, you'd copy C to graphics card RAM, map a chunk of the gigabyte to each GPU core for searching and then reduce across cores to find the final answer. This ought to take on the order of a very few milliseconds. Not fast enough? Just buy hotter hardware.
If you re-phrase your question along these lines, you'll probably get answers from experts in this kind of programming, which I'm not.
One simple trick is to sort the list of sets C in decreasing order by size, then proceed with brute force intersection tests as usual. As you go along, keep track of the set b with the biggest intersection so far. If you find a set whose intersection with the query set s has size |s| (or equivalently, has intersection equal to s -- use whichever of these tests is faster), you can immediately stop and return it as this is the best possible answer. Otherwise, if the next set from C has fewer than |b| elements, you can immediately stop and return b. This can easily be generalised to finding the top k matches.
I don't see any way to do this in less than O(C) per query, but I have some ideas on how to maximize efficiency. The idea is basically to build a lookup table for each element. If some elements are rare and some are common, you can have positive and negative lookup tables:
s[i] // your query, an array of size 2 thousand, true/false
sign[i] // whether the ith element is positive/negative lookup. +/- 1
sets[i] // a list of all the sets that the ith element belongs/(doesn't) to
query(s):
overlaps[i] // an array of size C, initialized to 0's
for i in len(s):
if s[i]:
for j in sets[i]:
overlaps[j] += sign[i]
return max_index(overlaps)
Especially if many of your elements are of widely differing probabilities (as you said), this approach should save you some time: very rare or very common elements can be dealt with almost instantly.
To further optimize: you can sort the structure so that the elements that are most common/most rare are dealt with first. After you have done the first e.g. 3/4, you can do a quick pass to see if the closest matching set is so far ahead of the next set that it is not necessary to continue, though again whether that is worthwhile depends on the details of your data's distribution.
Yet another refinement: make sets[i] one of two possible structures: if the element is very rare or common, sets[i] is just a list of the sets that the ith element is in/not in. However, suppose the ith element is in half the sets. Then sets[i] is just a list of indices half as long as the number of sets, looping through it and incrementing overlaps is wasteful. Have a third value for sign[i]: if sign[i] == 0, then the ith element is relatively close to 50% commonality (this may just mean between 5% and 95%, or anything else), and instead of a list of sets in which it appears, it will simply be an array of 1's and 0's with length equal to C. Then you would just add the array in its entirety to overlaps which would be faster.
Put all of your elements, from the million sets into a Hashtable. The key will be the element, the value will be a set of indexes that point to a containing set.
HashSet<Element>[] AllSets = ...
// preprocess
Hashtable AllElements = new Hashtable(2000);
for(var index = 0; index < AllSets.Count; index++) {
foreach(var elm in AllSets[index]) {
if(!AllElements.ContainsKey(elm)) {
AllElements.Add(elm, new HashSet<int>() { index });
} else {
((HashSet<int>)AllElements[elm]).Add(index);
}
}
}
public List<HashSet<Element>> TopIntersect(HashSet<Element> set, int top = 1) {
// <index, count>
Dictionar<int, int> counts = new Dictionary<int, int>();
foreach(var elm in set) {
var setIndices = AllElements[elm] As HashSet<int>;
if(setIndices != null) {
foreach(var index in setIndices) {
if(!counts.ContainsKey(index)) {
counts.Add(index, 1);
} else {
counts[index]++;
}
}
}
}
return counts.OrderByDescending(kv => kv.Value)
.Take(top)
.Select(kv => AllSets[kv.Key]).ToList();
}

How to "sort" elements of 2 possible values in place in linear time? [duplicate]

This question already has answers here:
Stable separation for two classes of elements in an array
(3 answers)
Closed 9 years ago.
Suppose I have a function f and array of elements.
The function returns A or B for any element; you could visualize the elements this way ABBAABABAA.
I need to sort the elements according to the function, so the result is: AAAAAABBBB
The number of A values doesn't have to equal the number of B values. The total number of elements can be arbitrary (not fixed). Note that you don't sort chars, you sort objects that have a single char representation.
