Related
I'm changing the z coordinate vertices on my geometry but find that the Mesh Stays the same size, and I'm expecting it to get smaller. Tweening between vertex positions works as expected in X,Y space however.
This is how I'm calculating my gl_Position by tweening the amplitude uniform in my render function:
<script type="x-shader/x-vertex" id="vertexshader">
uniform float amplitude;
uniform float direction;
uniform vec3 cameraPos;
uniform float time;
attribute vec3 tweenPosition;
varying vec2 vUv;
void main() {
vec3 pos = position;
vec3 morphed = vec3( 0.0, 0.0, 0.0 );
morphed += ( tweenPosition - position ) * amplitude;
morphed += pos;
vec4 mvPosition = modelViewMatrix * vec4( morphed * vec3(1, -1, 0), 1.0 );
vUv = uv;
gl_Position = projectionMatrix * mvPosition;
}
</script>
I also tried something like this from calculating perspective on webglfundamentals:
vec4 newPos = projectionMatrix * mvPosition;
float zToDivideBy = 1.0 + newPos.z * 1.0;
gl_Position = vec4(newPos.xyz, zToDivideBy);
This is my loop to calculate another vertex set that I'm tweening between:
for (var i = 0; i < positions.length; i++) {
if ((i+1) % 3 === 0) {
// subtracting from z coord of each vertex
tweenPositions[i] = positions[i]- (Math.random() * 2000);
} else {
tweenPositions[i] = positions[i]
}
}
I get the same results with this -- objects further away in Z-Space do not scale / attenuate / do anything different. What gives?
morphed * vec3(1, -1, 0)
z is always zero in your code.
[x,y,z] * [1,-1,0] = [x,-y,0]
I have a pair of shader programs where everything works great if my DataTextures are square (1:1), but if one or both are 2:1 (width:height) ratio the behavior gets messed up. I can extend each of the buffers with unused filler to make sure they are always square, but this seems unnecessarily costly (memory-wise) in the long run, as one of the two buffer sizes is quite large to start. Is there a way to handle a 2:1 buffer in this scenario?
I have a pair of shader programs:
The first is a single frag shader used to calculate the physics for my program (it writes out a texture tPositions to be read by the second set of shaders). It is driven by Three.js's GPUComputeRenderer script (resolution set at the size of my largest buffer.)
The second pair of shaders (vert and frag) use the data texture tPositions produced by the first shader program to then render out the visualization (resolution set at the window size).
The visualization is a grid of variously shaped particle clouds. In the shader programs, there are textures of two different sizes: The smaller sized textures contain information for each of the particle clouds (one texel per cloud), larger sized textures contain information for each particle in all of the clouds (one texel per particle). Both have a certain amount of unused filler tacked on the end to fill them out to a power of 2.
Texel-per-particle sized textures (large): tPositions, tOffsets
Texel-per-cloud sized textures (small): tGridPositionsAndSeeds, tSelectionFactors
As I said before, the problem is that when these two buffer sizes (the large and the small) are at a 1:1 (width: height) ratio, the programs work just fine; however, when one or both are at a 2:1 (width:height) ratio the behavior is a mess. What accounts for this, and how can I address it? Thanks in advance!
UPDATE: Could the problem be related to my housing the texel coords to read the tPosition texture in the shader's position attribute in the second shader program? If so, perhaps this Github issue regarding texel coords in the position attribute may be related, though I can't find a corresponding question/answer here on SO.
UPDATE 2:
I'm also looking into whether this could be an unpack alignment issue. Thoughts?
