Maximum Gcd and Sum - algorithm

You are given two arrays A and B containing n elements each. Choose a pair of elements (x, y) such that:
• x belongs to Array A
• y belongs to Array B
• GCD(x, y) is the maximum of all pairs (x, y).
If there is more than one such pair having maximum gcd, then choose the one with maximum sum. Print the sum of elements of this maximum-sum pair.
This is question from Hackerrank weekofcode 34.
from fractions import gcd
from itertools import product
n = int(input().strip()) #two arrays of equal length
A = set(map(int, input().strip().split(' '))) #array1
B = set(map(int, input().strip().split(' '))) # arry2
output_sum=[]
output_GCD=[]
c=list(product(A,B))
for i in c:
temp1=i[0]
temp2=i[1]
sum_two=temp1+temp2
temp3=gcd(temp1,temp2)
output_GCD.append(temp3)
output_sum.append(temp1+temp2)
temp=[]
for i in range(len(output_GCD)):
if(output_GCD[i]==max(output_GCD)):
temp.append(output_sum[i])
print(max(temp))
This solution works for smaller conditions and I got timed out for most of the test cases, please help me how to improve my solution.

You can calculate all divisors a_divisors for array A by next way:
# it is not real python-code, just ideas of algorithm
count = {}
for (i : A):
count[i]++
a_divisors = {}
for (i : range(1, 10^6)):
for (j = i * i; j <= 10^6; j += i):
if j in count.keys():
a_divisors[i] = 1
After you can construct same array b_divisors for B and after choose common maximum from both arrays
For example:
5
3 1 4 2 8
5 2 12 8 3
produce arrays of divisors:
a: 1, 2, 3, 4, 8
b: 1, 2, 3, 4, 5, 6, 8, 12
Common maximum is: 4
If you know gcd(a, b) = 4 than you just choose 1 maximal value from A that has divisor 4 and 1 from B: 8 + 12 = 16

You must convert A and B to Set(to easily find in it)
def maximumGcdAndSum(A, B):
A = set(A)
B = set(B)
max_nbr = max(max(A), max(B))
i = max_nbr
while i > 0: # for each i starting from max number
i_pow = i # i, i^2, i^3, i^4, ...
maxa = maxb = 0
while i_pow <= max_nbr: # '<=' is a must here
if i_pow in A:
maxa = i_pow # get the max from power list which devides A
if i_pow in B:
maxb = i_pow # get the max from power list which devides B
i_pow += i
if maxa and maxb:
return maxa + maxb # if both found, stop algorithm
i -= 1
return 0

Related

How to find the count of numbers which are divisible by 7?

