No member named dim in Halide::GeneratorInput<Halide::Func> - halide

I'm trying to translate the resize app from the halide repository from the inline declarations to a generator. Everything seems to work fine, except for this:
Func clamped = BoundaryConditions::repeat_edge(input);`
In the original code, input is declared like so ImageParam input(Float(32), 3). In my generator, I've translated this to: Input<Func> input { "input", Float(32), 3 }. I'm then declaring the clamped in the exact same way as the original code. When compiling, I'm getting this error:
Halide.h:15202:50: error: no member named 'dim' in 'Halide::GeneratorInput<Halide::Func>'
object_bounds.push_back({ Expr(func_like.dim(i).min()), Expr(func_like.dim(i).extent()) });
~~~~~~~~~ ^
Is there a way to create a BoundaryConditions::repeat_edge on an Input<Func>?

There is, associate a Buffer<> with it. (Maybe a Buffer in your case, try it out).
struct MyGen : Generator<MyGen> {
Input<Buffer<>> dim_only_input_buffer{ "dim_only_input_buffer", 3 };
...
};
I ran into something similar, you can see more about this in this github issue

The idea of Input<Func> is that it may be instantiated with another Func when composing generators together. (E.g. the output of one generator may be the input to another and the graph of all connected generators is compiled as a single Halide program.) The problem is Funcs do not have fixed bounds like Buffers do. Hence one cannot ask for (e.g.) the width of a Func.
For a generator which is designed to always be used with concrete memory, one can use Input. To impose a boundary condition on an Input, the bounds need to be passed as explicit parameters to the generator. E.g. as other Inputs.

Related

Refactoring Business Rule, Function Naming, Width, Height, Position X & Y

I am refactoring some business rule functions to provide a more generic version of the function.
The functions I am refactoring are:
DetermineWindowWidth
DetermineWindowHeight
DetermineWindowPositionX
DetermineWindowPositionY
All of them do string parsing, as it is a string parsing business rules engine.
My question is what would be a good name for the newly refactored function?
Obviously I want to shy away from a function name like:
DetermineWindowWidthHeightPositionXPositionY
I mean that would work, but it seems unnecessarily long when it could be something like:
DetermineWindowMoniker or something to that effect.
Function objective: Parse an input string like 1280x1024 or 200,100 and return either the first or second number. The use case is for data-driving test automation of a web browser window, but this should be irrelevant to the answer.
Question objective: I have the code to do this, so my question is not about code, but just the function name. Any ideas?
There are too little details, you should have specified at least the parameters and returns of the functions.
Have I understood correctly that you use strings of the format NxN for sizes and N,N for positions?
And that this generic function will have to parse both (and nothing else), and will return either the first or second part depending on a parameter of the function?
And that you'll then keep the various DetermineWindow* functions but make them all call this generic function?
If so:
Without knowing what parameters the generic function has it's even harder to help, but it's most likely impossible to give it a simple name.
Not all batches of code can be described by a simple name.
You'll most likely need to use a different construction if you want to have clear names. Here's an idea, in pseudo code:
ParseSize(string, outWidth, outHeight) {
ParsePair(string, "x", outWidht, outHeight)
}
ParsePosition(string, outX, outY) {
ParsePair(string, ",", outX, outY)
}
ParsePair(string, separator, outFirstItem, outSecondItem) {
...
}
And the various DetermineWindow would call ParseSize or ParsePosition.
You could also use just ParsePair, directly, but I thinks it's cleaner to have the two other functions in the middle.
Objects
Note that you'd probably get cleaner code by using objects rather than strings (a Size and a Position one, and probably a Pair one too).
The ParsePair code (adapted appropriately) would be included in a constructor or factory method that gives you a Pair out of a string.
---
Of course you can give other names to the various functions, objects and parameters, here I used the first that came to my mind.
It seems this question-answer provides a good starting point to answer this question:
Appropriate name for container of position, size, angle
A search on www.thesaurus.com for "Property" gives some interesting possible answers that provide enough meaningful context to the usage:
Aspect
Character
Characteristic
Trait
Virtue
Property
Quality
Attribute
Differentia
Frame
Constituent
I think ConstituentProperty is probably the most apt.

Changing behavior based on number of return arguments like type assertions

I've been learning Go and one thing that stood out as particularly interesting to me is the way that the behavior of type assertions changes based on how many return values are being captured:
var i interface{} = "hello"
val, ok := i.(int) // All good
fmt.Println(val, ok)
val = i.(int) // Panics
fmt.Println(val)
This feels like a pattern that can be very useful for user defined functions. The user either has to explicitly get the "ok" second return value or use an underscore to ignore it. In either case, they're making it clear that they're aware that the function can fail. Whereas if they just get one return value, it could silently fail. Hence, it seems reasonable to panic or similar if the user isn't checking for an error (which would be reasonable if the error should "never" happen). I assume that's the logic behind the language developers in making type assertions work this way.
