GLSL sparking vertex shader - animation

I am trying to tweak this ShaderToy example for vertices to create 'sparks'
out of them. Have tried to play with gl_PointCoord and gl_FragCoord without any results. Maybe, someone here could help me?
I need effect similar to this animated gif:
uniform float time;
uniform vec2 mouse;
uniform vec2 resolution;
#define M_PI 3.1415926535897932384626433832795
float rand(vec2 co)
{
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
void main( ) {
float size = 30.0;
float prob = 0.95;
vec2 pos = floor(1.0 / size * gl_FragCoord.xy);
float color = 0.0;
float starValue = rand(pos);
if (starValue > prob)
{
vec2 center = size * pos + vec2(size, size) * 0.5;
float t = 0.9 + sin(time + (starValue - prob) / (1.0 - prob) * 45.0);
color = 1.0 - distance(gl_FragCoord.xy, center) / (0.5 * size);
color = color * t / (abs(gl_FragCoord.y - center.y)) * t / (abs(gl_FragCoord.x - center.x));
}
else if (rand(gl_FragCoord.xy / resolution.xy) > 0.996)
{
float r = rand(gl_FragCoord.xy);
color = r * ( 0.25 * sin(time * (r * 5.0) + 720.0 * r) + 0.75);
}
gl_FragColor = vec4(vec3(color), 1.0);
}
As I understand have to play with vec2 pos, setting it to a vertex position.

You don't need to play with pos. As Vertex Shader is only run by each vertex, there is no way to process its pixel values there using Pos. However, you can do processing pixel using gl_PointCoord.
I can think of two ways only for changing the scale of a texture
gl_PointSize in Vertex Shader in opengl es
In Fragment Shader, you can change the texture UV value, for example,
vec4 color = texture(texture0, ((gl_PointCoord-0.5) * factor) + vec2(0.5));
If you don't want to use any texture but only pixel processing in FS,
you can set UV like ((gl_PointCoord-0.5) * factor) + vec2(0.5)
instead of uv which is normally set as fragCoord.xy / iResolution.xy in Shadertoy

