How to reduce a matrix rank using some zeros? - matrix

I'm working of matrices having rank >1. It is possible to reduce the rank of a matrix to rank=1 substituing some values to zeros?

Rank in a matrix refers to how many of the column vectors are independent and non-zero (Or row vectors, but I was taught to always use column vectors). So, if you're willing to lose a lot of the information about the transformation your matrix is defining, you could create a matrix that's just the first non-zero column of your matrix, and everything else set to zero. Guaranteed to be rank 1.
However, that loses a whole lot of information about the transformation. Perhaps a more useful thing to do would be project your matrix onto a space of size 1x1. There are ways to do this in such a way that can create an injection from your matrix to the new space, guaranteeing that no two matrices produce an equivalent result. The first one that comes to mind is:
Let A be an n x m matrix
Let {P_i} be the ith prime number.
Let F(A) = {sum from i to (n * m)} {P_i} ^ (A_(i div n),(i mod m))
While this generates a single number, you can think of a single number as a 1 x 1 matrix, which, if non-zero, has rank 1.
All that being said, rank 1 matrices are kinda boring and you can do cooler stuff with matrices if you keep it at rank != 1. In particular, if you have an n x n matrix with rank n, a whole world of possibility opens up. It really depends on what you want to use these matrices for.

You might want to look at the singular value decomposition, which can be used to write your matrix as a sum of weighted outer products (see here). Choosing only the highest-weighted component of this sum will give you the closest rank-1 approximation to the decomposed matrix.
Most common linear algebra libraries (Eigen, OpenCV, NumPy) have an SVD implementation.

Related

How can I generate a random sparse matrix with a specific probability of symmetric entries?

I'm working on a program that sorts individuals into teams based on a sparse matrix with binary entries, each entry corresponding to whether or not i is willing to work with j and so on. I have the program running, but I need to be able to test it on random matrices to observe some relationships between the results and the parameters.
What I'd like to find is some way to generate a matrix that has a a certain number of non-zero entries per row and a certain probability of symmetrical entries. That is, I want to be able to assign a specific number for P(w_ji = 1 | w_ij = 1) and use that to generate a matrix. I don't want symmetric matrices, but modeling this with completely random matrices would be inaccurate, since a real-world willingness matrix tends to be at least somewhat symmetric.
Does anyone know of anything I could use to generate such a matrix? I generally use python (with gurobi) and am open to installing any number of other libraries to help if I have to. If anyone else here uses gurobi, I would appreciate input on whether or not I could model matrix generation like this as an optimization problem using something like this for an objective function:
min <= sum(w[i,j] * w[j,i] for i in... for j in...) <= max
Thank you!
If all you want is a coefficient matrix with random distribution of 0 and 1 values, the easiest option is to pick a probability and do Bernoulli trials as to whether the value is 1. (If it is zero, omit the element for sparseness).
Alternately, if you need a random permutation of a fixed number of 0's and 1's, then try something like:
import random
n = 50
k = 10
positions = sorted(random.sample(range(n), k))
The list positions represents the nonzero elements you need.
With a matrix representation, this would be a good candidate for the Gurobi matrix variable object, MVar.