Here's the set up in Three.js for the first shader program:
function initComputeRenderer() {
textureData = MotifGrid.getBufferData();
gpuCompute = new GPUComputationRenderer( textureData.uPerParticleBufferWidth, textureData.uPerParticleBufferHeight, renderer );
dtPositions = gpuCompute.createTexture();
dtPositions.image.data = textureData.tPositions;
offsetsTexture = new THREE.DataTexture( textureData.tOffsets, textureData.uPerParticleBufferWidth, textureData.uPerParticleBufferHeight, THREE.RGBAFormat, THREE.FloatType );
offsetsTexture.needsUpdate = true;
gridPositionsAndSeedsTexture = new THREE.DataTexture( textureData.tGridPositionsAndSeeds, textureData.uPerMotifBufferWidth, textureData.uPerMotifBufferHeight, THREE.RGBAFormat, THREE.FloatType );
gridPositionsAndSeedsTexture.needsUpdate = true;
selectionFactorsTexture = new THREE.DataTexture( textureData.tSelectionFactors, textureData.uPerMotifBufferWidth, textureData.uPerMotifBufferHeight, THREE.RGBAFormat, THREE.FloatType );
selectionFactorsTexture.needsUpdate = true;
positionVariable = gpuCompute.addVariable( "tPositions", document.getElementById( 'position_fragment_shader' ).textContent, dtPositions );
positionVariable.wrapS = THREE.RepeatWrapping; // repeat wrapping for use only with bit powers: 8x8, 16x16, etc.
positionVariable.wrapT = THREE.RepeatWrapping;
gpuCompute.setVariableDependencies( positionVariable, [ positionVariable ] );
positionUniforms = positionVariable.material.uniforms;
positionUniforms.tOffsets = { type: "t", value: offsetsTexture };
positionUniforms.tGridPositionsAndSeeds = { type: "t", value: gridPositionsAndSeedsTexture };
positionUniforms.tSelectionFactors = { type: "t", value: selectionFactorsTexture };
positionUniforms.uPerMotifBufferWidth = { type : "f", value : textureData.uPerMotifBufferWidth };
positionUniforms.uPerMotifBufferHeight = { type : "f", value : textureData.uPerMotifBufferHeight };
positionUniforms.uTime = { type: "f", value: 0.0 };
positionUniforms.uXOffW = { type: "f", value: 0.5 };
}
Here is the first shader program (only a frag for physics calculations):
// tPositions is handled by the GPUCompute script
uniform sampler2D tOffsets;
uniform sampler2D tGridPositionsAndSeeds;
uniform sampler2D tSelectionFactors;
uniform float uPerMotifBufferWidth;
uniform float uPerMotifBufferHeight;
uniform float uTime;
uniform float uXOffW;
[...skipping a noise function for brevity...]
void main() {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 offsets = texture2D( tOffsets, uv ).xyzw;
float alphaMass = offsets.z;
float cellIndex = offsets.w;
if (cellIndex >= 0.0) {
float damping = 0.98;
float texelSizeX = 1.0 / uPerMotifBufferWidth;
float texelSizeY = 1.0 / uPerMotifBufferHeight;
vec2 perMotifUV = vec2( mod(cellIndex, uPerMotifBufferWidth)*texelSizeX, floor(cellIndex / uPerMotifBufferHeight)*texelSizeY );
perMotifUV += vec2(0.5*texelSizeX, 0.5*texelSizeY);
vec4 selectionFactors = texture2D( tSelectionFactors, perMotifUV ).xyzw;
float swapState = selectionFactors.x;
vec4 gridPosition = texture2D( tGridPositionsAndSeeds, perMotifUV ).xyzw;
vec2 noiseSeed = gridPosition.zw;
vec4 nowPos;
vec2 velocity;
nowPos = texture2D( tPositions, uv ).xyzw;
velocity = vec2(nowPos.z, nowPos.w);
if ( swapState == 0.0 ) {
nowPos = texture2D( tPositions, uv ).xyzw;
velocity = vec2(nowPos.z, nowPos.w);
} else { // if swapState == 1
//nowPos = vec4( -(uTime) + gridPosition.x + offsets.x, gridPosition.y + offsets.y, 0.0, 0.0 );
nowPos = vec4( -(uTime) + offsets.x, offsets.y, 0.0, 0.0 );
velocity = vec2(0.0, 0.0);
}
[...skipping the physics for brevity...]
vec2 newPosition = vec2(nowPos.x - velocity.x, nowPos.y - velocity.y);
// Write new position out
gl_FragColor = vec4(newPosition.x, newPosition.y, velocity.x, velocity.y);
}
Here is the setup for the second shader program:
Note: The renderer for this section is a WebGLRenderer at window size
function makePerParticleReferencePositions() {
var positions = new Float32Array( perParticleBufferSize * 3 );
var texelSizeX = 1 / perParticleBufferDimensions.width;
var texelSizeY = 1 / perParticleBufferDimensions.height;
for ( var j = 0, j3 = 0; j < perParticleBufferSize; j ++, j3 += 3 ) {
positions[ j3 + 0 ] = ( ( j % perParticleBufferDimensions.width ) / perParticleBufferDimensions.width ) + ( 0.5 * texelSizeX );
positions[ j3 + 1 ] = ( Math.floor( j / perParticleBufferDimensions.height ) / perParticleBufferDimensions.height ) + ( 0.5 * texelSizeY );
positions[ j3 + 2 ] = j * 0.0001; // this is the real z value for the particle display
}
return positions;
}
var positions = makePerParticleReferencePositions();
...
