How to implement an addressable FIFO queue? - data-structures

I'm currently looking for a data structure with all O(1) operations
insert(K, V): Insert a value at the end of the queue.
remove_key(K): Remove the value from the queue corresponding to the provided key.
remove_head(): Remove the value from the front of the queue (the oldest one).
The only reasonably easy to implement thing I can think of is using a doubly linked list as the primary data structure, and keeping pointers to the list nodes in a hash table, which would get the desired asymptotic behavior, however this might not be the most efficient option in actual runtime.
I found "addressable priority queues" in the literature, but they are rather complicated (and maybe even more expensive) data structures, so I was wondering if someone has a better suggestion. It seems no one implemented something like this for Rust so far, which is why I'm hoping it doesn't get too complicated.

I would use a pub struct VecDeque<T> and use pop_front() instead of remove_head().
See the doc: VecDeque

Here I implemented an Addressable Binary Heap in Python, no third-party dependencies.

Related

What is the best data structure to lookup if something exists?

I want to keep a list of things I've already encountered in my recursive looping so I can avoid recalculating the same things over and over again. What is the most efficient data structure for this?
Looking at complexity analysis, Hashtables seem to be the most efficient for lookups. However, it feels inefficient to hold a data structure of key value pairs when all I'm interested in is looking up whether a specified key exists.
I thought that maybe a set would be a good idea, but its complexity doesn't seem to indicate so.
A set probably is the correct abstract data type for this, since really the only information it encodes is whether an item is inside or not.
Using a set doesn't specify a particular implementation though. In most contexts, you should be able to find a set type implemented using hashing, or some type of tree structure. Which one you choose would depend on if the data you're inserting can be efficiently hashed or ordered.
In some libraries you will find set types that are implemented using the library's map types, but where the value is ignored. For example in rust, the standard library's HashSet type is implemented using the HashMap type.

A data structure with certain properties

I want to implement a data structure myself in C++11. What I'm planning to do is having a data structure with the following properties:
search. O(log(n))
insert. O(log(n))
delete. O(log(n))
iterate. O(n)
What I have been thinking about after research was implementing a balanced binary search tree. Are there other structures that would fulfill my needs? I am completely new to this topic and thought a question here would give me a good jumpstart.
First of all, using the existing standard library data types is definitely the way to go for production code. But since you are asking how to implement such data structures yourself, I assume this is mainly an educational exercise for you.
Binary search trees of some form (https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations) or B-trees (https://en.wikipedia.org/wiki/B-tree) and hash tables (https://en.wikipedia.org/wiki/Hash_table) are definitely the data structures that are usually used to accomplish efficient insertion and lookup. If you want to go wild you can combine the two by using a tree instead of a linked list to handle hash collisions (although this has a good potential to actually make your implementation slower if you don't make massive mistakes in sizing your hash table or in choosing an adequate hash function).
Since I'm assuming you want to learn something, you might want to have a look at minimal perfect hashing in the context of hash tables (https://en.wikipedia.org/wiki/Perfect_hash_function) although this only has uses in special applications (I had the opportunity to use a perfect minimal hash function exactly once). But it sure is fascinating. As you can see from the link above, the botany of search trees is virtually limitless in scope so you can also go wild on that front.

What is implicit data structure? And is heap an implicit data structure to implement priority queue?

My question might seem childish but I really don't understand this question as I am just a newbie to data structures course. I do know how max and min heap work, but I am not sure that whether heap is implicit data structure to implement priority queue.
Wikipedia is back up :D
From the article:
In computer science, an implicit data structure is a data structure that uses very little memory besides the actual data elements...
So yes, a heap would fit the bill because it can be implemented as a simple array. A heap that is implementing a priority queue would be an implicit data structure, but not because it's implementing a priority queue. It's because heaps don't use anything special to keep track of its elements, only the array location.
Also, I completely disagree with your friend's interpretation. There is no "natural" data structure for any problem, only ones that happen to be very convenient under the circumstances.
Computing and data structures are abstract ideas that can be implemented in many different ways. A linked list can be implemented on the heap, on the hard drive, over the internet, and in the form of a bunch of people with sticky notes and the next person's phone number. Calling the whole set of them a "natural" data structure to use for some particular problem is wrong.

