Code pattern for sequence of tasks - events

I have a method which will be required to run a sequence of tasks.
E.g. ValidateData, UploadToCloud, SaveToDatabase, etc.
But they are all sequential and dependent of the previous tasks completed successfully.
I can code them all in procedural methods. But is there any elegant way to organize this?

You can simply wrap it up into facade pattern
or use chain of responsibility pattern.
But also you can follow KISS and don't over-engineering - if it is super simple case).

I had a read of Facade pattern, it is probably not what I need.
From my understanding, it wraps all the operations in a method, so you can simply perform all the tasks with one method, instead of calling every single method each time.
Whereas my problem is dependent on each task's success to proceed to the next method.
eg. Bank Loan Application.
check applicant's details is valid ---> proceed to check Account Balance otherwise fail.
check Account Balance ---> success --> proceed to evaluate property's valuation otherwise fail.
check Property's valuation --> success --> Grant home loan, otherwise fail.

Related

How do i 'destroy all' a given Resource type in redux-saga?

I'm new to Redux-Saga, so please assume very shaky foundational knowledge.
In Redux, I am able to define an action and a subsequent reducer to handle that action. In my reducer, i can do just about whatever i want, such as 'delete all' of a specific state tree node, eg.
switch action.type
...
case 'DESTROY_ALL_ORDERS'
return {
...state,
orders: []
}
However, it seems to me (after reading the docs), that reducers are defined by Saga, and you have access to them in the form of certain given CRUD verb prefixes with invocation post fixes. E.g.
fetchStart, destroyStart
My instinct is to use destroyStart, but the method accepts a model instance, not a collection, i.e. it only can destroy a given resource instance (in my case, one Order).
TL;DR
Is there a destroyStart equivalent for a group of records at once?
If not, is there a way i can add custom behavior to the Saga created reducers?
What have a missed? Feel free to be as mean as you want, I have no idea what i'm doing but when you are done roasting me do me a favor and point me in the right direction.
EDIT:
To clarify, I'm not trying to delete records from my database. I only want to clear the Redux store of all 'Order' Records.
Two key bit's of knowledge were gained here.
My team is using a library called redux-api-resources which to some extent I was conflating with Saga. This library was created by a former employee, and adds about as much complexity as it removes. I would not recommend it. DestroyStart is provided by this library, and not specifically related to Saga. However the answer for anyone using this library (redux-api-resources) is no, there is no bulk destroy action.
Reducers are created by Saga, as pointed out in the above comments by #Chad S.. The mistake in my thinking was that I believed I should somehow crack open this reducer and fill it with complex logic. The 'Saga' way to do this is to put logic in your generator function, which is where you (can) define your control flow. I make no claim that this is best practice, only that this is how I managed to get my code working.
I know very little about Saga and Redux in general, so please take these answers with a grain of salt.

Is "chain of responsibity" an appropriate design pattern for validation?

I have an application in which i should validate different kinds of things on the same object. So it came in my mind to use chain of resposibility design pattern, problem is that this patters defines that if certain object in chain fails, the client will be notified right away while i want to go thought all the objects (validator) in chain so each one of these will return result (passed/failed + exception).
var validator = new Validator(dataObject)
validator.Validate();
Is it acceptable use case or is there any better way to do it?
As your validation according to your requirements should not return early, this is less like a chain, but rather a list. Which simply can be iterated over or be processed parallel.
Decorators can be used to combine validators, too.