// Add attributes to the BufferGeometry:
gridOfMotifs.geometry.addAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) );
gridOfMotifs.geometry.addAttribute( 'aTextureIndex', new THREE.BufferAttribute( motifGridAttributes.aTextureIndex, 1 ) );
gridOfMotifs.geometry.addAttribute( 'aAlpha', new THREE.BufferAttribute( motifGridAttributes.aAlpha, 1 ) );
gridOfMotifs.geometry.addAttribute( 'aCellIndex', new THREE.BufferAttribute(
motifGridAttributes.aCellIndex, 1 ) );
uniformValues = {};
uniformValues.tSelectionFactors = motifGridAttributes.tSelectionFactors;
uniformValues.uPerMotifBufferWidth = motifGridAttributes.uPerMotifBufferWidth;
uniformValues.uPerMotifBufferHeight = motifGridAttributes.uPerMotifBufferHeight;
gridOfMotifs.geometry.computeBoundingSphere();
...
function makeCustomUniforms( uniformValues ) {
selectionFactorsTexture = new THREE.DataTexture( uniformValues.tSelectionFactors, uniformValues.uPerMotifBufferWidth, uniformValues.uPerMotifBufferHeight, THREE.RGBAFormat, THREE.FloatType );
selectionFactorsTexture.needsUpdate = true;
var customUniforms = {
tPositions : { type : "t", value : null },
tSelectionFactors : { type : "t", value : selectionFactorsTexture },
uPerMotifBufferWidth : { type : "f", value : uniformValues.uPerMotifBufferWidth },
uPerMotifBufferHeight : { type : "f", value : uniformValues.uPerMotifBufferHeight },
uTextureSheet : { type : "t", value : texture }, // this is a sprite sheet of all 10 strokes
uPointSize : { type : "f", value : 18.0 }, // the radius of a point in WebGL units, e.g. 30.0
// Coords for the hatch textures:
uTextureCoordSizeX : { type : "f", value : 1.0 / numTexturesInSheet },
uTextureCoordSizeY : { type : "f", value : 1.0 }, // the size of a texture in the texture map ( they're square, thus only one value )
};
return customUniforms;
}
And here is the corresponding shader program (vert & frag):
Vertex shader:
uniform sampler2D tPositions;
uniform sampler2D tSelectionFactors;
uniform float uPerMotifBufferWidth;
uniform float uPerMotifBufferHeight;
uniform sampler2D uTextureSheet;
uniform float uPointSize; // the radius size of the point in WebGL units, e.g. "30.0"
uniform float uTextureCoordSizeX; // vertical dimension of each texture given the full side = 1
uniform float uTextureCoordSizeY; // horizontal dimension of each texture given the full side = 1
attribute float aTextureIndex;
attribute float aAlpha;
attribute float aCellIndex;
varying float vCellIndex;
varying vec2 vTextureCoords;
varying vec2 vTextureSize;
varying float vAlpha;
varying vec3 vColor;
varying float vDensity;
[...skipping noise function for brevity...]