Matrix Chain Multiplication Dynamic Programming

Assume that multiplying a matrix G1 of dimension p×q with another matrix G2 of dimension q×r requires pqr scalar multiplications. Computing the product of n matrices G1G2G3 ….. Gn can be done by parenthesizing in different ways. Define GiGi+1 as an explicitly computed pair for a given paranthesization if they are directly multiplied. For example, in the matrix multiplication chain G1G2G3G4G5G6 using parenthesization (G1(G2G3))(G4(G5G6)), G2G3 and G5G6 are only explicitly computed pairs.
Consider a matrix multiplication chain F1F2F3F4F5, where matrices F1,F2,F3,F4 and F5 are of dimensions 2×25,25×3,3×16,16×1 and 1×1000, respectively. In the parenthesization of F1F2F3F4F5 that minimizes the total number of scalar multiplications, the explicitly computed pairs is/are
F1F2 and F3F4 only
F2F3 only
F3F4 only
F2F3 and F4F5 only
=======================================================================
My approach - I want to solve this under one minute, but the only way I know is that to use Bottom up Dynamic Approach by making a table and the other thing I can conclude is we should multiply with F5 at last because it has 1000 in it's dimension.So, please how to develop fast intuition for this kind of question!
======================================================================
Correct answer is F3F4
The most important thing to note is the dimension 1×1000. You better watch out for it if you want to minimize the multiplications. OK, now we do know what we are looking for is basically multiply a small number with 1000.
Carefully examining if we go with F4F5, we would be multiplying 16x1x1000. But computing F3F4 first , the result matrix has dimension 3x1. So going with F3F4 we are able to get small numbers like 3,1 . So , no way im going with F4F5.
By similar logic I would not go with F2F3 and loose the smaller 3 and get bigger 25 and 16 to be later used with 1000.
OK, for F1F2, you can quickly find that (F1F2)(F3F4) is not better than
(F1(F2(F3F4))) . So the answer is F3F4

Fastest way to check if a vector increases matrix rank

Given an n-by-m matrix A, with it being guaranteed that n>m=rank(A), and given a n-by-1 column v, what is the fastest way to check if [A v] has rank strictly bigger than A?
For my application, A is sparse, n is about 2^12, and m is anywhere in 1:n-1.
Comparing rank(full([A v])) takes about a second on my machine, and I need to do it tens of thousands of times, so I would be very happy to discover a quicker way.
There is no need to do repeated solves IF you can afford to do ONE computation of the null space. Just one call to null will suffice. Given a new vector V, if the dot product with V and the nullspace basis is non-zero, then V will increase the rank of the matrix. For example, suppose we have the matrix M, which of course has a rank of 2.
M = [1 1;2 2;3 1;4 2];
nullM = null(M')';
Will a new column vector [1;1;1;1] increase the rank if we appended it to M?
nullM*[1;1;1;1]
ans =
-0.0321573705742971
-0.602164651199413
Yes, since it has a non-zero projection on at least one of the basis vectors in nullM.
How about this vector:
nullM*[0;0;1;1]
ans =
1.11022302462516e-16
2.22044604925031e-16
In this case, both numbers are essentially zero, so the vector in question would not have increased the rank of M.
The point is, only a simple matrix-vector multiplication is necessary once the null space basis has been generated. If your matrix is too large (and the matrix nearly of full rank) that a call to null will fail here, then you will need to do more work. However, n = 4096 is not excessively large as long as the matrix does not have too many columns.
One alternative if null is too much is a call to svds, to find those singular vectors that are essentially zero. These will form the nullspace basis that we need.
I would use sprank for sparse matrixes. Check it out, it might be faster than any other method.
Edit : As pointed out correctly by #IanHincks, it is not the rank. I am leaving the answer here, just in case someone else will need it in the future.
Maybe you can try to solve the system A*x=v, if it has a solution that means that the rank does not increase.
x=(B\A)';
norm(A*x-B) %% if this is small then the rank does not increase

Is there a fast way to invert a matrix in Matlab?