Related

Implement antialiasing logic for line segments and triangles in GLSL shaders

I'm building 2D Graph structure based on Three.js, all elements of the graph (nodes, edges, triangles for arrows) calculated in shaders. I was able to reach a good level of antialiasing for nodes (circles) but stuck with same task for lines and triangles.
I was able to reach a good antialiasing results for nodes (circles) with and without stroke following this question: How can I add a uniform width outline to WebGL shader drawn circles/ellipses (drawn using edge/distance antialiasing) , my code, responsible for antialiasing alpha:
`float strokeWidth = 0.09;
float outerEdgeCenter = 0.5 - strokeWidth;
float d = distance(vUV, vec2(.5, .5));
float delta = fwidth(d);
float alpha = 1.0 - smoothstep(0.45 - delta, 0.45, d);
float stroke = 1.0 - smoothstep(outerEdgeCenter - delta,
outerEdgeCenter + delta, d);`
But now I'm completely stack with edges and triangles to do same stuff.
Here is an example of shapes images that I have now (on non retina displays):
To reduce under-sampling artifacts I want to do similar algorithms (as for circles) directly in shaders by manipulating alpha and already find some materials related to this topic:
https://thebookofshaders.com/glossary/?search=smoothstep - seems to be the closest solution but unfortunately I wasn't able to implement it properly and figure out how to set up y equation for segmented lines.
https://discourse.threejs.org/t/shader-to-create-an-offset-inward-growing-stroke/6060/12 - last answer, looks promising but not give me proper result.
https://www.shadertoy.com/view/4dcfW8 - also do not give proper result.
Here is an examples of my shaders for lines and triangles:
Line VertexShader (is a slightly adapted version of WestLangley's LineMaterial shader):
`precision highp float;
#include <common>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
uniform float linewidth;
uniform vec2 resolution;
attribute vec3 instanceStart;
attribute vec3 instanceEnd;
attribute vec3 instanceColorStart;
attribute vec3 instanceColorEnd;
attribute float alphaStart;
attribute float alphaEnd;
attribute float widthStart;
attribute float widthEnd;
varying vec2 vUv;
varying float alphaTest;
void trimSegment( const in vec4 start, inout vec4 end ) {
// trim end segment so it terminates between the camera plane and the near plane
// conservative estimate of the near plane
float a = projectionMatrix[ 2 ][ 2 ]; // 3nd entry in 3th column
float b = projectionMatrix[ 3 ][ 2 ]; // 3nd entry in 4th column
float nearEstimate = - 0.5 * b / a;
float alpha = ( nearEstimate - start.z ) / ( end.z - start.z );
end.xyz = mix( start.xyz, end.xyz, alpha );
}
void main() {
#ifdef USE_COLOR
vColor.xyz = ( position.y < 0.5 ) ? instanceColorStart : instanceColorEnd;
alphaTest = ( position.y < 0.5 ) ? alphaStart : alphaEnd;
#endif
float aspect = resolution.x / resolution.y;
vUv = uv;
// camera space
vec4 start = modelViewMatrix * vec4( instanceStart, 1.0 );
vec4 end = modelViewMatrix * vec4( instanceEnd, 1.0 );
// special case for perspective projection, and segments that terminate either in, or behind, the camera plane
// clearly the gpu firmware has a way of addressing this issue when projecting into ndc space
// but we need to perform ndc-space calculations in the shader, so we must address this issue directly
// perhaps there is a more elegant solution -- WestLangley
bool perspective = ( projectionMatrix[ 2 ][ 3 ] == - 1.0 ); // 4th entry in the 3rd column
if (perspective) {
if (start.z < 0.0 && end.z >= 0.0) {
trimSegment( start, end );
} else if (end.z < 0.0 && start.z >= 0.0) {
trimSegment( end, start );
}
}
// clip space
vec4 clipStart = projectionMatrix * start;
vec4 clipEnd = projectionMatrix * end;
// ndc space
vec2 ndcStart = clipStart.xy / clipStart.w;
vec2 ndcEnd = clipEnd.xy / clipEnd.w;
// direction
vec2 dir = ndcEnd - ndcStart;
// account for clip-space aspect ratio
dir.x *= aspect;
dir = normalize( dir );
// perpendicular to dir
vec2 offset = vec2( dir.y, - dir.x );
// undo aspect ratio adjustment
dir.x /= aspect;
offset.x /= aspect;
// sign flip
if ( position.x < 0.0 ) offset *= - 1.0;
// endcaps, to round line corners
if ( position.y < 0.0 ) {
// offset += - dir;
} else if ( position.y > 1.0 ) {
// offset += dir;
}
// adjust for linewidth
offset *= (linewidth * widthStart);
// adjust for clip-space to screen-space conversion // maybe resolution should be based on viewport ...
offset /= resolution.y;
// select end
vec4 clip = ( position.y < 0.5 ) ? clipStart : clipEnd;
// back to clip space
offset *= clip.w;
clip.xy += offset;
gl_Position = clip;
vec4 mvPosition = ( position.y < 0.5 ) ? start : end; // this is an approximation
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <fog_vertex>
}`
Line FragmentShader:
`precision highp float;
#include <common>
#include <color_pars_fragment>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
uniform vec3 diffuse;
uniform float opacity;
varying vec2 vUv;
varying float alphaTest;
void main() {
if ( abs( vUv.y ) > 1.0 ) {
float a = vUv.x;
float b = ( vUv.y > 0.0 ) ? vUv.y - 1.0 : vUv.y + 1.0;
float len2 = a * a + b * b;
if ( len2 > 1.0 ) discard;
}
vec4 diffuseColor = vec4( diffuse, alphaTest );
#include <logdepthbuf_fragment>
#include <color_fragment>
gl_FragColor = vec4( diffuseColor.rgb, diffuseColor.a );
#include <premultiplied_alpha_fragment>
#include <tonemapping_fragment>
#include <encodings_fragment>
#include <fog_fragment>
}`
Triangle vertex shader:
`precision highp float;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform float zoomLevel;
attribute vec3 position;
attribute vec3 vertexPos;
attribute vec3 color;
attribute float alpha;
attribute float xAngle;
attribute float yAngle;
attribute float xScale;
attribute float yScale;
varying vec4 vColor;
// transforms the 'positions' geometry with instance attributes
vec3 transform( inout vec3 position, vec3 T) {
position.x *= xScale;
position.y *= yScale;
// Rotate the position
vec3 rotatedPosition = vec3(
position.x * yAngle + position.y * xAngle,
position.y * yAngle - position.x * xAngle, 0);
position = rotatedPosition + T;
// return the transformed position
return position;
}
void main() {
vec3 pos = position;
vColor = vec4(color, alpha);
// transform it
transform(pos, vertexPos);
gl_Position = projectionMatrix * modelViewMatrix * vec4( pos, 1.0 );
}`
Triangle FragmentShader:
`precision highp float;
varying vec4 vColor;
void main() {
gl_FragColor = vColor;
}`
Will really appreciate any help on how to do it or suggestion of right direction for further investigations. Thank you!