void main() {
vec4 tmpPos = texture2D( tPositions, position.xy );
vec2 pos = tmpPos.xy;
vec2 vel = tmpPos.zw;
vCellIndex = aCellIndex;
if (aCellIndex >= 0.0) { // buffer filler cell indexes are -1
float texelSizeX = 1.0 / uPerMotifBufferWidth;
float texelSizeY = 1.0 / uPerMotifBufferHeight;
vec2 perMotifUV = vec2( mod(aCellIndex, uPerMotifBufferWidth)*texelSizeX, floor(aCellIndex / uPerMotifBufferHeight)*texelSizeY );
perMotifUV += vec2(0.5*texelSizeX, 0.5*texelSizeY);
vec4 selectionFactors = texture2D( tSelectionFactors, perMotifUV ).xyzw;
float aSelectedMotif = selectionFactors.x;
float aColor = selectionFactors.y;
float fadeFactor = selectionFactors.z;
vTextureCoords = vec2( aTextureIndex * uTextureCoordSizeX, 0 );
vTextureSize = vec2( uTextureCoordSizeX, uTextureCoordSizeY );
vAlpha = aAlpha * fadeFactor;
vDensity = vel.x + vel.y;
vAlpha *= abs( vDensity * 3.0 );
vColor = vec3( 1.0, aColor, 1.0 ); // set RGB color associated to vertex; use later in fragment shader.
gl_PointSize = uPointSize;
} else { // if this is a filler cell index (-1)
vAlpha = 0.0;
vDensity = 0.0;
vColor = vec3(0.0, 0.0, 0.0);
gl_PointSize = 0.0;
}
gl_Position = projectionMatrix * modelViewMatrix * vec4( pos.x, pos.y, position.z, 1.0 ); // position holds the real z value. The z value of "color" is a component of velocity
}
Fragment shader:
uniform sampler2D tPositions;
uniform sampler2D uTextureSheet;
varying float vCellIndex;
varying vec2 vTextureCoords;
varying vec2 vTextureSize;
varying float vAlpha;
varying vec3 vColor;
varying float vDensity;
void main() {
gl_FragColor = vec4( vColor, vAlpha );
if (vCellIndex >= 0.0) { // only render out the texture if this point is not a buffer filler
vec2 realTexCoord = vTextureCoords + ( gl_PointCoord * vTextureSize );
gl_FragColor = gl_FragColor * texture2D( uTextureSheet, realTexCoord );
}
}
Expected Behavior: I can achieve this by forcing all the DataTextures to be 1:1
Weird Behavior: When the smaller DataTextures are 2:1 those perfectly horizontal clouds in the top right of the picture below form and have messed up physics. When the larger DataTextures are 2:1, the grid is skewed, and the clouds appear to be missing parts (as seen below). When both the small and large textures are 2:1, both odd behaviors happen (this is the case in the image below).
Thanks to an answer to my related question here, I now know what was going wrong. The problem was in the way I was using the arrays of indexes (1,2,3,4,5...) to access the DataTextures' texels in the shader.
In this function (and the one for the larger DataTextures)...
float texelSizeX = 1.0 / uPerMotifBufferWidth;
float texelSizeY = 1.0 / uPerMotifBufferHeight;
vec2 perMotifUV = vec2(
mod(aCellIndex, uPerMotifBufferWidth)*texelSizeX,
floor(aCellIndex / uPerMotifBufferHeight)*texelSizeY );
perMotifUV += vec2(0.5*texelSizeX, 0.5*texelSizeY);
...I assumed that in order to create the y value for my custom uv, perMotifUV, I would need to divide the aCellIndex by the height of the buffer, uPerMotifBufferHeight (it's "vertical" dimension). However, as explained in the SO Q&A here the indices should, of course, be divided by the buffer's width, which would then tell you how many rows down you are!
Thus, the function should be revised to...
float texelSizeX = 1.0 / uPerMotifBufferWidth;
float texelSizeY = 1.0 / uPerMotifBufferHeight;
vec2 perMotifUV = vec2(
mod(aCellIndex, uPerMotifBufferWidth)*texelSizeX,
floor(aCellIndex / uPerMotifBufferWidth)*texelSizeY ); **Note the change to uPerMotifBufferWidth here
perMotifUV += vec2(0.5*texelSizeX, 0.5*texelSizeY);
The reason my program worked on square DataTextures (1:1) is that in such cases the height and width were equal, so my function was effectively dividing by width in the incorrect line because height=width!
I'm displaying a grid of particle clouds using shaders. Every time a user clicks a cloud, that cloud disappears and a new one takes its place. The curious thing is that the memory usage in the GPU climbs every time a new cloud replaces an old one - regardless of whether that new cloud is larger or smaller (and the buffer sizes always stay the same - the unused points are simply displayed offscreen with no color). After less than 10 clicks the GPU maxes out and crashes.