Few more things:
the sort should take linear time - O(n),
it should be performed in place,
it should be a stable sort.
Any ideas?
Note: if the above is not possible, do you have ideas for algorithms sacrificing one of the above requirements?
If it has to be linear and in-place, you could do a semi-stable version. By semi-stable I mean that A or B could be stable, but not both. Similar to Dukeling's answer, but you move both iterators from the same side:
a = first A
b = first B
loop while next A exists
if b < a
swap a,b elements
b = next B
a = next A
else
a = next A
With the sample string ABBAABABAA, you get:
ABBAABABAA
AABBABABAA
AAABBBABAA
AAAABBBBAA
AAAAABBBBA
AAAAAABBBB
on each turn, if you make a swap you move both, if not you just move a. This will keep A stable, but B will lose its ordering. To keep B stable instead, start from the end and work your way left.
It may be possible to do it with full stability, but I don't see how.
A stable sort might not be possible with the other given constraints, so here's an unstable sort that's similar to the partition step of quick-sort.
Have 2 iterators, one starting on the left, one starting on the right.
While there's a B at the right iterator, decrement the iterator.
While there's an A at the left iterator, increment the iterator.
If the iterators haven't crossed each other, swap their elements and repeat from 2.
Lets say,
Object_Array[1...N]
Type_A objs are A1,A2,...Ai
Type_B objs are B1,B2,...Bj
i+j = N
FOR i=1 :N
if Object_Array[i] is of Type_A
obj_A_count=obj_A_count+1
else
obj_B_count=obj_B_count+1
LOOP
Fill the resultant array with obj_A and obj_B with their respective counts depending on obj_A > obj_B
The following should work in linear time for a doubly-linked list. Because up to N insertion/deletions are involved that may cause quadratic time for arrays though.
Find the location where the first B should be after "sorting". This can be done in linear time by counting As.
Start with 3 iterators: iterA starts from the beginning of the container, and iterB starts from the above location where As and Bs should meet, and iterMiddle starts one element prior to iterB.
With iterA skip over As, find the 1st B, and move the object from iterA to iterB->previous position. Now iterA points to the next element after where the moved element used to be, and the moved element is now just before iterB.
Continue with step 3 until you reach iterMiddle. After that all elements between first() and iterB-1 are As.
Now set iterA to iterB-1.
Skip over Bs with iterB. When A is found move it to just after iterA and increment iterA.
Continue step 6 until iterB reaches end().
This would work as a stable sort for any container. The algorithm includes O(N) insertion/deletion, which is linear time for containers with O(1) insertions/deletions, but, alas, O(N^2) for arrays. Applicability in you case depends on whether the container is an array rather than a list.
If your data structure is a linked list instead of an array, you should be able to meet all three of your constraints. You just skim through the list and accumulating and moving the "B"s will be trivial pointer changes. Pseudo code below:
sort(list) {
node = list.head, blast = null, bhead = null
while(node != null) {
nextnode = node.next
if(node.val == "a") {
if(blast != null){
//move the 'a' to the front of the 'B' list
bhead.prev.next = node, node.prev = bhead.prev
blast.next = node.next, node.next.prev = blast
node.next = bhead, bhead.prev = node
}
}
else if(node.val == "b") {
if(blast == null)
bhead = blast = node
else //accumulate the "b"s..
blast = node
}
3
node = nextnode
}
}
So, you can do this in an array, but the memcopies, that emulate the list swap, will make it quiet slow for large arrays.
Firstly, assuming the array of A's and B's is either generated or read-in, I wonder why not avoid this question entirely by simply applying f as the list is being accumulated into memory into two lists that would subsequently be merged.
