I'm trying to optimize a given object oriented code in matlab. It is an economical model and consists of a Market and Agents. The time consuming part is to update certain attributes of all Agents during each timestep which is implemented in a for loop.
However, I fail to vectorize the object oriented code.
Here is an example (Note, the second thing that slows down the code so far is the fact, that new entries are attached to the end of the vector. I'm aware of that and will fix that also):
for i=1:length(obj.traders)
obj.traders(i).update(obj.Price,obj.Sentiment(end),obj.h);
end
Where update looks like
function obj=update(obj,price,s,h)
obj.pos(end+1)=obj.p;
obj.wealth(end+1)=obj.w(1,1,1);
obj.g(end+1)=s;
obj.price=price;
obj.Update_pos(sentiment,h);
if (obj.c)
obj.Switch_Pos;
end
...
My first idea was to try something like
obj.traders(:).update(obj.Price,obj.Sentiment(end),obj.h);
Which didn't work. If someone has any suggestions how to vectorize this code, while keeping the object oriented implementation, I would be very happy.
I cannot provide a complete solution as this depends on the details of your implementation, but here are some tips which you could use to improve your code:
Remembering that a MATLAB object generally behaves like a struct, assignment of a constant value to a field can be done using [obj.field] =​deal(val); e.g.:
[obj.trader.price] = deal(obj.Price);
This can also be extended to non-constant RHS, using cell, like so:
[aStruct.(fieldNamesCell{idx})] = deal(valueCell{:}); %// or deal(numericVector(:));
To improve the update function, I would suggest making several lines where you create the RHS vectors\cells followed by "simultaneous" assignment to all relevant fields of the objects in the array.
Other than that consider:
setfield: s = setfield(s,{sIndx1,...,sIndxM},'field',{fIndx1,...,fIndxN},value);
structfun:
s = structfun(#(x)x(1:3), s, 'UniformOutput', false, 'ErrorHandler', #errfn);
"A loop-based solution can be flexible and easily readable".
P.S.
On a side note, I'd suggest you name the obj in your functions according to the class name, which would make it more readable to others, i.e.:
function obj=update(obj,price,s,h) => function traderObj=update(traderObj,price,s,h)
Related
I have a method that builds a laptop's attributes, but only if the attributes are present within a row that is given to the method:
def build_laptop_attributes desk_id, row, laptop
attributes = {}
attributes[:desk_number] = room_id if laptop && desk_id
attributes[:status] = row[:state].downcase if row[:state]
attributes[:ip_address] = row[:ip_address] if row[:ip_address]
attributes[:model] = row[:model] if row[:model]
attributes
end
Currently, RuboCop is saying that the Metric/AbcSize is too high, and I was wondering if there is an obvious and clean way to assign these attributes?
Style Guides Provide "Best Practices"; Evaluate and Tune When Needed
First of all, RuboCop is advisory. Just because RuboCop complains about something doesn't mean it's wrong in some absolute sense; it just means you ought to expend a little more skull sweat (as you're doing) to see if what you're doing makes sense.
Secondly, you haven't provided a self-contained, executable example. That makes it impossible for SO readers to reliably refactor it, since it can't currently be tested without sample inputs and expected outputs not provided in your original post. You'll need those things yourself to evaluate and refactor your own code, too.
Finally, the ABC Metric looks at assignments, branches, and conditionals. You have five assignments, four conditionals, and what looks liks a method call. Is that a lot? If you haven't tuned Rubocop, the answer is "RuboCop thinks so." Whether or not you agree is up to you and your team.
If you want to try feeding Rubocop, you can do a couple of things that might help reduce the metric:
Refactor the volume and complexity of your assignments. Some possible examples include:
Replace your postfix if-statements with safe navigators (&.) to guard against calling methods on nil.
Extract some of your branching logic and conditionals to methods that "do the right thing", potentially reducing your current method to a single assignment with four method calls. For example:
attributes = { desk_number: location, status: laptop_status, ... }
Replace all your multiple assignments with a deconstructing assignment (although Rubocop often complains about those, too).
Revisit whether you have the right data structure in the first place. Maybe you really just want an OpenStruct, or some other data object.
