Way to refer to the receiver of 'Array#each' - ruby

I am iterating over an array, and I'm wondering if there's a shorthand to refer to the receiver of #each (or #each_with_index) method from within the iteration.
self returns main.

You should be able to just reference it:
my_thing.each {|one_thing| puts my_thing }

This is pretty similar to the answer I gave here https://stackoverflow.com/a/45421168/2981429 but slightly different.
First off, you can create a scope with self bound to the array, and then execute the each in that scope:
[1].instance_exec do
# in this scope, self is the array
# thus we can use just 'each' because the self is inferred
each do |x|
# note that since 'class' is a special keyword,
# it needs to be explicitly namespaced on self
puts self.class, x
end
end
# => prints Array, 1
You can create a utility function to do this, if you want:
def bound_each(enumerable, &blk)
enumerable.instance_exec { each &blk }
end
bound_each([1]) { |x| puts self.class, x }
# prints Array, 1

You can call your each method within an Object#tap block and reference the original receiver like that.
[1, 2, 3].tap { |i| i.each { |j| p i.dup << j } }
# [1, 2, 3, 1]
# [1, 2, 3, 2]
# [1, 2, 3, 3]
#=> [1, 2, 3]
Here the receiving object is [1, 2, 3] and is passed to the block-variable i which we can use locally or in nested scopes such as each's block.
Avoid modifying the receiving object else you may end up with undesired results such as an infinite array. Using dup could allay this possibility.

This is an interesting question. As far as I know it's not possible – the closest I can come up with would be to use inject (or reduce) and explicitly pass the receiver as an argument. A bit pointless, but there might be a use-case for it that I'm not seeing:
a = [1,2,3]
a.inject(a) do |this, element|
this == a #=> true
this.include?(element) #=> true
this
end
Apart from looking a bit redundant, you have to be very sure to return this at the end of each iteration, as the return value will become this in the next iteration. For that reason (and the fact that you could just reference your collection in an each block, as in David's answer) I don't recommend using this.
Edit - as Simple Lime pointed out in the comments – I missed the obvious Enumerator#with_object, which has the same (rather pointless) effect, but without the drawback of having to return this at the end of each iteration. For example:
a = [1,2,3]
a.map.with_object(a) do |element, this|
this == a #=> true, for each iteration
end
I still don't recommend that you use this though.

Related

Use variable's value in Proc definition

How can I use a variable's value at the point of Proc definition instead of defining the Proc with a reference to the variable? Or how else would I approach the problem of defining a list of different steps to be executed in sequence based on an input sequence?
Example:
arr = []
results = [1,2,3]
for res in results
arr << Proc.new { |_| res }
end
p arr[0].call(42)
p arr[1].call(3.14)
Expected output:
1
2
Actual output:
3
3
Why Your Code Doesn't Work as Expected: Shared Closure Scope
By definition, a Proc is a closure that retains its original scope but defers execution until called. Your non-idiomatic code obscures several subtle bugs, including the fact that the for-in control expression doesn't create a scope gate that provides the right context for your closures. All three of your Proc objects share the same scope, where the final assignment to the res variable is 3. As a result of their shared scope, you are correctly getting the same return value when calling any of the Procs stored in your array.
Fixing Your Closures
You can make your code work with some minor changes. For example:
arr = []
results = [1,2,3]
results.map do |res|
arr << Proc.new { |_| res }
end
p arr[0].call(42) #=> 1
p arr[1].call(3.14) #=> 2
Potential Refactorings
A More Idiomatic Approach
In addition to creating a proper scope gate, a more idiomatic refactoring might look like this:
results = [1, 2, 3]
arr = []
results.map { |i| arr << proc { i } }
arr.map { |proc_obj| proc_obj.call }
#=> [1, 2, 3]
Additional Refinements
A further refactoring could simplify the example code even further, especially if you don't need to store your inputs in an intermediate or explanatory variable like results. Consider:
array = [1, 2, 3].map { |i| proc { i } }
array.map &:call
#=> [1, 2, 3]
Validating the Refactoring
Because a Proc doesn't care about arity, this general approach also works when Proc#call is passed arbitrary arguments:
[42, 3.14, "a", nil].map { |v| arr[0].call(v) }
#=> [1, 1, 1, 1]
[42, 3.14, "a", nil].map { |v| arr[1].call(v) }
#=> [2, 2, 2, 2]
The problem is that the proc object use the context inside the loop the following should work
def proc_from_collection(collection)
procs = []
collection.each { |item| procs << Proc.new { |_| item } }
procs
end
results = [1,2,3]
arr = proc_from_collection(results)
p arr[0].call # -> 1
p arr[1].call # -> 2
After reading Todd A. Jacobs answer I felt like I was missing something.
Reading some post on stackoverflow about the for loop in ruby made me realize that we do not need a method here.
We can iterate the array using a method that does not pollute the global environment with unnecessary variables like the for loop does.
I suggest using a method whenever you need a proper closure that behaves according to a Lexical Scope (The body of a function is evaluated in the environment where the function is defined, not the environment
where the function is called.).
My first answer is still a good first approach but as pointed by Todd A. Jacobs a 'better' way to iterate the array could be enough in this case
arr = []
results = [1,2,3]
results.each { |item| arr << Proc.new { |_| item } }
p arr[0].call # -> 1
p arr[1].call # -> 2

