golang: accessing value in slice of interfaces - go

I have a data structure which comes of out go-spew looking like this:
([]interface {}) (len=1 cap=1) {
(string) (len=1938) "value"
}
It is of type []interface {}
How can I print this value with fmt, or access it in some way so that I can use it.

You can use type assertions or reflection work with the generic interface{} to an underlying type. How you do this depends on your particular use case. If you can expect the interface{} to be a []interface{} as in your example, you can:
if sl, ok := thing.([]interface{}); ok {
for _, val := range sl {
fmt.Println(val)
// Or if needed, coerce val to its underlying type, e.g. strVal := val.(string)
}
}
(Playground link)
If you can't make assumptions about the underlying type, you'll need to do some black magic using reflect.

Related

get reflect.struct from interface

hi a have this func for get type of value, but i try this and never can get reflect.struct:
type Test struct {
Code int
Name string
}
func main(){
test := getTest()
data, err := getBytes(slice...)
sanitizedFile := bytes.Split(data, []byte("\r\n"))
err = Unmarshal(sanitizedFile[0], &test)
}
func getTest() interface{} {
return Test{}
}
With this code i don't can get the reflecet.struct from v params in Unmarshall func
func Unmarshal(data []byte, v interface{}) error {
rv := reflect.ValueOf(v)
if rv.Kind() == reflect.Ptr {
rvElem := rv.Elem()
switch rvElem.Kind() {
case reflect.Struct:
// implement me
}
}
return ErrInvalid
}
I would like to know if I can somehow find out if an interface is of type struct or access the values ​​of that struct.
I think the real problem here is illustrated by this quote:
I would like to know if I can somehow find out if an interface is of type struct or access the values ​​of that struct.
An interface value isn't "of type struct". Never! An interface value can contain a value whose type is some structure, but it is not a value of that type. It just contains one. This is similar to the way that a box1 you get from Amazon can contain a corkscrew, but the box is not a corkscrew, ever.
Given a non-nil value of type interface I for some interface type I, you know that you have a value that implements the methods of I. Since {} is the empty set of methods, all types implement it, so given a (still non-nil) value of type interface{}, you have a value that implements no methods. That's not at all useful by itself: it means you can invoke no methods, which means you can't do anything method-like.
But just because you can't do anything method-y doesn't mean you can't do anything at all. Any interface value, regardless of the interface type, can have a type-assertion used on it:
iv := somethingThatReturnsAnInterface()
cv := iv.(struct S) // assert that iv contains a `struct S`
If iv does in fact contain a struct S value—if that's what's inside the box once you open it—then this type-assertion doesn't panic, and cv winds up with the concrete value of type struct S. If panic is undesirable, we can use the cv, ok := iv.(struct S) form, or a type switch. All of these—including the version that panics—work by checking the type of the value inside the interface.
What this—or, more precisely, the way the Go language is defined—tells us is that the interface "box" really holds two things:
a concrete type, and
a concrete value.
Well, that is, unless it holds a <nil, nil> pair, in which case iv == nil is true. Note that the iv == nil test actually tests both parts.
If Go had a syntax for this, we could write something like iv.type and iv.value to get at the two separate parts. But we can't do that. We have to use type assertions, type-switch, or reflect. So, going back to this:
I would like to know if I can somehow find out if an interface is of type struct
we can see that the question itself is just a little malformed. We don't want to know if an interface value has this type. We want to know if a non-nil interface's held value is of this type, as if we could inspect iv.type and iv.value directly.
If you have a limited set of possible types, you can use the type-switch construct, and enumerate all your allowed possiblities:
switch cv := iv.(type) {
case struct S:
// work with cv, which is a struct S
case *struct S:
// work with cv, which is a *struct S
// add more cases as appropriate
}
If you need more generality, instead of doing the above, we end up using the reflect package:
tv := reflect.TypeOf(iv)
or:
vv := reflect.ValueOf(iv)
The latter is actually the more useful form, since vv captures both the iv.type pseudo-field and the iv.value pseudo-field.
As mkopriva notes in a comment, test, in your sample code, has type interface{}, so &test has type *interface{}. In most cases this is not a good idea: you just want to pass the interface{} value directly.
To allow the called function to set the object to a new value, you will want to pass a pointer to the object as the interface value. You do not want to pass a pointer to the interface while having the interface hold the struct "in the box" as it were. You need a reflect.Value on which you can invoke Set(), and to get one, you will need to follow an elem on the reflect.Value that is a pointer to the struct (not one that is a pointer to the interface).
There's a more complete example here on the Go Playground.
1This is partly an allusion to "boxed values" in certain other programming languages (see What is boxing and unboxing and what are the trade offs?), but partly literal. Don't mistake Go's interfaces for Java's boxed values, though: they are not the same at all.
Maybe what you need is type assertion?
t, ok := v.(myStruct)
https://tour.golang.org/methods/15
In any case this code prints "struct":
type tt struct {}
var x tt
var z interface{}
z = x
v := reflect.ValueOf(z).Kind()
fmt.Printf("%v\n", v)
And see this for setting the value of a struct field using reflection:
Using reflect, how do you set the value of a struct field?

