Generating random interlocking regions (i.e. countries) - algorithm

(Reposted and updated from here, as it turns out my question did not strictly have to do with Mathematica.)
I am trying to subdivide a finite portion of the plane into a set of at least 20 or so random interlocking shapes, with the shape boundaries having a fractal dimension around that of borders between countries that aren't simply straight lines (which I crudely estimate to be 1.15 ± 0.1, based upon visual inspection of Wikipedia's list of fractals by Hausdorff dimension). Preferably, the plane would have toroidal boundary conditions, although generating another single country-like shape to serve as the overall boundary would also be acceptable. (As I found out, this question does not strictly have to do with any language in particular, so I am looking for a general algorithm, or at least something to get me started in the right direction.)
Running Kruskal's algorithm for maze generation on a torus (and keeping only the boundary) gives about the right fractal dimension, but that only creates one shape that tiles the plane by translation. Running several instances of the DFS algorithm at once (again, keeping only the boundaries between the various sub-mazes) generates highly unrealistic narrow portions. (Additionally, in both cases, the result is made of tiny discrete units, which isn't a problem for high enough resolutions, and may simplify things somewhat). Using a Delauney triangulation is an excellent method to make a graph representing a system of countries, but its corresponding Voronoi diagram makes for perfectly straight borders.
(unfortunately cannot post images at this time due to lack of reputation on this particular Stack Exchange site, but they're in the first link)
As an update from the original post, I have found a suitable method to create a single country-like shape using the Life-like cellular automaton B5678/S45678 (Majority). It proceeds as follows (in case this gives anyone any ideas):
Start with a small filled random shape (easy enough to do by running until stabilization a small 2D array of random bits in the aforementioned rule).
Replace every element of the array with a 2×2 block of that element.
Expand the array by adding a suitable margin of 0s around the outside. (This step may not always be necessary.)
Randomly toggle about 25% of all cells in the array, to induce a perturbation.
Run the array in the aforementioned rule until stabilization.
Repeat steps 2-5 until desired size is achieved.
Kruskal maze generation:
16-fold DFS maze generation:

Related

Finding correspondence of edges for image matching

I have a challenging problem to solve. The Figure shows green lines, that are derived from an image and the red lines are the edges derived from another image. Both the images are taken from the same camera, so the intrinsic parameters are same. Only, the exterior parameters are different, i.e. there is a slight rotation and translation while taking the 2nd image. As it can be seen in the figure, the two sets of lines are pretty close. My task is to find correspondence between the edges derived from the 1st image and the edges derived from the second image.
I have gone through a few sources, that mention taking corresponding the nearest line segment, by calculating Euclidean distances between the endpoints of an edge of image 1 to the edges of image 2. However, this method is not acceptable for my case, as there are edges in image 1, near to other edges in image 2 that are not corresponding, and this will lead to a huge number of mismatches.
After a bit of more research, few more sources referred to Hausdorff distance. I believe that this could really be a solution to my problem and the paper
"Rucklidge, William J. "Efficiently locating objects using the
Hausdorff distance." International Journal of Computer Vision 24.3
(1997): 251-270."
seemed to be really interesting.
If, I got it correct the paper formulated a function for calculating translation of model edges to image edges. However, while implementation in MATLAB, I'm completely lost, where to begin. I will be much obliged if I can be directed to a pseudocode of the same algorithm or MATLAB implementation of the same.
Additionally, I am aware of
"Apply Hausdorff distance to tile image classification" link
and
"Hausdorff regression"
However, still, I'm unsure how to minimise Hausdorff distance.
Note1: Computational cost is not of concern now, but faster algorithm is preferred
Note2: I am open to other algorithms and methods to solve this as long as there is a pseudocode available or an open implementation.
Have you considered MATLAB's image registration tools?
With imregister(https://www.mathworks.com/help/images/ref/imregister.html), you can just insert both images, 1 as reference, one as "moving" and it will register them together using an affine transform. The function call is just
[optimizer, metric] = imregconfig('monomodal');
output_registered = imregister(moving,fixed,'affine',optimizer,metric);
For better visualization, use the RegistrationEstimator command to open up a gui in which you can import the 2 images and play around with it to register your images. From there you can export code for future images.
Furthermore if you wish to account for non-rigid transforms there is imregdemons(https://www.mathworks.com/help/images/ref/imregdemons.html) which works much the same way.
You can compute the Hausdorff distance using Matlab's bwdist function. You would compute the distance transform of one image, evaluate it at the edge points of the other, and take the maximum value. (You can also take the sum instead, in which case it is called the chamfer distance.) For this problem you'll probably want the symmetric Hausdorff distance, so you would do the computation in both directions.
Both Hausdorff and chamfer distance measure the match quality of a particular alignment. To find the best registration you'll need to try multiple alignment transformations and evaluate them all looking for the best one. As suggested in another answer, you may find it easier to use registration existing tools than to write your own.