Otherwise, we can posit an alternative solution in O(n) time and O(1) space that may be sufficient depending on Sir Bohumil's ultimate needs:
Traverse the list and sort each segment of 1,000,000 elements in-place using the permutation cycles of the segment (once this step is done, the list could technically be sorted in-place by recursively swapping the inner-blocks, e.g., ABB AAB -> AAABBB, but that may be too time-consuming without extra space). Traverse the list again and use the same constant space to store, in two interval trees, the pointers to each block of A's and B's. For example, segments of 4,
ABBAABABAA => AABB AABB AA + pointers to blocks of A's and B's
Sequential access to A's or B's would be immediately available, and random access would come from using the interval tree to locate a specific A or B. One option could be to have the intervals number the A's and B's; e.g., to find the 4th A, look for the interval containing 4.
For sorting, an array of 1,000,000 four-byte elements (3.8MB) would suffice to store the indexes, using one bit in each element for recording visited indexes during the swaps; and two temporary variables the size of the largest A or B. For a list of one billion elements, the maximum combined interval trees would number 4000 intervals. Using 128 bits per interval, we can easily store numbered intervals for the A's and B's, and we can use the unused bits as pointers to the block index (10 bits) and offset in the case of B (20 bits). 4000*16 bytes = 62.5KB. We can store an additional array with only the B blocks' offsets in 4KB. Total space under 5MB for a list of one billion elements. (Space is in fact dependent on n but because it is extremely small in relation to n, for all practical purposes, we may consider it O(1).)
Time for sorting the million-element segments would be - one pass to count and index (here we can also accumulate the intervals and B offsets) and one pass to sort. Constructing the interval tree is O(nlogn) but n here is only 4000 (0.00005 of the one-billion list count). Total time O(2n) = O(n)
This should be possible with a bit of dynamic programming.
It works a bit like counting sort, but with a key difference. Make arrays of size n for both a and b count_a[n] and count_b[n]. Fill these arrays with how many As or Bs there has been before index i.
After just one loop, we can use these arrays to look up the correct index for any element in O(1). Like this:
int final_index(char id, int pos){
if(id == 'A')
return count_a[pos];
else
return count_a[n-1] + count_b[pos];
}
Finally, to meet the total O(n) requirement, the swapping needs to be done in a smart order. One simple option is to have recursive swapping procedure that doesn't actually perform any swapping until both elements would be placed in correct final positions. EDIT: This is actually not true. Even naive swapping will have O(n) swaps. But doing this recursive strategy will give you absolute minimum required swaps.
Note that in general case this would be very bad sorting algorithm since it has memory requirement of O(n * element value range).

An algorithm to find a permutation in sequence

I'm asking for a simple problem: how to find one (and only one) permutation in a sequence of numbers (with repetitions) with the lowest complexity?
Suppose we have the sequence: 1 1 2 3 4. Then we permute 2 and 3, so we have: 1 1 3 2 4. How can I find that 2 and 3 have been permuted? The worst solution would be to generate all possibilities and compare each one with original permuted sequence, but I need something fast...
Thank you for your answer.
The problem with this is there will be multiple solutions to your problem without some constraints such as the order is sequentially found.
What I'd look at is first test that there are still the same values in the sequence and if so just step through one by one until a mismatch is found and then find where the first occurance of the other value is and mark that as the permutation. Now continue searching for the next modification and so on...
If you just want to know how much it's changed I'd look at levenshtein algorithm. The basis of this algorithm may even give you what you need for your own custom algorithm or inspire other approaches.
This is fast but it won't tell you which items have changed.
The only full solution I know of would be to record each change as it happens so you can just look at the history of changes to know the perfect answer.
function findswaps:
linkedlist old <- store old string in linkedlist
linkedlist new <- store new string in linkedlist
compare elements one by one:
if same
next iteration until exhausted
else
remember old item
iterate through future `new` elements one by one:
if old item is found
report its position in new list
else
error
My humble attempt please correct me if wrong, so I can help better. I'm guessing the data is unordered so it can't be any faster than linear?
If there is only 1 swap between the original and derived arrays, you could try something like this at O(n) for array length n:
int count = 0;
int[] mismatches;
foreach index in array {
if original[index] != derived[index] {
if count == 2 {
fail
}
mismatches[count++] = index;
}
}
if count == 2 and
original[mismatches[0]] == derived[mismatches[1]] and
original[mismatches[1]] == derived[mismatches[0]] {
succeed
}
fail
Note that this reports a fail when nothing was swapped between the arrays.