Your current code seems readable, so is the juice really worth the squeeze? If you decide that RuboCop is misguided in this particular case, and your code works and passes muster in your internal code reviews, then you can tune the metric's sensitivity in your project's .rubocop.yml or disable that particular metric for just that section of your source code.
After reading #Todd A. Jacobs answer, you may want (or not) to write something like this:
def build_laptop_attributes desk_id, row, laptop
desk_number = room_id if laptop && desk_id
{
desk_number: desk_number,
status: row[:state]&.downcase,
ip_address: = row[:ip_address],
model: row[:model]
}.compact
end
This reduces has the advantage of reducing the number of calls to []=, as well as factorizing many ifs in a single compact.
In my opinion, it is more readable because it is more concise and because the emphasis is completely on the correspondence between your keys and values.
Alternative version to reduce the amount of conditionals (assuming you are checking for nil / initialized values):
def build_laptop_attributes desk_id, row, laptop
attributes = {}
attributes[:desk_number] = room_id if laptop && desk_id
attributes[:status] = row[:state]&.downcase
attributes[:ip_address] = row[:ip_address]
attributes[:model] = row[:model]
attributes.compact
end
There is an additional .compact as a cost of removing assignments checks.
I am refactoring some business rule functions to provide a more generic version of the function.
The functions I am refactoring are:
DetermineWindowWidth
DetermineWindowHeight
DetermineWindowPositionX
DetermineWindowPositionY
All of them do string parsing, as it is a string parsing business rules engine.
My question is what would be a good name for the newly refactored function?
Obviously I want to shy away from a function name like:
DetermineWindowWidthHeightPositionXPositionY
I mean that would work, but it seems unnecessarily long when it could be something like:
DetermineWindowMoniker or something to that effect.
Function objective: Parse an input string like 1280x1024 or 200,100 and return either the first or second number. The use case is for data-driving test automation of a web browser window, but this should be irrelevant to the answer.
Question objective: I have the code to do this, so my question is not about code, but just the function name. Any ideas?
There are too little details, you should have specified at least the parameters and returns of the functions.
Have I understood correctly that you use strings of the format NxN for sizes and N,N for positions?
And that this generic function will have to parse both (and nothing else), and will return either the first or second part depending on a parameter of the function?
And that you'll then keep the various DetermineWindow* functions but make them all call this generic function?
If so:
Without knowing what parameters the generic function has it's even harder to help, but it's most likely impossible to give it a simple name.
Not all batches of code can be described by a simple name.
You'll most likely need to use a different construction if you want to have clear names. Here's an idea, in pseudo code:
ParseSize(string, outWidth, outHeight) {
ParsePair(string, "x", outWidht, outHeight)
}
ParsePosition(string, outX, outY) {
ParsePair(string, ",", outX, outY)
}
ParsePair(string, separator, outFirstItem, outSecondItem) {
...
}
And the various DetermineWindow would call ParseSize or ParsePosition.
You could also use just ParsePair, directly, but I thinks it's cleaner to have the two other functions in the middle.
Objects
Note that you'd probably get cleaner code by using objects rather than strings (a Size and a Position one, and probably a Pair one too).
The ParsePair code (adapted appropriately) would be included in a constructor or factory method that gives you a Pair out of a string.
---
Of course you can give other names to the various functions, objects and parameters, here I used the first that came to my mind.
It seems this question-answer provides a good starting point to answer this question:
Appropriate name for container of position, size, angle
A search on www.thesaurus.com for "Property" gives some interesting possible answers that provide enough meaningful context to the usage:
Aspect
Character
Characteristic
Trait
Virtue
Property
Quality
Attribute
Differentia
Frame
Constituent
I think ConstituentProperty is probably the most apt.
I am trying to use fuzzy logic to weight and extract the best sentences for the query. I have extracted the following features which they can be used in fuzzy logic:
Each sentence has cosine value.
How many proper-noun is in the sentence.
the position of the sentence in the document.
sentence length.