Given an integer N, how to efficiently find the count of numbers which are divisible by 7 (their reverse should also be divisible by 7) in the range:
[0, 10^N - 1]
Example:
For N=2, answer:
4 {0, 7, 70, 77}
[All numbers from 0 to 99 which are divisible by 7 (also their reverse is divisible)]
My approach, simple brute-force:
initialize count to zero
run a loop from i=0 till end
if a(i) % 7 == 0 && reverse(a(i)) % 7 == 0, then we increase the count
Note:
reverse(123) = 321, reverse(1200) = 21, for example!
Let's see what happens mod 7 when we add a digit, d, to a prefix, abc.
10 * abc + d =>
(10 mod 7 * abc mod 7) mod 7 + d mod 7
reversed number:
abc + d * 10^(length(prefix) =>
abc mod 7 + (d mod 7 * 10^3 mod 7) mod 7
Note is that we only need the count of prefixes of abc mod 7 for each such remainder, not the actual prefixes.
Let COUNTS(n,f,r) be the number of n-digit numbers such that n%7 = f and REVERSE(n)%7 = r
The counts are easy to calculate for n=1:
COUNTS(1,f,r) = 0 when f!=r, since a 1-digit number is the same as its reverse.
COUNTS(1,x,x) = 1 when x >= 3, and
COUNTS(1,x,x) = 2 when x < 3, since 7%3=0, 8%3=1, and 9%3=2
The counts for other lengths can be figured out by calculating what happens when you add each digit from 0 to 9 to the numbers characterized by the previous counts.
At the end, COUNTS(N,0,0) is the answer you are looking for.
In python, for example, it looks like this:
def getModCounts(len):
counts=[[0]*7 for i in range(0,7)]
if len<1:
return counts
if len<2:
counts[0][0] = counts[1][1] = counts[2][2] = 2
counts[3][3] = counts[4][4] = counts[5][5] = counts[6][6] = 1
return counts
prevCounts = getModCounts(len-1)
for f in range(0,7):
for r in range(0,7):
c = prevCounts[f][r]
rplace=(10**(len-1))%7
for newdigit in range(0,10):
newf=(f*10 + newdigit)%7
newr=(r + newdigit*rplace)%7
counts[newf][newr]+=c
return counts
def numFwdAndRevDivisible(len):
return getModCounts(len)[0][0]
#TEST
for i in range(0,20):
print("{0} -> {1}".format(i, numFwdAndRevDivisible(i)))
See if it gives the answers you're expecting. If not, maybe there's a bug I need to fix:
0 -> 0
1 -> 2
2 -> 4
3 -> 22
4 -> 206
5 -> 2113
6 -> 20728
7 -> 205438
8 -> 2043640
9 -> 20411101
10 -> 204084732
11 -> 2040990205
12 -> 20408959192
13 -> 204085028987
14 -> 2040823461232
15 -> 20408170697950
16 -> 204081640379568
17 -> 2040816769367351
18 -> 20408165293673530
19 -> 204081641308734748
This is a pretty good answer when counting up to N is reasonable -- way better than brute force, which counts up to 10^N.
For very long lengths like N=10^18 (you would probably be asked for a the count mod 1000000007 or something), there is a next-level answer.
Note that there is a linear relationship between the counts for length n and the counts for length n+1, and that this relationship can be represented by a 49x49 matrix. You can exponentiate this matrix to the Nth power using exponentiation by squaring in O(log N) matrix multiplications, and then just multiply by the single digit counts to get the length N counts.
There is a recursive solution using digit dp technique for any digits.
long long call(int pos , int Mod ,int revMod){
if(pos == len ){
if(!Mod && !revMod)return 1;
return 0;
}
if(dp[pos][Mod][revMod] != -1 )return dp[pos][Mod][revMod] ;
long long res =0;
for(int i= 0; i<= 9; i++ ){
int revValue =(base[pos]*i + revMod)%7;
int curValue = (Mod*10 + i)%7;
res += call(pos+1, curValue,revValue) ;
}
return dp[pos][Mod][revMod] = res ;
}