Iterable O(1) insert and random delete collection

I am looking to implement my own collection class. The characteristics I want are:
Iterable - order is not important
Insertion - either at end or at iterator location, it does not matter
Random Deletion - this is the tricky one. I want to be able to have a reference to a piece of data which is guaranteed to be within the list, and remove it from the list in O(1) time.
I plan on the container only holding custom classes, so I was thinking a doubly linked list that required the components to implement a simple interface (or abstract class).
Here is where I am getting stuck. I am wondering whether it would be better practice to simply have the items in the list hold a reference to their node, or to build the node right into them. I feel like both would be fairly simple, but I am worried about coupling these nodes into a bunch of classes.
I am wondering if anyone has an idea as to how to minimize the coupling, or possibly know of another data structure that has the characteristics I want.
It'd be hard to beat a hash map.
Take a look at tries.
Apparently they can beat hashtables:
Unlike most other algorithms, tries have the peculiar feature that the time to insert, or to delete or to find is almost identical because the code paths followed for each are almost identical. As a result, for situations where code is inserting, deleting and finding in equal measure tries can handily beat binary search trees or even hash tables, as well as being better for the CPU's instruction and branch caches.
It may or may not fit your usage, but if it does, it's likely one of the best options possible.
In C++, this sounds like the perfect fit for std::unordered_set (that's std::tr1::unordered_set or boost::unordered_set to you if you have an older compiler). It's implemented as a hash set, which has the characteristics you describe.
Here's the interface documentation. Note that the hash containers actually offer two sets of iterators, the usual ones and local ones which only go through one bucket.
Many other languages have "hash sets" as well, certainly Java and C#.

Is there any practical usage of Doubly Linked List, Queues and Stacks?

I've been coding for quite sometime now. And my work pertains to solving real-world business scenarios. However, I have not really come across any practical usage of some of the data structures like the Linked List, Queues and Stacks etc.
Not even at the business framework level. Of course, there is the ubiquitous HashTable, ArrayList and of late the List...but is there any practical usage of some of the other basic data structures?
It would be great if someone gave a real-world solution where a Doubly Linked List "performs" better than the obvious easily usable counterpart.
Of course it’s possible to get by with only a Map (aka HashTable) and a List. A Queue is only a glorified List but if you use a Queue everywhere you really need a queue then your code gets a lot more readable because nobody has to guess what you are using that List for.
And then there are algorithms that work a lot better when the underlying data structure is not a plain List but a DoublyLinkedList due to the way they have to navigate the list. The same is valid for all other data structures: there’s always a use for them. :)
Stacks can be used for pairing (parseing) such as matching open brackets to closing brackets.
Queues can be used for messaging, or activity processing.
Linked list, or double linked lists can be used for circular navigation.
Most of these algorithms are usually at a lower level than your usual "business" application. For example indices on the database is a variation of a multiply linked list. Implementation of function calling mechanism(or a parse tree) is a stack. Queues and FIFOs are used for servicing network request etc.
These are just examples of collection structures that are optimized for speed in various scenarios.
LIFO-Stack and FIFO-Queue are reasonably abstract (behavioral spec-level) data structures, so of course there are plenty of practical uses for them. For example, LIFO-Stack is a great way to help remove recursion (stack up the current state and loop, instead of making a recursive call); FIFO-Queue helps "buffer up" and "peel away" work nuggets in a coroutine arrangement; etc, etc.
Doubly-linked-List is more of an implementation issue than a behavioral spec-level one, mostly... can be a good way to implement a FIFO-Queue, for example. If you need a sequence with fast splicing and removal give a pointer to one sequence iten, you'll find plenty of other real-world uses, too.
I use queues, linked lists etc. in business solutions all the time.
Except they are implemented by Oracle, IBM, JMS etc.
These constructs are generally at a much lower level of abstaction than you would want while implementing a business solution. Where a business problem would benifit from
such low level constructs (e.g. delivery route planning, production line scheduling etc.) there is usually a package available to do it or you.
I don't use them very often, but they do come up. For example, I'm using a queue in a current project to process asynchronous character equipment changes that must happen in the order the user makes them.
A linked list is useful if you have a subset of "selected" items out of a larger set of items, where you must perform one type of operation on a "selected" item and a default operation or no operation at all on a normal item and the set of "selected" items can change at will (possibly due to user input). Because linked list removal can be done nearly instantaneously (vs. the traversal time it would take for an array search), if the subsets are large enough then it's faster to maintain a linked list than to either maintain an array or regenerate the whole subset by scanning through the whole larger set every time you need the subset.
With a hash table or binary tree, you could search for a single "selected" item, but you couldn't search for all "selected" items without checking every item (or having a separate dictionary for every permutation of selected items, which is obviously impractical).
A queue can be useful if you are in a scenario where you have a lot of requests coming in and you want to make sure to handle them fairly, in order.
I use stacks whenever I have a recursive algorithm, which usually means it's operating on some hierarchical data structure, and I want to print an error message if I run out of memory instead of simply letting the software crash if the program stack runs out of space. Instead of calling the function recursively, I store its local variables in an object, run a loop, and maintain a stack of those objects.

Resources