Three.js/Webgl vertex.y does not update

In effort to learn vertex/fragment shaders I decided to create a simple rain effect by updating the y position of a point in the vertex shader and resetting it back to animate through again using Three.js PointCloud. I got it to animate across the screen once but gets stuck after resetting the y position.
uniform float size;
uniform float delta;
varying float vOpacity;
varying float vTexture;
void main() {
vOpacity = opacity;
vTexture = texture;
gl_PointSize = 164.0;
vec3 p = position;
vec3 p = position;
p.y -= delta * 50.0;
vec4 mvPosition = modelViewMatrix * vec4(1.0 * p, 1.0 );
vec4 nPos = projectionMatrix * mvPosition;
if(nPos.y < -200.0){
nPos.y = 100.0;
}
gl_Position = nPos;
}
Any ideas? Thanks
shader does not change the vertex position permanently
that means
gl_Position = nPos;
will not propagate to your position attribute in geometry
shader only runs on graphics card and has no access to memory of the browser
you can change your code to this:
nPos.y = mod(nPos.y, 300.0) - 200.0;
now the y coordinate should change as you want it to(going from 100 to -200 then back to 100)

Atmosphere Scattering for Earth from space and on the ground

Please provide prompt how to make the atmosphere of the Earth so that it is visible from space and from the ground (as shown in the image)
a model of the earth:
Earth = new THREE.Mesh(new THREE.SphereGeometry(6700,32,32),ShaderMaterialEarth);
model of the cosmos:
cosmos= new THREE.Mesh(new THREE.SphereGeometry(50000,32,32),ShaderMaterialCosmos);
and a light source:
sun = new THREE.DirectionalLight();
where to start, just I do not know. Perhaps this should do ShaderMaterialCosmos, where to pass position of the camera, and calculate how should be painted pixel. But how?
I tried using the following but get zero vectors at the entrance of the fragment shader
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter16.html
vertexShader:
#define M_PI 3.1415926535897932384626433832795
const float ESun=1.0;
const float Kr = 0.0025;
const float Km = 0.0015;
const int nSamples = 2;
const float fSamples = 1.0;
const float fScaleDepth = 0.25;
varying vec2 vUv;
varying vec3 wPosition;
varying vec4 c0;
varying vec4 c1;
varying vec3 t0;
uniform vec3 v3CameraPos; , // The camera's current position
uniform vec3 v3LightDir; // Direction vector to the light source
uniform vec3 v3InvWavelength; // 1 / pow(wavelength, 4) for RGB
uniform float fCameraHeight; // The camera's current height
const float fOuterRadius=6500.0; // The outer (atmosphere) radius
const float fInnerRadius=6371.0; // The inner (planetary) radius
const float fKrESun=Kr*ESun; // Kr * ESun
const float fKmESun=Km*ESun; // Km * ESun
const float fKr4PI=Kr*4.0*M_PI; // Kr * 4 * PI
const float fKm4PI=Km*4.0*M_PI; // Km * 4 * PI
const float fScale=1.0/(fOuterRadius-fInnerRadius); // 1 / (fOuterRadius - fInnerRadius)
const float fScaleOverScaleDepth= fScale / fScaleDepth; // fScale / fScaleDepth
const float fInvScaleDepth=1.0/0.25;
float getNearIntersection(vec3 v3Pos, vec3 v3Ray, float fDistance2, float fRadius2)
{
float B = 2.0 * dot(v3Pos, v3Ray);
float C = fDistance2 - fRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
return 0.5 * (-B - sqrt(fDet));
}
float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
void main() {
// Get the ray from the camera to the vertex and its length (which
// is the far point of the ray passing through the atmosphere)
vec3 v3Pos = position.xyz;
vec3 v3Ray = v3Pos - v3CameraPos;
float fFar = length(v3Ray);
v3Ray /= fFar;
// Calculate the closest intersection of the ray with
// the outer atmosphere (point A in Figure 16-3)
float fNear = getNearIntersection(v3CameraPos, v3Ray, fCameraHeight*fCameraHeight, fOuterRadius*fOuterRadius);
// Calculate the ray's start and end positions in the atmosphere,
// then calculate its scattering offset
vec3 v3Start = v3CameraPos + v3Ray * fNear;
fFar -= fNear;
float fStartAngle = dot(v3Ray, v3Start) / fOuterRadius;
float fStartDepth = exp(-fInvScaleDepth);
float fStartOffset = fStartDepth * scale(fStartAngle);
// Initialize the scattering loop variables
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
vec3 v3SampleRay = v3Ray * fSampleLength;
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample points
vec3 v3FrontColor = vec3(0.0, 0.0, 0.0);
for(int i=0; i<nSamples; i++) {
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fLightAngle = dot(v3LightDir, v3SamplePoint) / fHeight;
float fCameraAngle = dot(v3Ray, v3SamplePoint) / fHeight;
float fScatter = (fStartOffset + fDepth * (scale(fLightAngle) * scale(fCameraAngle)));
vec3 v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}
wPosition = (modelMatrix * vec4(position,1.0)).xyz;
c0.rgb = v3FrontColor * (v3InvWavelength * fKrESun);
c1.rgb = v3FrontColor * fKmESun;
t0 = v3CameraPos - v3Pos;
vUv = uv;
}
fragmentShader:
float getMiePhase(float fCos, float fCos2, float g, float g2){
return 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + fCos2) / pow(1.0 + g2 - 2.0*g*fCos, 1.5);
}
// Rayleigh phase function
float getRayleighPhase(float fCos2){
//return 0.75 + 0.75 * fCos2;
return 0.75 * (2.0 + 0.5 * fCos2);
}
varying vec2 vUv;
varying vec3 wPosition;
varying vec4 c0;
varying vec4 c1;
varying vec3 t0;
uniform vec3 v3LightDir;
uniform float g;
uniform float g2;
void main() {
float fCos = dot(v3LightDir, t0) / length(t0);
float fCos2 = fCos * fCos;
gl_FragColor = getRayleighPhase(fCos2) * c0 + getMiePhase(fCos, fCos2, g, g2) * c1;
gl_FragColor = c1;
}
Chapter 16 of GPU Gem 2 has nice explanation and illustration for achieving your goal in real time.
Basically you need to perform ray casting through the atmosphere layer and evaluate the light scattering.