Go using generic slice field in struct

We want to have
type ResponseListDataPayload struct {
List []*interface{} `json:"list"` //generic
TotalCnt int64 `json:"totalCnt"`
Page int64 `json:"page"`
Step int64 `json:"step"`
}
and List could would accept []*model.SomeModel{}
queryResults := []*model.SomeModel{}
resposeResult := &ResponseListDataPayload{
List: queryResults,
TotalCnt: cnt,
Page: pageInt,
Step: stepInt,
}
or []*model.AnotherModel{}
queryResults := []*model.AnotherModel{}
resposeResult := &ResponseListDataPayload{
List: queryResults,
TotalCnt: cnt,
Page: pageInt,
Step: stepInt,
}
That's pretty straightforward in Java, could that be possible in go?
Go 1.18
You can now have parametrized structs:
type ResponseListDataPayload[T any] struct {
List []T `json:"list"` //generic
TotalCnt int64 `json:"totalCnt"`
Page int64 `json:"page"`
Step int64 `json:"step"`
}
Remember that generic structs must be instantiated with an explicit type parameter:
queryResults := []*model.SomeModel{}
responseResult := &ResponseListDataPayload[*model.SomeModel]{
List: queryResults,
// other fields
}
If you want to improve code reuse even more and "genericize" also the struct initialization, you can use a constructor function. Functions can take advantage of type inference to omit writing out the type arguments:
// add to func signature other arguments as needed
func NewResponseFor[T any](list []T) *ResponseListDataPayload[T] {
return &ResponseListDataPayload[T]{ List: list }
}
and use it as:
queryResults := // some query results
responseResult := NewResponseFor(queryResults)
Example: https://gotipplay.golang.org/p/jYTHegaeubR
Go 1.17 and below
could that be possible in go?
No, interface{} is not actually a generic type, it's just an interface with an empty method set.
Formally, you can assign any concrete value to it because assignability requires the value's method set to be a superset of the interface method set, and any set is a superset of the empty set (∅).
It's not the same thing as a parametrized type like Java's List<T> hence in Go []Foo is not assignable to []interface{}.
You must process the single elements in a loop:
var m []*model.anotherModel
// populate m
for _, v := range m {
resp.List = append(resp.List, v)
}
Similarly, don't use pointers to the empty interface *interface{}. Use interface{} instead.
If your goal is to just serialize JSON (based on the presence of the tags on your struct), you can declare the List field as interface{} and you’ll be able to assign either of your slice values to it, for the reason stated above. Thus avoiding an extra slice manipulation. The json package will then serialize based on the concrete values boxed in the interface{}.
In Go 1.18 you will be able to do something like, with real go generics:
func convert[S any](src []S) []interface{} {
dst := make([]interface{}, 0, len(src))
for _, v := range src {
dst = append(dst, v)
}
return dst
}
//...
resp.List = convert(m)
But until 1.18 is out and more codebases embrace generics, you will still need to do the conversion by hand.
And like everyone said, don't use *interface{}.