But when I tried to find out how that could be done, I found nothing. I'm aware that type assertions aren't an actual function. And many languages with multiple return values can't check how many return values are actually being used (MATLAB is the only one I'm aware of), but then again, most of those don't use behavior like the type assertions demonstrate.
So, is it possible and if so, how? If not, is there a particular reason that this behavior was excluded despite it being possible with the built in type assertions?
Sadly they cannot be used in normal functions. As far as i know only type assertions, map value access and range allow it.
Usually when you want to have a function with one and optional a second error argument you name them like
func DoSomething() (string, error) {...} // i will return an error
func MustDoSomething() string {...} // i will panic
An example would be https://golang.org/pkg/regexp/#MustCompile
This answer: https://stackoverflow.com/a/41816171/10278 by #christian provides the best practical advice for how to emulate the "overloaded-on-result-count" pattern.
My aim is to address another part of the question—this part: "But when I tried to find out how that could be done, I found nothing".
The following explains how it is done for Go type assertions.
Invocations of type assertions in Go behave as though they are overloaded based on number of results.
Yet, Go does not support overloading of methods and operators.
Looking at Go's implementation, here is the reason type assertions appear to be overloaded based on number of results:
The Go compiler provides special handling that is peculiar to these built-in operations.
This special dispatching occurs for the built-in concept of type assertions because the compiler is carving out special logic that is not available to non-built-in code.
The Go compiler and runtime are written in Go. That made it (somewhat) easy for me to discover that the compiler is the key to explaining this behavior.
Take a look at this part of the compiler:
https://github.com/golang/go/blob/8d86ef2/src/cmd/compile/internal/gc/ssa.go#L4782
The code comment already reveals a lot:
// dottype generates SSA for a type assertion node.
// commaok indicates whether to panic or return a bool.
// If commaok is false, resok will be nil.
We can go further by using a debugger to step through some type assertion code.
Take this playground snippet for example. Specifically, these lines:
object_as_closer_hardstop := thing.(io.Closer) // will panic!!
object_as_closer, ok := thing.(io.Closer)
(If you build Go from source, then) if you use a debugger to step into the first type assertion, you will end up at the following code in the Go runtime:
https://github.com/golang/go/blob/8d86ef2/src/runtime/iface.go#L438
If you step into the second one, you end up at:
https://github.com/golang/go/blob/8d86ef2/src/runtime/iface.go#L454
On line 438, you see func assertI2I (with a single return value). A bit lower, on line 454, you see assertI2I2. Note that these two functions have nearly identical names, but not quite!
The second function has a trailing 2 at the end of its name. That function also has two returned results.
As we expect:
assertI2I can panic, but
assertI2I2 cannot.
(Look at the function bodies in iface.go and note which contains panic.)
assertI2I and assertI2I2 abide by the overloading rules we expect. If they were to differ only by number of results, then those of us who compile Go from source would be unable to compile the Go runtime, due to a compiler error such as "assertI2I redeclared".
Users of the language are generally not aware of these builtin runtime functions, so on the surface, both lines of code seem to call the same function:
object_as_closer_hardstop := thing.(io.Closer) // will panic!!
object_as_closer, ok := thing.(io.Closer)
However, at compile time the compiler branches based on whether it found the case "commaok":
https://github.com/golang/go/blob/8d86ef2/src/cmd/compile/internal/gc/ssa.go#L4871
Our own end-user code does not get to modify Go's lexing/parsing/AST-walking in order to dispatch different flavors of our functions based on "commaok".
For better or for worse, that is why user-written code cannot leverage this pattern.

Halide::Expr' is not contextually convertible to 'bool' -- Storing values of functions in variables

I am new to using Halide and I am playing around with implementing algorithms first. I am trying to write a function which, depending on the value of the 8 pixels around it, either skips to the next pixel or does some processing and then moves on to the next pixel. When trying to write this I get the following compiler error:
84:5: error: value of type 'Halide::Expr' is not contextually convertible to 'bool'
if(input(x,y) > 0)
I have done all the tutorials and have seen that the select function is an option, but is there a way to either compare the values of a function or store them somewhere?
I also may be thinking about this problem wrong or might not be implementing it with the right "Halide mindset", so any suggestions would be great. Thank you in advance for everything!
The underlying issue here is that, although they are syntactically interleaved, and Halide code is constructed by running C++ code, Halide code is not C++ code and vice versa. Halide code is entirely defined by the Halide::* data structures you build up inside Funcs. if is a C control flow construct; you can use it to conditionally build different Halide programs, but you can't use it inside the logic of the Halide program (inside an Expr/Func). select is to Halide (an Expr which conditionally evaluates to one of two values) as if/else is to C (a statement which conditionally executes one of two sub-statements).