Here is my physics shader where the new positions are updated - I pass in the new position values for the new cloud by updating certain values in the the tOffsets texture. After that are my two (vert and frag) visual effects shaders. Can you see my efficiency issue? Or could this be a garbage collection matter? - Thanks in advance!
Physics Shader (frag only):
// Physics shader: This shader handles the calculations to move the various points. The position values are rendered out to at texture that is passed to the next pair of shaders that add the sprites and opacity.
// the tPositions sampler is added to this shader by Three.js's GPUCompute script
uniform sampler2D tOffsets;
uniform sampler2D tGridPositionsAndSeeds;
uniform sampler2D tSelectionFactors;
uniform float uPerMotifBufferDimension;
uniform float uTime;
uniform float uXOffW;
...noise functions omitted for brevity...
void main() {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 offsets = texture2D( tOffsets, uv ).xyzw;
float alphaMass = offsets.z;
float cellIndex = offsets.w;
if (cellIndex >= 0.0) { // this point will be rendered on screen
float damping = 0.98;
float texelSize = 1.0 / uPerMotifBufferDimension;
vec2 perMotifUV = vec2( mod(cellIndex, uPerMotifBufferDimension)*texelSize, floor(cellIndex / uPerMotifBufferDimension)*texelSize );
perMotifUV += vec2(0.5*texelSize);
vec4 selectionFactors = texture2D( tSelectionFactors, perMotifUV ).xyzw;
float swapState = selectionFactors.x;
vec4 gridPosition = texture2D( tGridPositionsAndSeeds, perMotifUV ).xyzw;
vec2 noiseSeed = gridPosition.zw;
vec4 nowPos;
vec2 velocity;
nowPos = texture2D( tPositions, uv ).xyzw;
velocity = vec2(nowPos.z, nowPos.w);
if ( swapState == 0.0 ) { // if no new position values are ready to be swapped in for this point
nowPos = texture2D( tPositions, uv ).xyzw;
velocity = vec2(nowPos.z, nowPos.w);
} else { // if swapState == 1, this means new position values are ready to be swapped in for this point
nowPos = vec4( -(uTime) + offsets.x, offsets.y, 0.0, 0.0 );
velocity = vec2(0.0, 0.0);
}
...physics calculations omitted for brevity...
vec2 newPosition = vec2(nowPos.x - velocity.x, nowPos.y - velocity.y);
// Write new position out to a texture for processing in the visual effects shader
gl_FragColor = vec4(newPosition.x, newPosition.y, velocity.x, velocity.y);
} else { // this point will not be rendered on screen
// Write new position out off screen (all -1 cellIndexes have off-screen offset values)
gl_FragColor = vec4( offsets.x, offsets.y, 0.0, 0.0);
}
From the physics shader the tPositions texture with the points' new movements is rendered out and passed to the visual effects shaders:
Visual Effects Shader (vert):
uniform sampler2D tPositions; // passed in from the Physics Shader
uniform sampler2D tSelectionFactors;
uniform float uPerMotifBufferDimension;
uniform sampler2D uTextureSheet;
uniform float uPointSize;
uniform float uTextureCoordSizeX;
uniform float uTextureCoordSizeY;
attribute float aTextureIndex;
attribute float aAlpha;
attribute float aCellIndex;
varying float vCellIndex;
varying vec2 vTextureCoords;
varying vec2 vTextureSize;
varying float vAlpha;
varying vec3 vColor;
...omitted noise functions for brevity...