I have lots of large (around 5000 x 5000) matrices that I need to invert in Matlab. I actually need the inverse, so I can't use mldivide instead, which is a lot faster for solving Ax=b for just one b.
My matrices are coming from a problem that means they have some nice properties. First off, their determinant is 1 so they're definitely invertible. They aren't diagonalizable, though, or I would try to diagonlize them, invert them, and then put them back. Their entries are all real numbers (actually rational).
I'm using Matlab for getting these matrices and for this stuff I need to do with their inverses, so I would prefer a way to speed Matlab up. But if there is another language I can use that'll be faster, then please let me know. I don't know a lot of other languages (a little but of C and a little but of Java), so if it's really complicated in some other language, then I might not be able to use it. Please go ahead and suggest it, though, in case.
I actually need the inverse, so I can't use mldivide instead,...
That's not true, because you can still use mldivide to get the inverse. Note that A-1 = A-1 * I. In MATLAB, this is equivalent to
invA = A\speye(size(A));
On my machine, this takes about 10.5 seconds for a 5000x5000 matrix. Note that MATLAB does have an inv function to compute the inverse of a matrix. Although this will take about the same amount of time, it is less efficient in terms of numerical accuracy (more info in the link).
First off, their determinant is 1 so they're definitely invertible
Rather than det(A)=1, it is the condition number of your matrix that dictates how accurate or stable the inverse will be. Note that det(A)=∏i=1:n λi. So just setting λ1=M, λn=1/M and λi≠1,n=1 will give you det(A)=1. However, as M → ∞, cond(A) = M2 → ∞ and λn → 0, meaning your matrix is approaching singularity and there will be large numerical errors in computing the inverse.
My matrices are coming from a problem that means they have some nice properties.
Of course, there are other more efficient algorithms that can be employed if your matrix is sparse or has other favorable properties. But without any additional info on your specific problem, there is nothing more that can be said.
I would prefer a way to speed Matlab up
MATLAB uses Gauss elimination to compute the inverse of a general matrix (full rank, non-sparse, without any special properties) using mldivide and this is Θ(n3), where n is the size of the matrix. So, in your case, n=5000 and there are 1.25 x 1011 floating point operations. So on a reasonable machine with about 10 Gflops of computational power, you're going to require at least 12.5 seconds to compute the inverse and there is no way out of this, unless you exploit the "special properties" (if they're exploitable)
Inverting an arbitrary 5000 x 5000 matrix is not computationally easy no matter what language you are using. I would recommend looking into approximations. If your matrices are low rank, you might want to try a low-rank approximation M = USV'
Here are some more ideas from math-overflow:
https://mathoverflow.net/search?q=matrix+inversion+approximation
First suppose the eigen values are all 1. Let A be the Jordan canonical form of your matrix. Then you can compute A^{-1} using only matrix multiplication and addition by
A^{-1} = I + (I-A) + (I-A)^2 + ... + (I-A)^k
where k < dim(A). Why does this work? Because generating functions are awesome. Recall the expansion
(1-x)^{-1} = 1/(1-x) = 1 + x + x^2 + ...
This means that we can invert (1-x) using an infinite sum. You want to invert a matrix A, so you want to take
A = I - X
Solving for X gives X = I-A. Therefore by substitution, we have
A^{-1} = (I - (I-A))^{-1} = 1 + (I-A) + (I-A)^2 + ...
Here I've just used the identity matrix I in place of the number 1. Now we have the problem of convergence to deal with, but this isn't actually a problem. By the assumption that A is in Jordan form and has all eigen values equal to 1, we know that A is upper triangular with all 1s on the diagonal. Therefore I-A is upper triangular with all 0s on the diagonal. Therefore all eigen values of I-A are 0, so its characteristic polynomial is x^dim(A) and its minimal polynomial is x^{k+1} for some k < dim(A). Since a matrix satisfies its minimal (and characteristic) polynomial, this means that (I-A)^{k+1} = 0. Therefore the above series is finite, with the largest nonzero term being (I-A)^k. So it converges.
Now, for the general case, put your matrix into Jordan form, so that you have a block triangular matrix, e.g.:
A 0 0
0 B 0
0 0 C
Where each block has a single value along the diagonal. If that value is a for A, then use the above trick to invert 1/a * A, and then multiply the a back through. Since the full matrix is block triangular the inverse will be
A^{-1} 0 0
0 B^{-1} 0
0 0 C^{-1}
There is nothing special about having three blocks, so this works no matter how many you have.
Note that this trick works whenever you have a matrix in Jordan form. The computation of the inverse in this case will be very fast in Matlab because it only involves matrix multiplication, and you can even use tricks to speed that up since you only need powers of a single matrix. This may not help you, though, if it's really costly to get the matrix into Jordan form.