Implementation: Algorithm for a special distribution Problem

We are given a number x, and a set of n coins with denominations v1, v2, …, vn.
The coins are to be divided between Alice and Bob, with the restriction that each person's coins must add up to at least x.
For example, if x = 1, n = 2, and v1 = v2 = 2, then there are two possible distributions: one where Alice gets coin #1 and Bob gets coin #2, and one with the reverse. (These distributions are considered distinct even though both coins have the same denomination.)
I'm interested in counting the possible distributions. I'm pretty sure this can be done in O(nx) time and O(n+x) space using dynamic programming; but I don't see how.
Count the ways for one person to get just less than x, double it and subtract from the doubled total number of ways to divide the collection in two, (Stirling number of the second kind {n, 2}).
For example,
{2, 3, 3, 5}, x = 5
i matrix
0 2: 1
1 3: 1 (adding to 2 is too much)
2 3: 2
3 N/A (≥ x)
3 ways for one person to get
less than 5.
Total ways to partition a set
of 4 items in 2 is {4, 2} = 7
2 * 7 - 2 * 3 = 8
The Python code below uses MBo's routine. If you like this answer, please consider up-voting that answer.
# Stirling Algorithm
# Cod3d by EXTR3ME
# https://extr3metech.wordpress.com
def stirling(n,k):
n1=n
k1=k
if n<=0:
return 1
elif k<=0:
return 0
elif (n==0 and k==0):
return -1
elif n!=0 and n==k:
return 1
elif n<k:
return 0
else:
temp1=stirling(n1-1,k1)
temp1=k1*temp1
return (k1*(stirling(n1-1,k1)))+stirling(n1-1,k1-1)
def f(coins, x):
a = [1] + (x-1) * [0]
# Code by MBo
# https://stackoverflow.com/a/53418438/2034787
for c in coins:
for i in xrange(x - 1, c - 1, -1):
if a[i - c] > 0:
a[i] = a[i] + a[i - c]
return 2 * (stirling(len(coins), 2) - sum(a) + 1)
print f([2,3,3,5], 5) # 8
print f([1,2,3,4,4], 5) # 16
If sum of all coins is S, then the first person can get x..S-x of money.
Make array A of length S-x+1 and fill it with numbers of variants of changing A[i] with given coins (like kind of Coin Change problem).
To provide uniqueness (don't count C1+C2 and C2+C1 as two variants), fill array in reverse direction
A[0] = 1
for C in Coins:
for i = S-x downto C:
if A[i - C] > 0:
A[i] = A[i] + A[i - C]
//we can compose value i as i-C and C
then sum A entries in range x..S-x
Example for coins 2, 3, 3, 5 and x=5.
S = 13, S-x = 8
Array state after using coins in order:
0 1 2 3 4 5 6 7 8 //idx
1 1
1 1 1 1
1 1 2 2 1 1
1 1 2 3 1 1 3
So there are 8 variants to distribute these coins. Quick check (3' denotes the second coin 3):
2 3 3' 5
2 3' 3 5
2 3 3' 5
2 5 3 3'
3 3' 2 5
3 5 2 3'
3' 5 2 3
5 2 3 3'
You can also solve it in O(A * x^2) time and memory adding memoization to this dp:
solve(A, pos, sum1, sum2):
if (pos == A.length) return sum1 == x && sum2 == x
return solve(A, pos + 1, min(sum1 + A[pos], x), sum2) +
solve(A, pos + 1, sum1, min(sum2 + A[pos], x))
print(solve(A, 0, 0, 0))
So depending if x^2 < sum or not you could use this or the answer provided by #Mbo (in terms of time complexity). If you care more about space, this is better only when A * x^2 < sum - x

Algorithm to finding if the numbers in the list, when added or subtracted, are equal to a mod b

I was doing some interview problems when I ran into an interesting one that I could not think of a solution for. The problems states:
Design a function that takes in an array of integers. The last two numbers
in this array are 'a' and 'b'. The function should find if all of the
numbers in the array, when summed/subtracted in some fashion, are equal to
a mod b, except the last two numbers a and b.
So, for example, let us say we have an array:
array = [5, 4, 3, 3, 1, 3, 5].
I need to find out if there exists any possible "placement" of +/- in this array so that the numbers can equal 3 mod 5. The function should print True for this array because 5+4-3+3-1 = 8 = 3 mod 5.
The "obvious" and easy solution would be to try and add/subtract everything in all possible ways, but that is an egregiously time complex solution, maybe
O(2n).
Is there any way better to do this?
Edit: The question requires the function to use all numbers in the array, not any. Except, of course, the last two.
If there are n numbers, then there is a simple algorithm that runs in O (b * n): For k = 2 to n, calculate the set of integers x such that the sum or difference of the first k numbers is equal to x modulo b.
For k = 2, the set contains (a_0 + a_1) modulo b and (a_0 - a_1) modulo b. For k = 3, 4, ..., n you take the numbers in the previous set, then either add or subtract the next number in the array. And finally check if a is element of the last set.
O(b * n). Let's take your example, [5, 4, 3, 3, 1]. Let m[i][j] represent whether a solution exists for j mod 5 up to index i:
i = 0:
5 = 0 mod 5
m[0][0] = True
i = 1:
0 + 4 = 4 mod 5
m[1][4] = True
but we could also subtract
0 - 4 = 1 mod 5
m[1][1] = True
i = 2:
Examine the previous possibilities:
m[1][4] and m[1][1]
4 + 3 = 7 = 2 mod 5
4 - 3 = 1 = 1 mod 5
1 + 3 = 4 = 4 mod 5
1 - 3 = -2 = 3 mod 5
m[2][1] = True
m[2][2] = True
m[2][3] = True
m[2][4] = True
i = 3:
1 + 3 = 4 mod 5
1 - 3 = 3 mod 5
2 + 3 = 0 mod 5
2 - 3 = 4 mod 5
3 + 3 = 1 mod 5
3 - 3 = 0 mod 5
4 + 3 = 2 mod 5
4 - 3 = 1 mod 5
m[3][0] = True
m[3][1] = True
m[3][2] = True
m[3][3] = True
m[3][4] = True
We could actually stop there, but let's follow a different solution than the one in your example backwards:
i = 4:
m[3][2] True means we had a solution for 2 at i=3
=> 2 + 1 means m[4][3] = True
+ 1
+ 3
+ 3
- 4
(0 - 4 + 3 + 3 + 1) = 3 mod 5
I coded a solution based on the mathematical explanation provided here. I didn't comment the solution, so if you want an explanation, I recommend you read the answer!
def kmodn(l):
k, n = l[-2], l[-1]
A = [0] * n
count = -1
domath(count, A, l[:-2], k, n)
def domath(count, A, l, k, n):
if count == len(l):
boolean = A[k] == 1
print boolean
elif count == -1:
A[0] = 1; # because the empty set is possible
count += 1
domath(count, A, l, k, n)
else:
indices = [i for i, x in enumerate(A) if x == 1]
b = [0] * n
for i in indices:
idx1 = (l[count] + i) % n
idx2 = (i - l[count]) % n
b[idx1], b[idx2] = 1, 1
count += 1
A = b
domath(count, A, l, k, n)