Rest assured, you're hardly alone in having this confusion early on. I want to write a tutorial specifically addressing how to think about staged programming inside Halide.
Until then, the short, "how do I do what I want" answer is as you suspected and as Khouri pointed out: use a select.
Since you've provided no code other than the one line, I'm assuming input is a Func and both x and y are Vars. If so, the result of input(x,y) is an Expr that you cannot evaluate with an if, as the error message indicates.
For the scenario that you describe, you might have something like this:
Var x, y;
Func input; input(x,y) = ...;
Func output; output(x,y) = select
// examine surrounding values
( input(x-1,y-1) > 0
&& input(x+0,y-1) > 0
&& ...
&& input(x+1,y+1) > 0
// true case
, ( input(x-1,y-1)
+ input(x+0,y-1)
+ ...
+ input(x+1,y+1)
) / 8
// false case
, input(x,y)
);
Working in Halide definitely requires a different mindset. You have to think in a more mathematical form. That is, a statement of a(x,y) = b(x,y) will be enforced for all cases of x and y.
Algorithm and scheduling should be separate, although the algorithm may need to be tweaked to allow for better scheduling.

Vectorize object oriented implementation in MATLAB

I'm trying to optimize a given object oriented code in matlab. It is an economical model and consists of a Market and Agents. The time consuming part is to update certain attributes of all Agents during each timestep which is implemented in a for loop.
However, I fail to vectorize the object oriented code.
Here is an example (Note, the second thing that slows down the code so far is the fact, that new entries are attached to the end of the vector. I'm aware of that and will fix that also):
for i=1:length(obj.traders)
obj.traders(i).update(obj.Price,obj.Sentiment(end),obj.h);
end
Where update looks like
function obj=update(obj,price,s,h)
obj.pos(end+1)=obj.p;
obj.wealth(end+1)=obj.w(1,1,1);
obj.g(end+1)=s;
obj.price=price;
obj.Update_pos(sentiment,h);
if (obj.c)
obj.Switch_Pos;
end
...
My first idea was to try something like
obj.traders(:).update(obj.Price,obj.Sentiment(end),obj.h);
Which didn't work. If someone has any suggestions how to vectorize this code, while keeping the object oriented implementation, I would be very happy.
I cannot provide a complete solution as this depends on the details of your implementation, but here are some tips which you could use to improve your code:
Remembering that a MATLAB object generally behaves like a struct, assignment of a constant value to a field can be done using [obj.field] =​deal(val); e.g.:
[obj.trader.price] = deal(obj.Price);
This can also be extended to non-constant RHS, using cell, like so:
[aStruct.(fieldNamesCell{idx})] = deal(valueCell{:}); %// or deal(numericVector(:));
To improve the update function, I would suggest making several lines where you create the RHS vectors\cells followed by "simultaneous" assignment to all relevant fields of the objects in the array.
Other than that consider:
setfield: s = setfield(s,{sIndx1,...,sIndxM},'field',{fIndx1,...,fIndxN},value);
structfun:
s = structfun(#(x)x(1:3), s, 'UniformOutput', false, 'ErrorHandler', #errfn);
"A loop-based solution can be flexible and easily readable".
P.S.
On a side note, I'd suggest you name the obj in your functions according to the class name, which would make it more readable to others, i.e.:
function obj=update(obj,price,s,h) => function traderObj=update(traderObj,price,s,h)

Using function arguments as local variables

Something like this (yes, this doesn't deal with some edge cases - that's not the point):
int CountDigits(int num) {
int count = 1;
while (num >= 10) {
count++;
num /= 10;
}
return count;
}
What's your opinion about this? That is, using function arguments as local variables.
Both are placed on the stack, and pretty much identical performance wise, I'm wondering about the best-practices aspects of this.
I feel like an idiot when I add an additional and quite redundant line to that function consisting of int numCopy = num, however it does bug me.
What do you think? Should this be avoided?
As a general rule, I wouldn't use a function parameter as a local processing variable, i.e. I treat function parameters as read-only.
In my mind, intuitively understandabie code is paramount for maintainability, and modifying a function parameter to use as a local processing variable tends to run counter to that goal. I have come to expect that a parameter will have the same value in the middle and bottom of a method as it does at the top. Plus, an aptly-named local processing variable may improve understandability.
Still, as #Stewart says, this rule is more or less important depending on the length and complexity of the function. For short simple functions like the one you show, simply using the parameter itself may be easier to understand than introducing a new local variable (very subjective).
Nevertheless, if I were to write something as simple as countDigits(), I'd tend to use a remainingBalance local processing variable in lieu of modifying the num parameter as part of local processing - just seems clearer to me.
Sometimes, I will modify a local parameter at the beginning of a method to normalize the parameter:
void saveName(String name) {
name = (name != null ? name.trim() : "");
...