I want to use the above features to apply the fuzzy logic. for instance, i want to create the rule base something like the following
if cosineValue >= 0.9 && numberOfPropernoun >=1
THEN the sentence is important
I am not quite sure how to start implementing the rule base, the facts and inference engine. It would like someone to guide me to implement this in python. Please note that I am not familiar with logic programming languages. I would like to implement it in python
This is just a sketch; I'm not even going to try this code because I'm not sure what you want.
Make a class for your features:
Features = namedtuple('Features', ['cosine', 'nouns', 'position', ...])
etc.
Now imagine you are building your AST. What grammar does your language have? Well, you have conditions, and your conditions have consequences, and your conditions can be combined by boolean operators, so let's make some basic ones:
class CosineValue(object):
def evaluate(self, features):
return features.cosine
class Nouns(object):
def evaluate(self, features):
return features.nouns
... etc.
Now you need to combine these AST nodes with some operations
class GreaterThan(object):
def __init__(self, property, value):
self.property, self.value = property, value
def evaluate(self, sentence):
return property.evaluate(sentence) > self.value
Now GreaterThan(CosineValue(), 0.9) is an object (an abstract syntax tree, actually) that represents cosineValue > 0.9. You can evaluate it like so:
expr = GreaterThan(CosineValue(), 0.9)
expr.evaluate(Features(cosine=0.95, ...)) # returns True
expr.evaluate(Features(cosine=0.40, ...)) # returns False
These objects don't look like much, but what they are doing is reifying your process. Their structure encodes what formerly would have been code. Think about this, because this is the only hard part about what you are trying to do: comprehending how you can delay computation by turning it into structure, and how you can play with when values become part of your computation. You were probably stuck thinking about how to write those "if" statements and keeping them separate from the code and the runtime values you need to run them against. Now you should be able to see how, but it's a more advanced way of thinking about programming.
Now you need to build your if/then structure. I'm not sure what you want here either but I would say your if/then is going to be a class that takes an expression like we've just created as one argument and a "then" case, and does the test and either performs or does not perform the "then" case. Probably you will need if/then/else, or else a way to track if it fired, or a way to evaluate your if into a value. You will have to think about this part; nobody can tell you based on what you wrote above what you should be doing.
To make your conditions more powerful, you will need to add some more classes for boolean operators that take conditions as arguments, but it should be straightforward; you'll have And and Or, they'll both take two Condition arguments and their evaluation will do the sensible thing. You could make a Condition superclass, and then add some methods like And and Or to simplify generating these structures.
Finally, if you want to parse something like what you have above, you should try out pyparsing, but make sure you have the AST figured out first or it will be an uphill battle. Or look at what they have; maybe they have some primitives for this, I haven't dealt with pyparsing in a long time.
Best of luck, and please ask a better question next time!
Initial note: I'm working in Julia, but this question probably applies to many languages.
Setup: I have a composite type as follows:
type MyType
x::Vector{String}
end
I write some methods to act on MyType. For example, I write a method that allows me to insert a new element in x, e.g. function insert!(d::MyType, itemToInsert::String).
Question: Should MyType be mutable or immutable?
My understanding: I've read the Julia docs on this, as well as more general (and highly upvoted) questions on Stackoverflow (e.g. here or here), but I still don't really have a good handle on what it means to be mutable/immutable from a practical perspective (especially for the case of an immutable composite type, containing a mutable array of immutable types!)
Nonetheless, here is my attempt: If MyType is immutable, then it means that the field x must always point to the same object. That object itself (a vector of Strings) is mutable, so it is perfectly okay for me to insert new elements into it. What I am not allowed to do is try and alter MyType so that the field x points to an entirely different object. For example, methods that do the following are okay:
MyType.x[1] = "NewValue"
push!(MyType.x, "NewElementToAdd")
But methods that do the following are not okay:
MyType.x = ["a", "different", "string", "array"]
Is this right? Also, is the idea that the object that an immutable types field values are locked to are those that are created within the constructor?
Final Point: I apologise if this appears to duplicate other questions on SO. As stated, I have looked through them and wasn't able to get the understanding that I was after.