From an interview: Removing rows and columns in an n×n matrix to maximize the sum of remaining values

Given an n×n matrix of real numbers. You are allowed to erase any number (from 0 to n) of rows and any number (from 0 to n) of columns, and after that the sum of the remaining entries is computed. Come up with an algorithm which finds out which rows and columns to erase in order to maximize that sum.
The problem is NP-hard. (So you should not expect a polynomial-time algorithm for solving this problem. There could still be (non-polynomial time) algorithms that are slightly better than brute-force, though.) The idea behind the proof of NP-hardness is that if we could solve this problem, then we could solve the the clique problem in a general graph. (The maximum-clique problem is to find the largest set of pairwise connected vertices in a graph.)
Specifically, given any graph with n vertices, let's form the matrix A with entries a[i][j] as follows:
a[i][j] = 1 for i == j (the diagonal entries)
a[i][j] = 0 if the edge (i,j) is present in the graph (and i≠j)
a[i][j] = -n-1 if the edge (i,j) is not present in the graph.
Now suppose we solve the problem of removing some rows and columns (or equivalently, keeping some rows and columns) so that the sum of the entries in the matrix is maximized. Then the answer gives the maximum clique in the graph:
Claim: In any optimal solution, there is no row i and column j kept for which the edge (i,j) is not present in the graph. Proof: Since a[i][j] = -n-1 and the sum of all the positive entries is at most n, picking (i,j) would lead to a negative sum. (Note that deleting all rows and columns would give a better sum, of 0.)
Claim: In (some) optimal solution, the set of rows and columns kept is the same. This is because starting with any optimal solution, we can simply remove all rows i for which column i has not been kept, and vice-versa. Note that since the only positive entries are the diagonal ones, we do not decrease the sum (and by the previous claim, we do not increase it either).
All of which means that if the graph has a maximum clique of size k, then our matrix problem has a solution with sum k, and vice-versa. Therefore, if we could solve our initial problem in polynomial time, then the clique problem would also be solved in polynomial time. This proves that the initial problem is NP-hard. (Actually, it is easy to see that the decision version of the initial problem — is there a way of removing some rows and columns so that the sum is at least k — is in NP, so the (decision version of the) initial problem is actually NP-complete.)
Well the brute force method goes something like this:
For n rows there are 2n subsets.
For n columns there are 2n subsets.
For an n x n matrix there are 22n subsets.
0 elements is a valid subset but obviously if you have 0 rows or 0 columns the total is 0 so there are really 22n-2+1 subsets but that's no different.
So you can work out each combination by brute force as an O(an) algorithm. Fast. :)
It would be quicker to work out what the maximum possible value is and you do that by adding up all the positive numbers in the grid. If those numbers happen to form a valid sub-matrix (meaning you can create that set by removing rows and/or columns) then there's your answer.
Implicit in this is that if none of the numbers are negative then the complete matrix is, by definition, the answer.
Also, knowing what the highest possible maximum is possibly allows you to shortcut the brute force evaluation since if you get any combination equal to that maximum then that is your answer and you can stop checking.
Also if all the numbers are non-positive, the answer is the maximum value as you can reduce the matrix to a 1 x 1 matrix with that 1 value in it, by definition.
Here's an idea: construct 2n-1 n x m matrices where 1 <= m <= n. Process them one after the other. For each n x m matrix you can calculate:
The highest possible maximum sum (as per above); and
Whether no numbers are positive allowing you to shortcut the answer.
if (1) is below the currently calculate highest maximum sum then you can discard this n x m matrix. If (2) is true then you just need a simple comparison to the current highest maximum sum.
This is generally referred to as a pruning technique.
What's more you can start by saying that the highest number in the n x n matrix is the starting highest maximum sum since obviously it can be a 1 x 1 matrix.
I'm sure you could tweak this into a (slightly more) efficient recursive tree-based search algorithm with the above tests effectively allowing you to eliminate (hopefully many) unnecessary searches.