void main() {
vec4 tmpPos = texture2D( tPositions, position.xy );
vec2 pos = tmpPos.xy;
vec2 vel = tmpPos.zw;
vCellIndex = aCellIndex;
if (vCellIndex >= 0.0) { // this point will be rendered onscreen
float texelSize = 1.0 / uPerMotifBufferDimension;
vec2 perMotifUV = vec2( mod(aCellIndex, uPerMotifBufferDimension)*texelSize, floor(aCellIndex / uPerMotifBufferDimension)*texelSize );
perMotifUV += vec2(0.5*texelSize);
vec4 selectionFactors = texture2D( tSelectionFactors, perMotifUV ).xyzw;
float aSelectedMotif = selectionFactors.x;
float aColor = selectionFactors.y;
float fadeFactor = selectionFactors.z;
vTextureCoords = vec2( aTextureIndex * uTextureCoordSizeX, 0 );
vTextureSize = vec2( uTextureCoordSizeX, uTextureCoordSizeY );
vAlpha = aAlpha * fadeFactor;
vColor = vec3( 1.0, aColor, 1.0 );
gl_PointSize = uPointSize;
} else { // this point will not be rendered onscreen
vAlpha = 0.0;
vColor = vec3(0.0, 0.0, 0.0);
gl_PointSize = 0.0;
}
gl_Position = projectionMatrix * modelViewMatrix * vec4( pos.x, pos.y, position.z, 1.0 );
}
Visual Effects Shader (frag):
uniform sampler2D tPositions;
uniform sampler2D uTextureSheet;
varying float vCellIndex;
varying vec2 vTextureCoords;
varying vec2 vTextureSize;
varying float vAlpha;
varying vec3 vColor;
void main() {
gl_FragColor = vec4( vColor, vAlpha );
if (vCellIndex >= 0.0) { // this point will be rendered onscreen, so add the texture
vec2 realTexCoord = vTextureCoords + ( gl_PointCoord * vTextureSize );
gl_FragColor = gl_FragColor * texture2D( uTextureSheet, realTexCoord );
}
}
Thanks to #Blindman67's comment above, I sorted out the problem. It had nothing to do with the shaders. In the Javascript (Three.js) I needed to signal the GPU to delete old textures before adding the updated ones.
Everytime I update a texture (most of mine are DataTextures) I need to call dispose() on the existing texture before creating and updating the new one, like so:
var textureHandle; // holds a reference to the current texture uniform value
textureHandle.dispose(); // ** deallocates GPU memory **
textureHandle = new THREE.DataTexture( textureData, dimension, dimension, THREE.RGBAFormat, THREE.FloatType );
textureHandle.needsUpdate = true;
uniforms.textureHandle.value = textureHandle;
I'm trying to learn how to make shaders, and a little while ago, I posted a question here : GLSL Shader - Shadow between 2 textures on a plane
So, the answer gave me the right direction to take, but I have some trouble for checking if there is a fragment that is not transparent between the current fragment and the light position.
So here is the code :
Vertex Shader :
attribute vec3 position;
attribute vec3 normal;
attribute vec2 uv;
varying vec2 uvVarying;
varying vec3 normalVarying;
varying vec3 posVarying;
uniform vec4 uvBounds0;
uniform mat4 agk_World;
uniform mat4 agk_ViewProj;
uniform mat3 agk_WorldNormal;
void main()
{
vec4 pos = agk_World * vec4(position,1);
gl_Position = agk_ViewProj * pos;
vec3 norm = agk_WorldNormal * normal;
posVarying = pos.xyz;
normalVarying = norm;
uvVarying = uv * uvBounds0.xy + uvBounds0.zw;
}
And the fragment shader :
#ifdef GL_ES
#ifdef GL_FRAGMENT_PRECISION_HIGH
precision highp float;
#else
precision mediump float;
#endif
#endif
uniform sampler2D texture0;
uniform sampler2D texture1;
varying vec2 uvVarying;
varying vec3 normalVarying;
varying vec3 posVarying;
uniform vec4 uvBounds0;
uniform vec2 playerPos;
uniform vec2 agk_resolution;
uniform vec4 agk_PLightPos;
uniform vec4 agk_PLightColor;
uniform vec4 agk_ObjColor;
void main (void)
{
vec4 lightPos = agk_PLightPos;
lightPos.x = playerPos.x;
lightPos.y = -playerPos.y;
vec3 dir = vec3(lightPos.x - posVarying.x, lightPos.y - posVarying.y, lightPos.z - posVarying.z);
vec3 norm = normalize(normalVarying);
float atten = dot(dir,dir);
atten = clamp(lightPos.w/atten,0.0,1.0);
float intensity = dot(normalize(dir),norm);
intensity = clamp(intensity,0.0,1.0);
vec3 lightColor = agk_PLightColor.rgb * intensity * atten;
vec3 shadowColor = agk_PLightColor.rgb * 0;
bool inTheShadow = false;
if (intensity * atten > 0.05) {
float distanceToLight = length(posVarying.xy - lightPos.xy);
for (float i = distanceToLight; i > 0.0; i -= 0.1) {
vec2 uvShadow = ???