Why does my code return the receiver?

I am implementing the each method on my own. I am supposed to explicitly return self before closing the method. This is my code:
module Enumerable
def my_each
for i in self
yield i
end
#self
end
end
[1,2,3,4].my_each {|x| x + 1} # => [1,2,3,4]
Why does the code still return the receiver even though I did not explicitly return self on the last line?
why does the code still return self even though I did not explicitly return self on the last line?
If you don't specify a return value explicitly, a method will return the last expression evaluated. The last expression in your method is the for loop.
From its documentation:
The result value of a for loop is the value iterated over unless break is used.
Examples:
for i in 1..10
end
#=> 1..10
for i in [1, 2, 3]
end
#=> [1, 2, 3]
for i in [1, 2, 3]
break :foo
end
#=> :foo

Procs From "Understanding Ruby Blocks, Procs, and Lambdas" Article

Ok, reviewing Procs, lambdas, and blocks via this link.
Question on this code:
class Array
def iterate!
self.each_with_index do |n, i|
self[i] = yield(n)
end
end
end
array = [1, 2, 3, 4]
array.iterate! do |n|
n ** 2
end
puts array.inspect
Conceptually, I understand almost everything, except one line which is this:
self[i] = yield(n)
I get that this self in this line self.each_with_index do |n, i| means that it's a class method, right?
But why do we need to assign the parameters in yield(n) to self[i]?
Please explain in super basic way if you can.
(in other words, please be nice - which people generally are for most part here - just a little extra nervous that I'm not getting this which is making me feel stupid)
The method is iterate!, which is an instance method. self in self.each_with_index is the receiver of the method Enumerable#each_with_instance. Since self is the current instance of Array ([1,2,3,4] in your example), self. is not needed; i.e., you could (and imo, should) just write each_with_index do |n, i|.... In other words, self is the implied receiver when no explicit receiver is specified.
Regarding the line:
self[i] = yield(n)
for your example array = [1,2,3,4] your enumerator is:
enum = [1,2,3,4].each_with_index
#=> #<Enumerator: [1, 2, 3, 4]:each_with_index>
with elements
enum.to_a
#=> [[1, 0], [2, 1], [3, 2], [4, 3]]
The first element passed into block by Array#each is therefore [1,0], which is assigned to the block variables:
n = 1
i = 0
resulting in
self[0] = yield(1) => 1**2 => 1
and so on.
I'll try to explain in a super basic way.
I get that this self in this line self.each_with_index do |n, i| means
that it's a class method, right?
Nope. The meaning of self depends on the context. If self was in the class, it would refer to the class. But here self is in an instance method, so it refers to the instance (so each_with_index is also an instance method).
But why do we need to assign the parameters in yield(n) to self[i]?
The goal of iterate! is to modify the array in place. Since self refers to the instance, self[i] accesses the elements of the array that iterate! is being called on, thus modifying the array in place.
Also, I'm not sure what you mean by "parameters" here. yield(n) passes n to the block, runs the block, and returns the value.
self[i] = yield(n) reassigns the values in the array, to the block that was specified in
array.iterate! do |n|
n ** 2
end
which basically means, take the value of the array, and square it, save that value in the element of the array. So [1, 2, 3 , 4] becomes [1 ** 2, 2 ** 2, 3 ** 2, 4 ** 2] => [2, 4, 9, 16]
Self changes with(and actually is) the current context or surrounding object.
Since
self.each_with_index do |n, i|
...
is monkey patching the Array class and is within an instance method iterate!, self refers to the instance itself: in this case the array [1, 2, 3, 4].
You're probably thinking of this:
class some_class
def self.a_class_method
...
which is defined in the context of a class. So self is the class itself(which is also an object), not an instance of that class.
Since self is just the array [1, 2, 3, 4]
self[i] = yield(n)
is replacing each element of the array with results of the sent in block.
Here iterate! is an instance function of Array class and you have an array object.When you do
array.iterate! do |n|
n ** 2
end
You are passing a block 'do |n| n**2 end' to iterate! function.In the function you can access this block using yield.But as you can see block is expecting one parameter through |n| so you need to pass one parameter and the block code will return the square of it.
self[i] = yield(n)
self is being used in Array instance context.So it is modifying the values of array.
For more information please check this article:
http://geekdirt.com/blog/blocks-lambda-and-procs-in-ruby/