We can improve on Cletus's generalized brute-force solution by modelling this as a directed graph. The initial matrix is the start node of the graph; its leaves are all the matrices missing one row or column, and so forth. It's a graph rather than a tree, because the node for the matrix without both the first column and row will have two parents - the nodes with just the first column or row missing.
We can optimize our solution by turning the graph into a tree: There's never any point exploring a submatrix with a column or row deleted that comes before the one we deleted to get to the current node, as that submatrix will be arrived at anyway.
This is still a brute-force search, of course - but we've eliminated the duplicate cases where we remove the same rows in different orders.
Here's an example implementation in Python:
def maximize_sum(m):
frontier = [(m, 0, False)]
best = None
best_score = 0
while frontier:
current, startidx, cols_done = frontier.pop()
score = matrix_sum(current)
if score > best_score or not best:
best = current
best_score = score
w, h = matrix_size(current)
if not cols_done:
for x in range(startidx, w):
frontier.append((delete_column(current, x), x, False))
startidx = 0
for y in range(startidx, h):
frontier.append((delete_row(current, y), y, True))
return best_score, best
And here's the output on 280Z28's example matrix:
>>> m = ((1, 1, 3), (1, -89, 101), (1, 102, -99))
>>> maximize_sum(m)
(106, [(1, 3), (1, 101)])
Since nobody asked for an efficient algorithm, use brute force: generate every possible matrix that can be created by removing rows and/or columns from the original matrix, choose the best one. A slightly more efficent version, which most likely can be proved to still be correct, is to generate only those variants where the removed rows and columns contain at least one negative value.
To try it in a simple way:
We need the valid subset of the set of entries {A00, A01, A02, ..., A0n, A10, ...,Ann} which max. sum.
First compute all subsets (the power set).
A valid subset is a member of the power set that for each two contained entries Aij and A(i+x)(j+y), contains also the elements A(i+x)j and Ai(j+y) (which are the remaining corners of the rectangle spanned by Aij and A(i+x)(j+y)).
Aij ...
. .
. .
... A(i+x)(j+y)
By that you can eliminate the invalid ones from the power set and find the one with the biggest sum in the remaining.
I'm sure it can be improved by improving an algorithm for power set generation in order to generate only valid subsets and by that avoiding step 2 (adjusting the power set).
I think there are some angles of attack that might improve upon brute force.
memoization, since there are many distinct sequences of edits that will arrive at the same submatrix.
dynamic programming. Because the search space of matrices is highly redundant, my intuition is that there would be a DP formulation that can save a lot of repeated work
I think there's a heuristic approach, but I can't quite nail it down:
if there's one negative number, you can either take the matrix as it is, remove the column of the negative number, or remove its row; I don't think any other "moves" result in a higher sum. For two negative numbers, your options are: remove neither, remove one, remove the other, or remove both (where the act of removal is either by axing the row or the column).
Now suppose the matrix has only one positive number and the rest are all <=0. You clearly want to remove everything but the positive entry. For a matrix with only 2 positive entries and the rest <= 0, the options are: do nothing, whittle down to one, whittle down to the other, or whittle down to both (resulting in a 1x2, 2x1, or 2x2 matrix).
In general this last option falls apart (imagine a matrix with 50 positives & 50 negatives), but depending on your data (few negatives or few positives) it could provide a shortcut.
Create an n-by-1 vector RowSums, and an n-by-1 vector ColumnSums. Initialize them to the row and column sums of the original matrix. O(n²)
If any row or column has a negative sum, remove edit: the one with the minimum such and update the sums in the other direction to reflect their new values. O(n)
Stop when no row or column has a sum less than zero.
This is an iterative variation improving on another answer. It operates in O(n²) time, but fails for some cases mentioned in other answers, which is the complexity limit for this problem (there are n² entries in the matrix, and to even find the minimum you have to examine each cell once).
Edit: The following matrix has no negative rows or columns, but is also not maximized, and my algorithm doesn't catch it.
1 1 3 goal 1 3
1 -89 101 ===> 1 101
1 102 -99
The following matrix does have negative rows and columns, but my algorithm selects the wrong ones for removal.
-5 1 -5 goal 1
1 1 1 ===> 1
-10 2 -10 2
mine
===> 1 1 1
Compute the sum of each row and column. This can be done in O(m) (where m = n^2)