Returning both computation result and status. Best practices

I was thinking about patterns which allow me to return both computation result and status:
There are few approaches which I could think about:
function returns computation result, status is being returned via out parameter (not all languages support out parameters and this seems wrong, since in general you don't expect parameters to be modified).
function returns object/pair consisting both values (downside is that you have to create artificial class just to return function result or use pair which have no semantic meaning - you know which argument is which by it's order).
if your status is just success/failure you can return computation value, and in case of error throw an exception (look like the best approach, but works only with success/failure scenario and shouldn't be abused for controlling normal program flow).
function returns value, function arguments are delegates to onSuccess/onFailure procedures.
there is a (state-full) method class which have status field, and method returning computation results (I prefer having state-less/immutable objects).
Please, give me some hints on pros, cons and situations' preconditions of using aforementioned approaches or show me other patterns which I could use (preferably with hints on preconditions when to use them).
EDIT:
Real-world example:
I am developing java ee internet application and I have a class resolving request parameters converting them from string to some business logic objects. Resolver is checking in db if object is being created or edited and then return to controller either new object or object fetched from db. Controller is taking action based on object status (new/editing) read from resolver. I know it's bad and I would like to improve code design here.
function returns computation result, status is being returned via out
parameter (not all languages support out parameters and this seems
wrong, since in general you don't expect parameters to be modified).
If the language supports multiple output values, then the language clearly was made to support them. It would be a shame not to use them (unless there are strong opinions in that particular community against them - this could be the case for languages that try and do everything)
function returns object/pair consisting both values (downside is that
you have to create artificial class just to return function result or
use pair which have no semantic meaning - you know which argument is
which by it's order).
I don't know about that downside. It seems to me that a record or class called "MyMethodResult" should have enough semantics by itself. You can always use such a class in an exception as well, if you are in an exceptional condition only of course. Creating some kind of array/union/pair would be less acceptable in my opinion: you would inevitably loose information somewhere.
if your status is just success/failure you can return computation
value, and in case of error throw an exception (look like the best
approach, but works only with success/failure scenario and shouldn't
be abused for controlling normal program flow).
No! This is the worst approach. Exceptions should be used for exactly that, exceptional circumstances. If not, they will halt debuggers, put colleagues on the wrong foot, harm performance, fill your logging system and bugger up your unit tests. If you create a method to test something, then the test should return a status, not an exception: to the implementation, returning a negative is not exceptional.
Of course, if you run out of bytes from a file during parsing, sure, throw the exception, but don't throw it if the input is incorrect and your method is called checkFile.
function returns value, function arguments are delegates to
onSuccess/onFailure procedures.
I would only use those if you have multiple results to share. It's way more complex than the class/record approach, and more difficult to maintain. I've used this approach to return multiple results while I don't know if the results are ignored or not, or if the user wants to continue. In Java you would use a listener. This kind of operation is probably more accepted for functinal languages.
there is a (state-full) method class which have status field, and
method returning computation results (I prefer having
state-less/immutable objects).
Yes, I prefer those to. There are producers of results and the results themselves. There is little need to combine the two and create a stateful object.
In the end, you want to go to producer.produceFrom(x): Result in my opinion. This is either option 1 or 2a, if I'm counting correctly. And yes, for 2a, this means writing some extra code.
My inclination would be to either use out parameters or else use an "open-field" struct, which simply contains public fields and specifies that its purpose is simply to carry the values of those fields. While some people suggest that everything should be "encapsulated", I would suggest that if a computation naturally yields two double values called the Moe and Larry coefficients, specifying that the function should return "a plain-old-data struct with fields of type double called MoeCoefficient and LarryCoefficient" would serve to completely define the behavior of the struct. Although the struct would have to be declared as a data type outside the method that performs the computation, having its contents exposed as public fields would make clear that none of the semantics associated with those values are contained in the struct--they're all contained in the method that returns it.
Some people would argue that the struct should be immutable, or that it should include validation logic in its constructor, etc. I would suggest the opposite. If the purpose of the structure is to allow a method to return a group of values, it should be the responsibility of that method to ensure that it puts the proper values into the structure. Further, while there's nothing wrong with a structure exposing a constructor as a "convenience member", simply having the code that will return the struct fill in the fields individually may be faster and clearer than calling a constructor, especially if the value to be stored in one field depends upon the value stored to the other.
If a struct simply exposes its fields publicly, then the semantics are very clear: MoeCoefficient contains the last value that was written to MoeCoefficient, and LarryCoefficient contains the last value written to LarryCoefficient. The meaning of those values would be entirely up to whatever code writes them. Hiding the fields behind properties obscures that relationship, and may impede performance as well.