"non-interface type map[string]interface {} on left" error

I have a struct:
type ListsObj struct {
Page string `json:"pages"`
Count string `json:"count"`
Lists []map[string]interface{} `json:"assets"`
}
I am trying to do something like below:
lists := a.Lists
for _, list:= range lists{
listData := list.(map[string]interface {})
}
a is of type ListsObj struct.
I am getting following error:
invalid type assertion: list.(map[string]) (non-interface type
map[string]interface {} on left)
EDIT:
What I actually need to do is to call a function:
func WriteMapper(a interface {}) interface{} {
}
lists := a.Lists
for _, list:= range lists{
list = WriteMapper(list)
}
but this gives another error:
cannot use WriteMapper(list) (type interface {}) as type
map[string]interface {} in assignment: needs type assertion
EDIT: I think I got it... the function returns interface and I am trying to assign that to map[string]interface {}??
In your code, a.Lists (and therefore also lists) is a []map[string]interface{}, a slice of maps. You're then iterating over that slice, and assigning the value on each iteration to the variable list (which is kinda oddly named, as it's holding a map, but that's a separate concern).
Now, list is of type map[string]interface{}. There's no need for you to type-assert it into that, since it's already that type!
To use list as the map[string]interface{} that it is, you just use it:
for _, list := range lists {
someValue := list["some-key"]
fmt.Println(someValue)
}
If you're trying to do something different that just using the map, I'd ask that you please clarify.

How to check variable declared as map[string]interface{} is actually map[string]string?

I have a variable that needs to be either a string or map[string]string (will be deserializing from JSON). So I declare it as interface{}. How can I check that the value is map[string]string?
This question How to check interface is a map[string]string in golang almost answers my question. But the accepted answer only works if the variable is declared as a map[string]string not if the variable is interface{}.
package main
import (
"fmt"
)
func main() {
var myMap interface{}
myMap = map[string]interface{}{
"foo": "bar",
}
_, ok := myMap.(map[string]string)
if !ok {
fmt.Println("This will be printed")
}
}
See https://play.golang.org/p/mA-CVk7bdb9
I can use two type assertions though. One on the map and one on the map value.
package main
import (
"fmt"
)
func main() {
var myMap interface{}
myMap = map[string]interface{}{
"foo": "bar",
}
valueMap, ok := myMap.(map[string]interface{})
if !ok {
fmt.Println("will not be printed")
}
for _, v := range valueMap {
if _, ok := v.(string); !ok {
fmt.Println("will not be printed")
}
}
}
See https://play.golang.org/p/hCl8eBcKSqE
Question: is there a better way?
If you declare a variable as type interface{}, it is type interface{}. It is not, ever, some map[keytype]valuetype value. But a variable of type interface{} can hold a value that has some other concrete type. When it does so, it does so—that's all there is to it. It still is type interface{}, but it holds a value of some other type.
An interface value has two parts
The key distinction here is between what an interface{} variable is, and what it holds. Any interface variable actually has two slots inside it: one to hold what type is stored in it, and one to hold what value is stored in it. Any time you—or anyone—assign a value to the variable, the compiler fills in both slots: the type, from the type of the value you used, and the value, from the value you used.1 The interface variable compares equal to nil if it has nil in both slots; and that's also the default zero value.
Hence, your runtime test:
valueMap, ok := myMap.(map[string]interface{})
is a sensible thing to do: if myMap holds a value that has type map[string]interface, ok gets set to true and valueMap contains the value (which has that type). If myMap holds a value with some other type, ok gets set to false and valueMap gets set to the zero-value of type map[string]interface{}. In other words, at runtime, the code checks the type-slot first, then either copies the value-slot across to valueMap and sets ok to true, or sets valueMap to nil and sets ok to false.
If and when ok has been set to true, each valueMap[k] value is type interface{}. As before, for myMap itself, each of these interface{} variables can—but do not have to—hold a value of type string, and you must use some sort of "what is the actual type-and-value" run-time test to tease them apart.
When you use json.Unmarshal to stuff decoded JSON into a variable of type interface{}, it is capable of deserializing any of these documented JSON types. The list then tells you what type gets stuffed into the interface variable:
bool, for JSON booleans
float64, for JSON numbers
string, for JSON strings
[]interface{}, for JSON arrays
map[string]interface{}, for JSON objects
nil for JSON null
So after doing json.Unmarshal into a variable of type interface{}, you should check what type got put into the type-slot of the variable. You can do this with an assertion and an ok boolean, or you can, if you prefer, use a type switch to decode it:
var i interface
if err := json.Unmarshal(data, &i); err != nil {
panic(err)
}
switch v := i.(type) {
case string:
... code ...
case map[string]interface{}:
... code ...
... add some or all of the types listed ...
}
The thing is, no matter what you do in code here, you did have json.Unmarshal put something into an interface{}, and interface{} is the type of i. You must test at runtime what type and value pair the interface holds.
Your other option is to inspect your JSON strings manually and decide what type of variable to provide to json.Unmarshal. That gives you less code to write after the Unmarshal, but more code to write before it.
There's a more complete example here, on the Go playground, of using type switches to inspect the result from a json.Unmarshal. It's deliberately incomplete but, I think, has enough input and output cases to let you work out how to handle everything, given the quote above about what json.Unmarshal writes into a variable of type interface{}.
1Of course, if you assign one interface{} from some other interface{}:
var i1, i2 interface{}
... set i1 from some actual value ...
// more code, then:
i2 = i1
the compiler just copies both slots from i1 into i2. The two-separate-slots thing becomes clearer when you do:
var f float64
... code that sets f to, say, 1.5 ...
i2 = f
for instance, as that writes float64 into the type-slot, and the value 1.5 into the value-slot. The compiler knows that f is float64 so the type-setting just means "stick a constant in it". The compiler doesn't necessarily know the value of f so the value-setting is a copy of whatever the actual value is.