if (texture2D(texture0, uvShadow).a > 0) {
inTheShadow = true;
break;
}
}
}
if (texture2D(texture0, uvVarying).a == 0) {
if (inTheShadow == true) {
gl_FragColor = texture2D(texture1, uvVarying) * vec4(shadowColor, 1) * agk_ObjColor;
}
else {
gl_FragColor = texture2D(texture1, uvVarying) * vec4(lightColor, 1) * agk_ObjColor;
}
}
else {
gl_FragColor = texture2D(texture0, uvVarying) * agk_ObjColor;
}
}
So, this is the part where I have some troubles :
bool inTheShadow = false;
if (intensity * atten > 0.05) {
float distanceToLight = length(posVarying.xy - lightPos.xy);
for (float i = distanceToLight; i > 0.0; i -= 0.1) {
vec2 uvShadow = ???
if (texture2D(texture0, uvShadow).a > 0) {
inTheShadow = true;
break;
}
}
}
I first check if I'm in the light radius with intensity * atten > 0.05
Then I get the distance from the current fragment to the light position.
And then, I make a for loop, to check each fragment between the current fragment and the light position. I tried some calculations to get the current fragment, but with no success.
So, any idea on how I can calculate the uvShadow in my loop ?
I hope I'm using the good variables too, cause in the last part of my code, where I use gl_FragColor, I'm using uvVarying to get the current fragment (If i'm not mistaken), but to get the light distance, I had to calculate the length between posVarying and lightPos and not between uvVarying and lightPos (I made a test, where the further I was from the light, the more red it became, and with posVarying, it made me a circle with gradient around my player (lightPos) but when I used uvVarying, the circle was only one color, and it was more or less red, when I was approaching my player to the center of the screen).
Thanks and best regards,
Max
When you access a texture through texture2D() you use normalised coordinates. I.e. numbers that go from (0.0, 0.0) to (1.0, 1.0). So you need to convert your world positions to this normalised space. So something like:
vec2 uvShadow = posVarying.xy + ((distanceToLight / 0.1) * i * (posVarying.xy - lightPos.xy));
// Take uvShadow from world space to view space, this is -1.0 to 1.0
uvShadow *= mat2(inverse(agk_View)); // This could be optimized if you are using orthographic projection
// Now take it to texture space
uvShadow += 0.5;
uvShadow *= 0.5;
So I've recently gotten into using WebGL and more specifically writing GLSL Shaders and I have run into a snag while writing the fragment shader for my "water" shader which is derived from this tutorial.
What I'm trying to achieve is a stepped shading (Toon shading, cell shading...) effect on waves generated by my vertex shader but the fragment shader seems to treat the waves as though they are still a flat plane and the entire mesh is drawn as one solid color.
What am I missing here? The sphere works perfectly but flat surfaces are all shaded uniformly. I have the same problem if I use a cube. Each face on the cube is shaded independently but the entire face is given a solid color.
The Scene
This is how I have my test scene set up. I have two meshes using the same material - a sphere and a plane and a light source.
The Problem
As you can see the shader is working as expected on the sphere.
I enabled wireframe for this shot to show that the vertex shader (perlin noise) is working beautifully on the plane.
But when I turn the wireframe off you can see that the fragment shader seems to be receiving the same level of light uniformly across the entire plane creating this...
Rotating the plane to face the light source will change the color of the material but again the color is applied uniformly over the entire surface of the plane.
The Fragment Shader
In all it's script kid glory lol.
uniform vec3 uMaterialColor;
uniform vec3 uDirLightPos;
uniform vec3 uDirLightColor;
uniform float uKd;
uniform float uBorder;
varying vec3 vNormal;
varying vec3 vViewPosition;
void main() {
vec4 color;
// compute direction to light
vec4 lDirection = viewMatrix * vec4( uDirLightPos, 0.0 );
vec3 lVector = normalize( lDirection.xyz );
// N * L. Normal must be normalized, since it's interpolated.
vec3 normal = normalize( vNormal );
// check the diffuse dot product against uBorder and adjust
// this diffuse value accordingly.