algorithmic puzzle for calculating the number of combinations of numbers sum to a fixed result

This is a puzzle i think of since last night. I have come up with a solution but it's not efficient so I want to see if there is better idea.
The puzzle is this:
given positive integers N and T, you will need to have:
for i in [1, T], A[i] from { -1, 0, 1 }, such that SUM(A) == N
additionally, the prefix sum of A shall be [0, N], while when the prefix sum PSUM[A, t] == N, it's necessary to have for i in [t + 1, T], A[i] == 0
here prefix sum PSUM is defined to be: PSUM[A, t] = SUM(A[i] for i in [1, t])
the puzzle asks how many such A's exist given fixed N and T
for example, when N = 2, T = 4, following As work:
1 1 0 0
1 -1 1 1
0 1 1 0
but following don't:
-1 1 1 1 # prefix sum -1
1 1 -1 1 # non-0 following a prefix sum == N
1 1 1 -1 # prefix sum > N
following python code can verify such rule, when given N as expect and an instance of A as seq(some people may feel easier reading code than reading literal description):
def verify(expect, seq):
s = 0
for j, i in enumerate(seq):
s += i
if s < 0:
return False
if s == expect:
break
else:
return s == expect
for k in range(j + 1, len(seq)):
if seq[k] != 0:
return False
return True
I have coded up my solution, but it's too slow. Following is mine:
I decompose the problem into two parts, a part without -1 in it(only {0, 1} and a part with -1.
so if SOLVE(N, T) is the correct answer, I define a function SOLVE'(N, T, B), where a positive B allows me to extend prefix sum to be in the interval of [-B, N] instead of [0, N]
so in fact SOLVE(N, T) == SOLVE'(N, T, 0).
so I soon realized the solution is actually:
have the prefix of A to be some valid {0, 1} combination with positive length l, and with o 1s in it
at position l + 1, I start to add 1 or more -1s and use B to track the number. the maximum will be B + o or depend on the number of slots remaining in A, whichever is less.
recursively call SOLVE'(N, T, B)
in the previous N = 2, T = 4 example, in one of the search case, I will do:
let the prefix of A be [1], then we have A = [1, -, -, -].
start add -1. here i will add only one: A = [1, -1, -, -].
recursive call SOLVE', here i will call SOLVE'(2, 2, 0) to solve the last two spots. here it will return [1, 1] only. then one of the combinations yields [1, -1, 1, 1].
but this algorithm is too slow.
I am wondering how can I optimize it or any different way to look at this problem that can boost the performance up?(I will just need the idea, not impl)
EDIT:
some sample will be:
T N RESOLVE(N, T)
3 2 3
4 2 7
5 2 15
6 2 31
7 2 63
8 2 127
9 2 255
10 2 511
11 2 1023
12 2 2047
13 2 4095
3 3 1
4 3 4
5 3 12
6 3 32
7 3 81
8 3 200
9 3 488
10 3 1184
11 3 2865
12 3 6924
13 3 16724
4 4 1
5 4 5
6 4 18
an exponential time solution will be following in general(in python):
import itertools
choices = [-1, 0, 1]
print len([l for l in itertools.product(*([choices] * t)) if verify(n, l)])
An observation: assuming that n is at least 1, every solution to your stated problem ends in something of the form [1, 0, ..., 0]: i.e., a single 1 followed by zero or more 0s. The portion of the solution prior to that point is a walk that lies entirely in [0, n-1], starts at 0, ends at n-1, and takes fewer than t steps.
Therefore you can reduce your original problem to a slightly simpler one, namely that of determining how many t-step walks there are in [0, n] that start at 0 and end at n (where each step can be 0, +1 or -1, as before).
The following code solves the simpler problem. It uses the lru_cache decorator to cache intermediate results; this is in the standard library in Python 3, or there's a recipe you can download for Python 2.
from functools import lru_cache
#lru_cache()
def walks(k, n, t):
"""
Return the number of length-t walks in [0, n]
that start at 0 and end at k. Each step
in the walk adds -1, 0 or 1 to the current total.
Inputs should satisfy 0 <= k <= n and 0 <= t.
"""
if t == 0:
# If no steps allowed, we can only get to 0,
# and then only in one way.
return k == 0
else:
# Count the walks ending in 0.
total = walks(k, n, t-1)
if 0 < k:
# ... plus the walks ending in 1.
total += walks(k-1, n, t-1)
if k < n:
# ... plus the walks ending in -1.
total += walks(k+1, n, t-1)
return total
Now we can use this function to solve your problem.
def solve(n, t):
"""
Find number of solutions to the original problem.
"""
# All solutions stick at n once they get there.
# Therefore it's enough to find all walks
# that lie in [0, n-1] and take us to n-1 in
# fewer than t steps.
return sum(walks(n-1, n-1, i) for i in range(t))
Result and timings on my machine for solve(10, 100):
In [1]: solve(10, 100)
Out[1]: 250639233987229485923025924628548154758061157
In [2]: %timeit solve(10, 100)
1000 loops, best of 3: 964 µs per loop