Restore type information after passing through function as "interface {}"?

I'm running into a slight architectural problem with Golang right now that's causing me to copy/paste a bit more code than I'd prefer. I feel like there must be a solution, so please let me know if this is perhaps possible:
When I pass things through an interface {}-typed function parameter, I start getting errors such as "expected struct or slice", etc. ... even though what I passed was previously a struct or a slice. I realize that I could manually convert these to another type after receiving them in that function, but then that become tedious in instances such as this:
local interface type *interface {} can only be decoded from remote
interface type; received concrete type
... In this case, the receiving function seems like it'd need to be hard-coded to convert all interface {} items back to their respective original types in order to work properly, because the receiving function needs to know the exact type in order to process the item correctly.
Is there a way to dynamically re-type Golang interface {} typed variables back to their original type? Something like this, How to I convert reflect.New's return value back to the original type ... maybe?
EDIT: To clarify, basically, I'm passing &out to a function and it needs to be its original type by the time it reaches another inner function call.
Example code:
// NOTE: This is sort of pseudo-Golang code, not meant to be compiled or taken too seriously.
func PrepareTwoDifferentThings(keyA string, keyB string) {
var somethingA TypeA;
var somethingB TypeB;
loadFromCache(keyA, &somethingA, nil);
loadFromCache(keyB, &somethingB, nil);
fmt.Printf("Somethings: %v, %v", somethingA, somethingB);
}
func loadFromCache(key string, isNew, out interface {}, saveNewData interface {}) {
if err := cache.load(key, &out); err!=nil { // NOTE: Current issue is that this expects "&out" to be `TypeA`/`TypeB` not "interface {}", but I don't want to copy and paste this whole function's worth of code or whatever.
panic("oh no!");
}
if (saveNewData!=nil) {
cache.save(key, saveNewData); // This doesn't seem to care if "saveNewData" is "interface {}" when saving, but later cache fetches above using the "load()" method to an "interface {}"-typed `&out` parameter throw an exception that the "interface {}" type on `&out` does not match the original when it was saved here (`TypeA`/`TypeB`).
}
}
To change the type of an interface into its rightful type, you can use type assertions:
package main
import r "reflect"
type A struct {
Name string
}
func main() {
// No pointer
aa := A{"name"}
var ii interface{} = aa
bb := ii.(A)
// main.A
// Pointer
a := &A{"name"}
var i interface{} = a
b := *i.(*A)
// main.A
c := i.(*A)
// *main.A
d := r.Indirect(r.ValueOf(i)).Interface().(A)
// main.A
}
Playground 1
When using type assertions, you have to know the underlying type of your interface. In Go, there is no way to use type assertion with a dynamic type. reflect.Type is not a type, it's an interface representing a type. So no, you can't use it this way.
If you have several type possibilities, the solution is the type switch:
package main
import "fmt"
type TypeA struct {
A string
}
type TypeB struct {
B string
}
func doSomethingA(t TypeA) {
fmt.Println(t.A)
}
func doSomethingB(t TypeB) {
fmt.Println(t.B)
}
func doSomething(t interface{}) {
switch t := t.(type) {
case TypeA:
doSomethingA(t)
case TypeB:
doSomethingB(t)
default:
panic("Unrecognized type")
}
}
func main() {
a := TypeA{"I am A"}
b := TypeB{"I am B"}
doSomething(a)
// I am A
doSomething(b)
// I am B
}
Playground 2
It turns out that using JSON instead of Gob for serialization avoids the error that I was encountering entirely. Other functions can handle passing into interfaces, etc.

Resources