float diffuse = max( dot( normal, lVector ), 0.0);
if (diffuse > 0.95)
color = vec4(1.0,0.0,0.0,1.0);
else if (diffuse > 0.85)
color = vec4(0.9,0.0,0.0,1.0);
else if (diffuse > 0.75)
color = vec4(0.8,0.0,0.0,1.0);
else if (diffuse > 0.65)
color = vec4(0.7,0.0,0.0,1.0);
else if (diffuse > 0.55)
color = vec4(0.6,0.0,0.0,1.0);
else if (diffuse > 0.45)
color = vec4(0.5,0.0,0.0,1.0);
else if (diffuse > 0.35)
color = vec4(0.4,0.0,0.0,1.0);
else if (diffuse > 0.25)
color = vec4(0.3,0.0,0.0,1.0);
else if (diffuse > 0.15)
color = vec4(0.2,0.0,0.0,1.0);
else if (diffuse > 0.05)
color = vec4(0.1,0.0,0.0,1.0);
else
color = vec4(0.05,0.0,0.0,1.0);
gl_FragColor = color;
The Vertex Shader
vec3 mod289(vec3 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec3 fade(vec3 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
// Classic Perlin noise
float cnoise(vec3 P)
{
vec3 Pi0 = floor(P); // Integer part for indexing
vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
// Classic Perlin noise, periodic variant
float pnoise(vec3 P, vec3 rep)
{
vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
varying vec2 vUv;
varying float noise;
uniform float time;
// for the cell shader
varying vec3 vNormal;
varying vec3 vViewPosition;
float turbulence( vec3 p ) {
float w = 100.0;
float t = -.5;
for (float f = 1.0 ; f <= 10.0 ; f++ ){
float power = pow( 2.0, f );
t += abs( pnoise( vec3( power * p ), vec3( 10.0, 10.0, 10.0 ) ) / power );
}
return t;
}
varying vec3 vertexWorldPos;
void main() {
vUv = uv;
// add time to the noise parameters so it's animated
noise = 10.0 * -.10 * turbulence( .5 * normal + time );
float b = 25.0 * pnoise( 0.05 * position + vec3( 2.0 * time ), vec3( 100.0 ) );
float displacement = - 10. - noise + b;
vec3 newPosition = position + normal * displacement;
gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 );
// for the cell shader effect
vNormal = normalize( normalMatrix * normal );
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
vViewPosition = -mvPosition.xyz;
}
Worth Mention
I am using the Three.js library
My light source is an instance of THREE.SpotLight
First of all, shadows are completely different. Your problem here is a lack of change in the per-vertex normal after displacement. Correcting this is not going to get you shadows, but your lighting will at least vary across your displaced geometry.
If you have access to partial derivatives, you can do this in the fragment shader. Otherwise, you are kind of out of luck in GL ES, due to a lack of vertex adjacency information. You could also compute per-face normals with a Geometry Shader, but that is not an option in WebGL.
This should be all of the necessary changes to implement this, note that it requires partial derivative support (optional extension in OpenGL ES 2.0).
Vertex Shader:
varying vec3 vertexViewPos; // NEW
void main() {
...
vec3 newPosition = position + normal * displacement;
vertexViewPos = (modelViewMatrix * vec4 (newPosition, 1.0)).xyz; // NEW
...
}
Fragment Shader:
#extension GL_OES_standard_derivatives : require
uniform vec3 uMaterialColor;
uniform vec3 uDirLightPos;
uniform vec3 uDirLightColor;
uniform float uKd;
uniform float uBorder;
varying vec3 vNormal;
varying vec3 vViewPosition;
varying vec3 vertexViewPos; // NEW
void main() {
vec4 color;
// compute direction to light
vec4 lDirection = viewMatrix * vec4( uDirLightPos, 0.0 );
vec3 lVector = normalize( lDirection.xyz );
// N * L. Normal must be normalized, since it's interpolated.
vec3 normal = normalize(cross (dFdx (vertexViewPos), dFdy (vertexViewPos))); // UPDATED
...
}
To enable partial derivative support in WebGL you need to check the extension like this:
var ext = gl.getExtension("OES_standard_derivatives");
if (!ext) {
alert("OES_standard_derivatives does not exist on this machine");
return;
}
// proceed with the shaders above.