TDD: why, how and real world test driven code

First, Please bear with me with all my questions. I have never used TDD before but more and more I come to realize that I should. I have read a lot of posts and how to guides on TDD but some things are still not clear. Most example used for demonstration are either math calculation or some other simple operations. I also started reading Roy Osherove's book about TDD. Here are some questions I have:
If you have an object in your solution, for instance an Account class, what is the benefit of testing setting a property on it, for example an account name, then you Assert that whatever you set is right. Would this ever fail?
Another example, an account balance, you create an object with balance 300 then you assert that the balance is actually 300. How would that ever fail? What would I be testing here? I can see testing a subtraction operation with different input parameters would be more of a good test.
What should I actually test my objects for? methods or properties? sometime you also have objects as service in an infrastructure layer. In the case of methods, if you have a three tier app and the business layer is calling the data layer for some data. What gets tested in that case? the parameters? the data object not being null? what about in the case of services?
Then on to my question regarding real life project, if you have a green project and you want to start it with TDD. What do you start with first? do you divide your project into features then tdd each one or do you actually pick arbitrarily and you go from there.
For example, I have a new project and it requires a login capability. Do I start with creating User tests or Account tests or Login tests. Which one I start with first? What do I test in that class first?
Let's say I decide to create a User class that has a username and password and some other properties. I'm supposed to create the test first, fix all build error, run the test for it to fail then fix again to get a green light then refactor. So what are the first tests I should create on that class? For example, is it:
Username_Length_Greater_Than_6
Username_Length_Less_Than_12
Password_Complexity
If you assert that length is greater than 6, how is that testing the code? do we test that we throw an error if it's less than 6?
I am sorry if I was repetitive with my questions. I'm just trying to get started with TDD and I have not been able to have a mindset change. Thank you and hopefully someone can help me determine what am I missing here. By the way, does anyone know of any discussion groups or chats regarding TDD that I can join?
Have a look at low-level BDD. This post by Dan North introduces it quite well.
Rather than testing properties, think about the behavior you're looking for. For instance:
Account Behavior:
should allow a user to choose the account name
should allow funds to be added to the account
User Registration Behavior:
should ensure that all usernames are between 6 and 12 characters
should ask the password checker if the password is complex enough <-- you'd use a mock here
These would then become tests for each class, with the "should" becoming the test name. Each test is an example of how the class can be used valuably. Instead of testing methods and properties, you're showing someone else (or your future self) why the class is valuable and how to change it safely.
We also do something in BDD called "outside-in". So start with the GUI (or normally the controller / presenter, since we don't often unit-test the GUI).
You already know how the GUI will use the controller. Now write an example of that. You'll probably have more than one aspect of behavior, so write more examples until the controller works. The controller will have a number of collaborating classes that you haven't written yet, so mock those out - just dependency inject them via an interface. You can write them later.
When you've finished with the controller, replace the next thing you've mocked out in the real system by real code, and test-drive that. Oh, and don't bother mocking out domain objects (like Account) - it'll be a pain in the neck - but do inject any complex behavior into them and mock that out instead.
This way, you're always writing the interface that you wish you had - something that's easy to use - for every class. You're describing the behavior of that class and providing some examples of how to use it. You're making it safe and easy to change, and the appropriate design will emerge (feel free to be guided by patterns, thoughtful common sense and experience).
BTW, with Login, I tend to work out what the user wants to log in for, then code that first. Add Login later - it's usually not very risky and doesn't change much once it's written, so you may not even need to unit-test it. Up to you.
Test until fear is replaced by boredom. Property accessors and constructors are high cost to benefit to write tests against. I usually test them indirectly as part of some other (higher) test.
For a new project, I'd recommend looking at ATDD. Find a user-story that you want to pick first (based on user value). Write an acceptance test that should pass when the user story is done. Now drill down into the types that you'd need to get the AT to pass -- using TDD. The acceptance test will tell you which objects and what behaviors are required. You then implement them one at a time using TDD. When all your tests (incl your acc. test) pass - you pick up the next user story and repeat.
Let's say you pick 'Create user' as your first story. Then you write examples of how that should work. Turn them into automated acceptance tests.
create valid user -> account should be created
create invalid user ( diff combinations that show what is invalid ) -> account shouldn't be created, helpful error shown to the user
AccountsVM.CreateUser(username, password)
AccountsVM.HasUser(username)
AccountsVM.ErrorMessage
The test would show that you need the above. You then go test-drive them them out.
Don't test what is too simple to break.
getters and setters are too simple to be broken, so said, the code is so simple that an error can not happen.
you test the public methods and assert the response is as expected. If the method return void you have to test "collateral consequences" (sometimes is not easy, eg to test a email was sent). When this happens you can use mocks to test not the response but how the method executes (you ask the mockk if the Class Under Test called him the desired way)
I start doing Katas to learn the basics: JUnit and TestNG; then Harmcrest; then read EasyMock or Mockito documentation.
Look for katas at github, or here
http://codekata.pragprog.com
http://codingdojo.org/
The first test should be the easiest one! Maybe one that just force you to create the CUT (class under test)
But again, try katas!
http://codingdojo.org/cgi-bin/wiki.pl?KataFizzBuzz

How to validate in domain layer

I often see people validating domain objects by creating rule objects which take in a delegate to perform the validation. Such as this example": http://www.codeproject.com/KB/cs/DelegateBusinessObjects.aspx
What I don't understand is how is this advantageous to say just making a method?
For example, in that particular article there is a method which creates delegates to check if the string is empty.
But is that not the same as simply having something like:
Bool validate()
{
Result = string.IsNullOrEmpty(name);
}
Why go through the trouble of making an object to hold the rule and defining the rule in a delegate when these rules are context sensitive and will likely not be shared. the exact same can be achieved with methods.
There are several reasons:
SRP - Single Responsibility Principle. An object should not be responsible for its own validation, it has its own responsibility and reasons to exist.
Additionally, when it comes to complex business rules, having them explicitly stated makes validation code easier to write and understand.
Business rules also tend to change quite a lot, more so than other domain objects, so separating them out helps with isolating the changes.
The example you have posted is too simple to benefit from a fully fledged validation object, but it is very handy one systems get large and validation rules become complex.
The obvious example here is a webapp: You fill in a form and click "submit". Some of your data is wrong. What happens?
Something throws an exception. Something (probably higher up) catches the exception and prints it (maybe you only catch UserInputInvalidExceptions, on the assumption that other exceptions should just be logged). You see the first thing that was wrong.
You write a validate() function. It says "no". What do you display to the user?
You write a validate() function which returns (or throws an exception with, or appends to) a list of messages. You display the messages... but wouldn't it be nice to group by field? Or to display it beside the field that was wrong? Do you use a list of tuple or a tuple of lists? How many lines do you want a rule to take up?
Encapsulating rules into an object lets you easily iterate over the rules and return the rules that were broken. You don't have to write boilerplate append-message-to-list code for every rule. You can stick broken rules next to the field that broke them.

Resources