Determining the pairs of integers that sum to some value in the array

I have the program which counts the number of pairs of N integers that sum to value. To simplify the problem, assume also that the integers are distinct.
l.Sort();
for (int i = 0; i < l.Count; ++i)
{
int j = l.BinarySearch(value - l[i]);
if (j > i)
{
Console.WriteLine("{0} {1}", i + 1, j+1);
}
}
To solve the problem, we sort the array (to enable binary search) and then, for every entry a[i] in the array, do a binary search for value - a[i]. If the result is an index j with j > i, we show this pair.
But this algorithm don't work on the following input:
1 2 3 4 4 9 56 90 because j always smaller than i.
How to fix that?
I would go with more efficient solution that needs more space.
Assume that numbers are not distinct
Create a hash table with your integers as a key and a frequency as a value
Iterate over this hash table.
For each key
calculate diff diff = value - k
lookup for diff in hash
if there is a match check if this value have got frequency > 0
if frequency is > 0 decrement it by 1 and yield current pair k, diff
Here is a Python code:
def count_pairs(arr, value):
hsh = {}
for k in arr:
cnt = hsh.get(k, 0)
hsh[k] = cnt + 1
for k in arr:
diff = value - k
cnt = hsh.get(diff)
if cnt > 0:
hsh[k] -= 1
print("Pair detected: " + str(k) + " and " + str(diff))
count_pairs([4, 2, 3, 4, 9, 1, 5, 4, 56, 90], 8)
#=> Pair detected: 4 and 4
#=> Pair detected: 3 and 5
#=> Pair detected: 4 and 4
#=> Pair detected: 4 and 4
As far as counts the number of pairs is very vague description, here you could see 4 distinct (by number's index) pairs.
If you want this to work for non-distinct values (which your
question does not say, but your comment implies), binary search only the
portion of the array after i. This also eliminates the need for the
if (j > i) test.
Would show the code, but I don't know how to specify such a slice in
whatever language you're using.

Resources