While there are rows or columns that sum to negative remove the row or column that has the lowest sum that is less than zero. Then recompute the sum of each row/column.
The general idea is that as long as there is a row or a column that sums to nevative, removing it will result in a greater overall value. You need to remove them one at a time and recompute because in removing that one row/column you are affecting the sums of the other rows/columns and they may or may not have negative sums any more.
This will produce an optimally maximum result. Runtime is O(mn) or O(n^3)
I cannot really produce an algorithm on top of my head, but to me it 'smells' like dynamic programming, if it serves as a start point.
Big Edit: I honestly don't think there's a way to assess a matrix and determine it is maximized, unless it is completely positive.
Maybe it needs to branch, and fathom all elimination paths. You never no when a costly elimination will enable a number of better eliminations later. We can short circuit if it's found the theoretical maximum, but other than any algorithm would have to be able to step forward and back. I've adapted my original solution to achieve this behaviour with recursion.
Double Secret Edit: It would also make great strides to reduce to complexity if each iteration didn't need to find all negative elements. Considering that they don't change much between calls, it makes more sense to just pass their positions to the next iteration.
Takes a matrix, the list of current negative elements in the matrix, and the theoretical maximum of the initial matrix. Returns the matrix's maximum sum and the list of moves required to get there. In my mind move list contains a list of moves denoting the row/column removed from the result of the previous operation.
Ie: r1,r1
Would translate
-1 1 0 1 1 1
-4 1 -4 5 7 1
1 2 4 ===>
5 7 1
Return if sum of matrix is the theoretical maximum
Find the positions of all negative elements unless an empty set was passed in.
Compute sum of matrix and store it along side an empty move list.
For negative each element:
Calculate the sum of that element's row and column.
clone the matrix and eliminate which ever collection has the minimum sum (row/column) from that clone, note that action as a move list.
clone the list of negative elements and remove any that are effected by the action taken in the previous step.
Recursively call this algorithm providing the cloned matrix, the updated negative element list and the theoretical maximum. Append the moves list returned to the move list for the action that produced the matrix passed to the recursive call.
If the returned value of the recursive call is greater than the stored sum, replace it and store the returned move list.
Return the stored sum and move list.
I'm not sure if it's better or worse than the brute force method, but it handles all the test cases now. Even those where the maximum contains negative values.
This is an optimization problem and can be solved approximately by an iterative algorithm based on simulated annealing:
Notation: C is number of columns.
For J iterations:
Look at each column and compute the absolute benefit of toggling it (turn it off if it's currently on or turn it on if it's currently off). That gives you C values, e.g. -3, 1, 4. A greedy deterministic solution would just pick the last action (toggle the last column to get a benefit of 4) because it locally improves the objective. But that might lock us into a local optimum. Instead, we probabilistically pick one of the three actions, with probabilities proportional to the benefits. To do this, transform them into a probability distribution by putting them through a Sigmoid function and normalizing. (Or use exp() instead of sigmoid()?) So for -3, 1, 4 you get 0.05, 0.73, 0.98 from the sigmoid and 0.03, 0.42, 0.56 after normalizing. Now pick the action according to the probability distribution, e.g. toggle the last column with probability 0.56, toggle the second column with probability 0.42, or toggle the first column with the tiny probability 0.03.
Do the same procedure for the rows, resulting in toggling one of the rows.
Iterate for J iterations until convergence.
We may also, in early iterations, make each of these probability distributions more uniform, so that we don't get locked into bad decisions early on. So we'd raise the unnormalized probabilities to a power 1/T, where T is high in early iterations and is slowly decreased until it approaches 0. For example, 0.05, 0.73, 0.98 from above, raised to 1/10 results in 0.74, 0.97, 1.0, which after normalization is 0.27, 0.36, 0.37 (so it's much more uniform than the original 0.05, 0.73, 0.98).
It's clearly NP-Complete (as outlined above). Given this, if I had to propose the best algorithm I could for the problem:
Try some iterations of quadratic integer programming, formulating the problem as: SUM_ij a_ij x_i y_j, with the x_i and y_j variables constrained to be either 0 or 1. For some matrices I think this will find a solution quickly, for the hardest cases it would be no better than brute force (and not much would be).
In parallel (and using most of the CPU), use a approximate search algorithm to generate increasingly better solutions. Simulating Annealing was suggested in another answer, but having done research on similar combinatorial optimisation problems, my experience is that tabu search would find good solutions faster. This is probably close to optimal in terms of wandering between distinct "potentially better" solutions in the shortest time, if you use the trick of incrementally updating the costs of single changes (see my paper "Graph domination, tabu search and the football pool problem").
Use the best solution so far from the second above to steer the first by avoiding searching possibilities that have lower bounds worse than it.
Obviously this isn't guaranteed to find the maximal solution. But, it generally would when this is feasible, and it would provide a very good locally maximal solution otherwise. If someone had a practical situation requiring such optimisation, this is the solution that I'd think would work best.
Stopping at identifying that a problem is likely to be NP-Complete will not look good in a job interview! (Unless the job is in complexity theory, but even then I wouldn't.) You need to suggest good approaches - that is the point of a question like this. To see what you can come up with under pressure, because the real world often requires tackling such things.
yes, it's NP-complete problem.
It's hard to easily find the best sub-matrix,but we can easily to find some better sub-matrix.
Assume that we give m random points in the matrix as "feeds". then let them to automatically extend by the rules like :
if add one new row or column to the feed-matrix, ensure that the sum will be incrementive.
,then we can compare m sub-matrix to find the best one.
Let's say n = 10.
Brute force (all possible sets of rows x all possible sets of columns) takes
2^10 * 2^10 =~ 1,000,000 nodes.
My first approach was to consider this a tree search, and use
the sum of positive entries is an upper bound for every node in the subtree
as a pruning method. Combined with a greedy algorithm to cheaply generate good initial bounds, this yielded answers in about 80,000 nodes on average.
but there is a better way ! i later realised that
Fix some choice of rows X.
Working out the optimal columns for this set of rows is now trivial (keep a column if its sum of its entries in the rows X is positive, otherwise discard it).
So we can just brute force over all possible choices of rows; this takes 2^10 = 1024 nodes.
Adding the pruning method brought this down to 600 nodes on average.
Keeping 'column-sums' and incrementally updating them when traversing the tree of row-sets should allow the calculations (sum of matrix etc) at each node to be O(n) instead of O(n^2). Giving a total complexity of O(n * 2^n)
For slightly less than optimal solution, I think this is a PTIME, PSPACE complexity issue.
The GREEDY algorithm could run as follows:
Load the matrix into memory and compute row totals. After that run the main loop,
1) Delete the smallest row,
2) Subtract the newly omitted values from the old row totals
--> Break when there are no more negative rows.
Point two is a subtle detail: subtracted two rows/columns has time complexity n.
While re-summing all but two columns has n^2 time complexity!
Take each row and each column and compute the sum. For a 2x2 matrix this will be:
2 1
3 -10
Row(0) = 3
Row(1) = -7
Col(0) = 5
Col(1) = -9
Compose a new matrix
Cost to take row Cost to take column
3 5
-7 -9
Take out whatever you need to, then start again.
You just look for negative values on the new matrix. Those are values that actually substract from the overall matrix value. It terminates when there're no more negative "SUMS" values to take out (therefore all columns and rows SUM something to the final result)
In an nxn matrix that would be O(n^2)Log(n) I think
function pruneMatrix(matrix) {
max = -inf;
bestRowBitField = null;
bestColBitField = null;
for(rowBitField=0; rowBitField<2^matrix.height; rowBitField++) {
for (colBitField=0; colBitField<2^matrix.width; colBitField++) {
sum = calcSum(matrix, rowBitField, colBitField);
if (sum > max) {
max = sum;
bestRowBitField = rowBitField;
bestColBitField = colBitField;
}
}
}
return removeFieldsFromMatrix(bestRowBitField, bestColBitField);
}
function calcSumForCombination(matrix, rowBitField, colBitField) {
sum = 0;
for(i=0; i<matrix.height; i++) {
for(j=0; j<matrix.width; j++) {
if (rowBitField & 1<<i && colBitField & 1<<j) {
sum += matrix[i][j];
}
}
}
return sum;
}

Resources