How to design a data structure that allows one to search, insert and delete an integer X in O(1) time

Here is an exercise (3-15) in the book "Algorithm Design Manual".
Design a data structure that allows one to search, insert, and delete an integer X in O(1) time (i.e. , constant time, independent of the total number of integers stored). Assume that 1 ≤ X ≤ n and that there are m + n units of space available, where m is the maximum number of integers that can be in the table at any one time. (Hint: use two arrays A[1..n] and B[1..m].) You are not allowed to initialize either A or B, as that would take O(m) or O(n) operations. This means the arrays are full of random garbage to begin with, so you must be very careful.
I am not really seeking for the answer, because I don't even understand what this exercise asks.
From the first sentence:
Design a data structure that allows one to search, insert, and delete an integer X in O(1) time
I can easily design a data structure like that. For example:
Because 1 <= X <= n, so I just have an bit vector of n slots, and let X be the index of the array, when insert, e.g., 5, then a[5] = 1; when delete, e.g., 5, then a[5] = 0; when search, e.g.,5, then I can simply return a[5], right?
I know this exercise is harder than I imagine, but what's the key point of this question?
You are basically implementing a multiset with bounded size, both in number of elements (#elements <= m), and valid range for elements (1 <= elementValue <= n).
Search: myCollection.search(x) --> return True if x inside, else False
Insert: myCollection.insert(x) --> add exactly one x to collection
Delete: myCollection.delete(x) --> remove exactly one x from collection
Consider what happens if you try to store 5 twice, e.g.
myCollection.insert(5)
myCollection.insert(5)
That is why you cannot use a bit vector. But it says "units" of space, so the elaboration of your method would be to keep a tally of each element. For example you might have [_,_,_,_,1,_,...] then [_,_,_,_,2,_,...].
Why doesn't this work however? It seems to work just fine for example if you insert 5 then delete 5... but what happens if you do .search(5) on an uninitialized array? You are specifically told you cannot initialize it, so you have no way to tell if the value you'll find in that piece of memory e.g. 24753 actually means "there are 24753 instances of 5" or if it's garbage.
NOTE: You must allow yourself O(1) initialization space, or the problem cannot be solved. (Otherwise a .search() would not be able to distinguish the random garbage in your memory from actual data, because you could always come up with random garbage which looked like actual data.) For example you might consider having a boolean which means "I have begun using my memory" which you initialize to False, and set to True the moment you start writing to your m words of memory.
If you'd like a full solution, you can hover over the grey block to reveal the one I came up with. It's only a few lines of code, but the proofs are a bit longer:
SPOILER: FULL SOLUTION
Setup:
Use N words as a dispatch table: locationOfCounts[i] is an array of size N, with values in the range location=[0,M]. This is the location where the count of i would be stored, but we can only trust this value if we can prove it is not garbage. >!
(sidenote: This is equivalent to an array of pointers, but an array of pointers exposes you being able to look up garbage, so you'd have to code that implementation with pointer-range checks.)
To find out how many is there are in the collection, you can look up the value counts[loc] from above. We use M words as the counts themselves: counts is an array of size N, with two values per element. The first value is the number this represents, and the second value is the count of that number (in the range [1,m]). For example a value of (5,2) would mean that there are 2 instances of the number 5 stored in the collection.
(M words is enough space for all the counts. Proof: We know there can never be more than M elements, therefore the worst-case is we have M counts of value=1. QED)
(We also choose to only keep track of counts >= 1, otherwise we would not have enough memory.)
Use a number called numberOfCountsStored that IS initialized to 0 but is updated whenever the number of item types changes. For example, this number would be 0 for {}, 1 for {5:[1 times]}, 1 for {5:[2 times]}, and 2 for {5:[2 times],6:[4 times]}.