Depth Map is white - webgl

I am using the shaders to draw the depth map in my image.
Here is my shader code :
vertex shader:
void main(void) {
gl_PointSize = aPointSize;
gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vColor = aVertexColor;
visdepth = aisdepth;
vHasTexture = aHasTexture;
if (aHasTexture > 0.5)
vTextureCoord = aTextureCoord;
}
Fragement Shader:
void main(void) {
if (vHasTexture < 0.5 && visdepth < 0.5)
gl_FragColor = vColor;
if (vHasTexture > 0.5) {
vec4 textureColor = texture2D(uTexture, vec2(vTextureCoord.s, vTextureCoord.t));
gl_FragColor = vec4(textureColor.rgb, textureColor.a * uTextureAlpha);
}
if (visdepth > 0.5){
float ndcDepth = (2.0 * gl_FragCoord.z - gl_DepthRange.near - gl_DepthRange.far) /
(gl_DepthRange.far - gl_DepthRange.near);
float clipDepth = ndcDepth /gl_FragCoord.w;
gl_FragColor = vec4((clipDepth*0.5)+0.5);
}
}
I used the following link as reference for my calculations : draw the depth value in opengl using shaders
I am getting all my values to be white as shown below:
From the two images above, it is clearly seen that points to the far right of the image are behind. This is not reflected in the image I downloaded. After using drawArrays function, I use the toDataUrl function to download the canvas data. The images are a result of the download. Does anyone know of any possible reasons for this?
for anyone who seeks an answer to that question , here's a little hint :
if you want to view the depth map , you have to linearize it...
float linearize_Z(float depth , float zNear , float zFar){
return (2*zNear ) / (zFar + zNear - depth*(zFar -zNear)) ;
}

WebGL heightmap using vertex shader, using 32 bits instead of 8 bits

I'm using the following vertex shader (courtesy http://stemkoski.github.io/Three.js/Shader-Heightmap-Textures.html) to generate terrain from a grayscale height map:
uniform sampler2D bumpTexture;
uniform float bumpScale;
varying float vAmount;
varying vec2 vUV;
void main()
{
vUV = uv;
vec4 bumpData = texture2D( bumpTexture, uv );
vAmount = bumpData.r; // assuming map is grayscale it doesn't matter if you use r, g, or b.
// move the position along the normal
vec3 newPosition = position + normal * bumpScale * vAmount;
gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0);
}
I'd like to have 32-bits of resolution, and have generated a heightmap that encodes heights as RGBA. I have no idea how to go about changing the shader code to accommodate this. Any direction or help?
bumpData.r, .g, .b and .a are all quantities in the range [0.0, 1.0] equivalent to the original byte values divided by 255.0.
So depending on your endianness, a naive conversion back to the original int might be:
(bumpData.r * 255.0) +
(bumpdata.g * 255.0 * 256.0) +
(bumpData.b * 255.0 * 256.0 * 256.0) +
(bumpData.a * 255.0 * 256.0 * 256.0 * 256.0)
So that's the same as a dot product with the vector (255.0, 65280.0, 16711680.0, 4278190080.0), which is likely to be the much more efficient way to implement it.
With threejs
const generateHeightTexture = (width) => {
// let max_texture_width = RENDERER.capabilities.maxTextureSize;
let pixels = new Float32Array(width * width)
pixels.fill(0, 0, pixels.length);
let texture = new THREE.DataTexture(pixels, width, width, THREE.AlphaFormat, THREE.FloatType);
texture.magFilter = THREE.LinearFilter;
texture.minFilter = THREE.NearestFilter;
// texture.anisotropy = RENDERER.capabilities.getMaxAnisotropy();
texture.needsUpdate = true;
console.log('Built Physical Texture:', width, 'x', width)
return texture;
}

Resources