ruby enumerables: is there a detect for results of block evaluation?

I'm looking for something similar to #detect in enumerables, but not quite. This is what enumerable does:
[1, 2, 3].detect {|i| i > 1 } #=> 2
it returns the first instance of the array which matches the condition. Now, my purpose is to return the value of the block. Concern is not exactly the conditions, but for instance, the first which is not nil. Something like this:
[var1, var2, var3].wanted_detect {|var| another_function(var) }
in which the function would return the first result of another_function call which isn't nil.
Mapping the values of applying the method on the variables and then using detect is not an option. This one would ideally have to work in lazy enumerators, for which the early mapping of all possible values is a no-go
[var1, var2, var3].lazy.map { |var| another_function(var) }.reject(&:nil?).first
If you don't have access to Enumerable#lazy, it is easy enough to implement what you want:
module Enumerable
def wanted_detect
self.each do |obj|
val = yield obj
return val if val
end
end
end
Demo:
[1, 2, 3, 4].wanted_detect { |x| x*x if x > 2 }
# => 9
EDIT: Sorry, I missed the last paragraph till falsetru pointed it out.
Thanks for the comments, falsetru.

Does Hash override Enumerable#map()?

Given that map() is defined by Enumerable, how can Hash#map yield two variables to its block? Does Hash override Enumerable#map()?
Here's a little example, for fun:
ruby-1.9.2-p180 :001 > {"herp" => "derp"}.map{|k,v| k+v}
=> ["herpderp"]
It doesn't override map
Hash.new.method(:map).owner # => Enumerable
It yields two variables which get collected into an array
class Nums
include Enumerable
def each
yield 1
yield 1, 2
yield 3, 4, 5
end
end
Nums.new.to_a # => [1, [1, 2], [3, 4, 5]]
Given that map() is defined by Enumerable, how can Hash#map yield two variables to its block?
It doesn't. It yields a single object to its block, which is a two-element array consisting of the key and the value.
It's just destructuring bind:
def without_destructuring(a, b) end
without_destructuring([1, 2])
# ArgumentError: wrong number of arguments (1 for 2)
def with_destructuring((a, b)) end # Note the extra parentheses
with_destructuring([1, 2])
def with_nested_destructuring((a, (b, c))) p a; p b; p c end
with_nested_destructuring([1, [2, 3]])
# 1
# 2
# 3
# Note the similarity to
a, (b, c) = [1, [2, 3]]
Theoretically, you would have to call map like this:
hsh.map {|(k, v)| ... }
And, in fact, for inject, you actually need to do that:
hsh.inject {|acc, (k, v)| ... }
However, Ruby is more lenient with argument checking for blocks than it is for methods. In particular:
If you yield more than one object, but the block only takes a single argument, all the objects are collected into an array.
If you yield a single object, but the block takes multiple arguments, Ruby performs destructuring bind. (This is the case here.)
If you yield more objects than the block takes arguments, the extra objects get ignored.
If you the block takes more arguments than you are yielding, the extra arguments are bound to nil.
Basically, the same semantics as parallel assignment.
In fact, before Ruby 1.9, block arguments actually did have assignment semantics. This allowed you to do crazy things like this:
class << (a = Object.new); attr_accessor :b end
def wtf; yield 1, 2 end
wtf {|#a, a.b| } # WTF? The block body is empty!
p #a
# 1
p a.b
# 2
This crazy stuff works (in 1.8 and older), because block argument passing is treated the same as assignment. IOW, even though the above block is empty and doesn't do anything, the fact that block arguments are passed as if they had been assigned, means that #a is set and the a.b= setter method is called. Crazy, huh? That's why it was removed in 1.9.
If you want to startle your co-workers, stop defining your setters like this:
attr_writer :foo
and instead define them like this:
define_method(:foo=) {|#foo|}
Just make sure someone else ends up maintaining it :-)

Resources