                          1  2  3  4  5  6  7  8...
locationOfCounts[<N]: [☠, ☠, ☠, ☠, ☠, 0, 1, ☠, ...]
counts[<M]:           [(5,⨯2), (6,⨯4), ☠, ☠, ☠, ☠, ☠, ☠, ☠, ☠..., ☠]
numberOfCountsStored:          2
Below we flush out the details of each operation and prove why it's correct:
Algorithm:
There are two main ideas: 1) we can never allow ourselves to read memory without verifying that is not garbage first, or if we do we must be able to prove that it was garbage, 2) we need to be able to prove in O(1) time that the piece of counter memory has been initialized, with only O(1) space. To go about this, the O(1) space we use is numberOfItemsStored. Each time we do an operation, we will go back to this number to prove that everything was correct (e.g. see ★ below). The representation invariant is that we will always store counts in counts going from left-to-right, so numberOfItemsStored will always be the maximum index of the array that is valid.
.search(e) -- Check locationsOfCounts[e]. We assume for now that the value is properly initialized and can be trusted. We proceed to check counts[loc], but first we check if counts[loc] has been initialized: it's initialized if 0<=loc<numberOfCountsStored (if not, the data is nonsensical so we return False). After checking that, we look up counts[loc] which gives us a number,count pair. If number!=e, we got here by following randomized garbage (nonsensical), so we return False (again as above)... but if indeed number==e, this proves that the count is correct (★proof: numberOfCountsStored is a witness that this particular counts[loc] is valid, and counts[loc].number is a witness that locationOfCounts[number] is valid, and thus our original lookup was not garbage.), so we would return True.
.insert(e) -- Perform the steps in .search(e). If it already exists, we only need to increment the count by 1. However if it doesn't exist, we must tack on a new entry to the right of the counts subarray. First we increment numberOfCountsStored to reflect the fact that this new count is valid: loc = numberOfCountsStored++. Then we tack on the new entry: counts[loc] = (e,⨯1). Finally we add a reference back to it in our dispatch table so we can look it up quickly locationOfCounts[e] = loc.
.delete(e) -- Perform the steps in .search(e). If it doesn't exist, throw an error. If the count is >= 2, all we need to do is decrement the count by 1. Otherwise the count is 1, and the trick here to ensure the whole numberOfCountsStored-counts[...] invariant (i.e. everything remains stored on the left part of counts) is to perform swaps. If deletion would get rid of the last element, we will have lost a counts pair, leaving a hole in our array: [countPair0, countPair1, _hole_, countPair2, countPair{numberOfItemsStored-1}, ☠, ☠, ☠..., ☠]. We swap this hole with the last countPair, decrement numberOfCountsStored to invalidate the hole, and update locationOfCounts[the_count_record_we_swapped.number] so it now points to the new location of the count record.
Here is an idea:
treat the array B[1..m] as a stack, and make a pointer p to point to the top of the stack (let p = 0 to indicate that no elements have been inserted into the data structure). Now, to insert an integer X, use the following procedure:
p++;
A[X] = p;
B[p] = X;
Searching should be pretty easy to see here (let X' be the integer you want to search for, then just check that 1 <= A[X'] <= p, and that B[A[X']] == X'). Deleting is trickier, but still constant time. The idea is to search for the element to confirm that it is there, then move something into its spot in B (a good choice is B[p]). Then update A to reflect the pointer value of the replacement element and pop off the top of the stack (e.g. set B[p] = -1 and decrement p).
It's easier to understand the question once you know the answer: an integer is in the set if A[X]<total_integers_stored && B[A[X]]==X.
The question is really asking if you can figure out how to create a data structure that is usable with a minimum of initialization.
I first saw the idea in Cameron's answer in Jon Bentley Programming Pearls.
The idea is pretty simple but it's not straightforward to see why the initial random values that may be on the uninitialized arrays does not matter. This link explains pretty well the insertion and search operations. Deletion is left as an exercise, but is answered by one of the commenters:
remove-member(i):
if not is-member(i): return
j = dense[n-1];
dense[sparse[i]] = j;
sparse[j] = sparse[i];
n = n - 1

Resources