}
I rationalize that this is okay because:
a. it is easy to see at the top of the method,
b. the parameter maintains its the original conceptual intent, and
c. the parameter is stable for the rest of the method
Then again, half the time, I'm just as apt to use a local variable anyway, just to get a couple of extra finals in there (okay, that's a bad reason, but I like final):
void saveName(final String name) {
final String normalizedName = (name != null ? name.trim() : "");
...
}
If, 99% of the time, the code leaves function parameters unmodified (i.e. mutating parameters are unintuitive or unexpected for this code base) , then, during that other 1% of the time, dropping a quick comment about a mutating parameter at the top of a long/complex function could be a big boon to understandability:
int CountDigits(int num) {
// num is consumed
int count = 1;
while (num >= 10) {
count++;
num /= 10;
}
return count;
}
P.S. :-)
parameters vs arguments
http://en.wikipedia.org/wiki/Parameter_(computer_science)#Parameters_and_arguments
These two terms are sometimes loosely used interchangeably; in particular, "argument" is sometimes used in place of "parameter". Nevertheless, there is a difference. Properly, parameters appear in procedure definitions; arguments appear in procedure calls.
So,
int foo(int bar)
bar is a parameter.
int x = 5
int y = foo(x)
The value of x is the argument for the bar parameter.
It always feels a little funny to me when I do this, but that's not really a good reason to avoid it.
One reason you might potentially want to avoid it is for debugging purposes. Being able to tell the difference between "scratchpad" variables and the input to the function can be very useful when you're halfway through debugging.
I can't say it's something that comes up very often in my experience - and often you can find that it's worth introducing another variable just for the sake of having a different name, but if the code which is otherwise cleanest ends up changing the value of the variable, then so be it.
One situation where this can come up and be entirely reasonable is where you've got some value meaning "use the default" (typically a null reference in a language like Java or C#). In that case I think it's entirely reasonable to modify the value of the parameter to the "real" default value. This is particularly useful in C# 4 where you can have optional parameters, but the default value has to be a constant:
For example:
public static void WriteText(string file, string text, Encoding encoding = null)
{
// Null means "use the default" which we would document to be UTF-8
encoding = encoding ?? Encoding.UTF8;
// Rest of code here
}
About C and C++:
My opinion is that using the parameter as a local variable of the function is fine because it is a local variable already. Why then not use it as such?
I feel silly too when copying the parameter into a new local variable just to have a modifiable variable to work with.
But I think this is pretty much a personal opinion. Do it as you like. If you feel sill copying the parameter just because of this, it indicates your personality doesn't like it and then you shouldn't do it.
If I don't need a copy of the original value, I don't declare a new variable.
IMO I don't think mutating the parameter values is a bad practice in general,
it depends on how you're going to use it in your code.
My team coding standard recommends against this because it can get out of hand. To my mind for a function like the one you show, it doesn't hurt because everyone can see what is going on. The problem is that with time functions get longer, and they get bug fixes in them. As soon as a function is more than one screen full of code, this starts to get confusing which is why our coding standard bans it.
The compiler ought to be able to get rid of the redundant variable quite easily, so it has no efficiency impact. It is probably just between you and your code reviewer whether this is OK or not.
I would generally not change the parameter value within the function. If at some point later in the function you need to refer to the original value, you still have it. in your simple case, there is no problem, but if you add more code later, you may refer to 'num' without realizing it has been changed.
The code needs to be as self sufficient as possible. What I mean by that is you now have a dependency on what is being passed in as part of your algorithm. If another member of your team decides to change this to a pass by reference then you might have big problems.
The best practice is definitely to copy the inbound parameters if you expect them to be immutable.
I typically don't modify function parameters, unless they're pointers, in which case I might alter the value that's pointed to.
I think the best-practices of this varies by language. For example, in Perl you can localize any variable or even part of a variable to a local scope, so that changing it in that scope will not have any affect outside of it:
sub my_function
{
my ($arg1, $arg2) = #_; # get the local variables off the stack
local $arg1; # changing $arg1 here will not be visible outside this scope
$arg1++;
local $arg2->{key1}; # only the key1 portion of the hashref referenced by $arg2 is localized
$arg2->{key1}->{key2} = 'foo'; # this change is not visible outside the function
}
Occasionally I have been bitten by forgetting to localize a data structure that was passed by reference to a function, that I changed inside the function. Conversely, I have also returned a data structure as a function result that was shared among multiple systems and the caller then proceeded to change the data by mistake, affecting these other systems in a difficult-to-trace problem usually called action at a distance. The best thing to do here would be to make a clone of the data before returning it*, or make it read-only**.
* In Perl, see the function dclone() in the built-in Storable module.
** In Perl, see lock_hash() or lock_hash_ref() in the built-in Hash::Util module).

Resources