So here is something mind bending to consider (at least to me):
julia> immutable Foo
data::Vector{Float64}
end
julia> x = Foo([1.0, 2.0, 4.0])
Foo([1.0,2.0,4.0])
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc3332018
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc296ac28
julia> append!(x.data, x.data); pointer(x.data)
Ptr{Float64} #0x00007ffbc34809d8
So the data address is actually changing as the vector grows and needs to be reallocated! But - you can't change data yourself, as you point out.
I'm not sure there is a 100% right answer is really. I primarily use immutable for simple types like the Complex example in the docs in some performance critical situations, and I do it for "defensive programming" reasons, e.g. the code has no need to write to the fields of this type so I make it an error to do so. They are a good choice IMO whenever the type is a sort of an extension of a number, e.g. Complex, RGBColor, and I use them in place of tuples, as a kind of named tuple (tuples don't seem to perform well with Julia right now anyway, wheres immutable types perform excellently).
I have a public method which uses a variable (only in the scope of the public method) I pass as a parameter we will call A, this method calls a private method multiple times which also requires the parameter.
At present I am passing the parameter every time but it looks weird, is it bad practice to make this member variable of the class or would the uncertainty about whether it is initialized out way the advantages of not having to pass it?
Simplified pseudo code:
public_method(parameter a)
do something with a
private_method(string_a, a)
private_method(string_b, a)
private_method(string_c, a)
private_method(String, parameter a)
do something with String and a
Additional information: parameter a is a read only map with over 100 entries and in reality I will be calling private_method about 50 times
I had this same problem myself.
I implemented it differently in 3 different contexts to see hands-on what are result using 3 different strategies, see below.
Note that I am type of programmer that makes many changes to the code always trying to improve it. Thus I settle only for the code that is amenable to changes, readbale, would you call this "flexible" code. I settle only for very clear code.
After experimentation, I came to these results:
Passing a as parameter is perfectly OK if you have one or two - short number - of such values. Passing in parmeters has very good visibility, clarity, clear passing lines, well visible lifetime (initialization points, destruction points), amenable to changes, easy to track.
If number of such values begin to grow to >= 5-6 values, I swithc to approach #3 below.
Passing values through class members -- did not do good to clarity of my code, eventually I got rid of it. It makes for less clear code. Code becomes muddled. I did not like it. It had no advantages.
As alternative to (1) and (2), I adopted Inner class approach, in cases when amount of such values is > 5 (which makes for too long argument list).
I pack those values into small Inner class and pass such object by reference as argument to all internal members.
Public function of a class usually creates an object of Inner class (I call is Impl or Ctx or Args) and passes it down to private functions.
This combines clarity of arg passing with brevity. It's perfect.
Good luck
Edit
Consider preparing array of strings and using a loop rather than writing 50 almost-identical calls. Something like char *strings[] = {...} (C/C++).
This really depends on your use case. Does 'a' represent a state that your application/object care about? Then you might want to make it a member of your object. Evaluate the big picture, think about maintenance, extensibility when designing structures.
If your parameter a is a of a class of your own, you might consider making the private_method a public method for the variable a.
Otherwise, I do not think this looks weird. If you only need a in just 1 function, making it a private variable of your class would be silly (at least to me). However, if you'd need it like 20 times I would do so :P Or even better, just make 'a' an object of your own that has that certain function you need.
A method should ideally not pass more than 7 parameters. Using the number of parameters more than 6-7 usually indicates a problem with the design (do the 7 parameters represent an object of a nested class?).
As for your question, if you want to make the parameter private only for the sake of passing between private methods without the parameter having anything to do with the current state of the object (or some information about the object), then it is not recommended that you do so.
From a performance point of view (memory consumption), reference parameters can be passed around as method parameters without any significant impact on the memory consumption as they are passed by reference rather than by value (i.e. a copy of the data is not created). For small number of parameters that can be grouped together you can use a struct. For example, if the parameters represent x and y coordinates of a point, then pass them in a single Point structure.
Bottomline
Ask yourself this question, does the parameter that you are making as a members represent any information (data) about the object? (data can be state or unique identification information). If the answer to his question is a clear no, then do not include the parameter as a member of the class.
More information
Limit number of parameters per method?
Parameter passing in C#