How to equally subdivide a closed CGPath?

I've an indeterminate number of closed CGPath elements of various shapes and sizes all containing a single concave bezier curve, like the red and blue shapes in the diagram below.
What is the simplest and most efficient method of dividing these shapes into n regions of (roughly) equal size?
What you want is Delaunay triangulation. Here is an example which resembles what you want to do. It uses an as3 library. Here is an iOS port, that should help you:
https://github.com/czgarrett/delaunay-ios
I don't really understand the context of what you want to achieve and what the constraints are. For instance, is there a hard requirement that the subdivided regions are equal size?
Often the solutions to a performance problem is not a faster algorithm but a different approach, usually one or more of the following:
Pre-compute the values, or compute as much as possible offline. Say by using another server API which is able to do the subdivision offline and cache the results for multiple clients. You could serve the post-computed result as a bitmap where each colour indexes into the table of values you want to display. Looking up the value would be a simple matter of indexing the pixel at the touch position.
Simplify or approximate a solution. Would a grid sub-division be accurate enough? At 500 x 6 = 3000 subdivisions, you only have about 51 square points for each region, that's a region of around 7x7 points. At that size the user isn't going to notice if the region is perfectly accurate. You may need to end up aggregating adjacent regions anyway due to touch resolution.
Progressive refinement. You often don't need to compute the entire algorithm up front. Very often algorithms run in discrete (often symmetrical) units, meaning you're often re-using the information from previous steps. You could compute just the first step up front, and then use a background thread to progressively fill in the rest of the detail. You could also defer final calculation until the the touch occurs. A delay of up to a second is still tolerable at that point, or in the worst case you can display an animation while the calculation is in progress.
You could use some hybrid approach, and possibly compute one or two levels using Delaunay triangulation, and then using a simple, fast triangular sub-division for two more levels.
Depending on the required accuracy, and if discreet samples are not required, the final levels could be approximated using a weighted average between the points of the triangle, i.e., if the touch is halfway between two points, pick the average value between them.

How to subsample a 2D polygon?

I have polygons that define the contour of counties in the UK. These shapes are very detailed (10k to 20k points each), thus rendering the related computations (is point X in polygon P?) quite computationaly expensive.
Thus, I would like to "subsample" my polygons, to obtain a similar shape but with less points. What are the different techniques to do so?
The trivial one would be to take one every N points (thus subsampling by a factor N), but this feels too "crude". I would rather do some averaging of points, or something of that flavor. Any pointer?
Two solutions spring to mind:
1) since the map of the UK is reasonably squarish, you could choose to render a bitmap with the counties. Assign each a specific colour, and then render the borders with a 1 or 2 pixel thick black line. This means you'll only have to perform the expensive interior/exterior calculation if a sample happens to lie on the border. The larger the bitmap, the less often this will happen.
2) simplify the county outlines. You can use a recursive Ramer–Douglas–Peucker algorithm to recursively simplify the boundaries. Just make sure you cache the results. You may also have to solve this not for entire county boundaries but for shared boundaries only, to ensure no gaps. This might be quite tricky.
Here you can find a project dealing exactly with your issues. Although it works primarily with an area "filled" by points, you can set it to work with a "perimeter" type definition as yours.
It uses a k-nearest neighbors approach for calculating the region.
Samples:
Here you can request a copy of the paper.
Seemingly they planned to offer an online service for requesting calculations, but I didn't test it, and probably it isn't running.
HTH!
Polygon triangulation should help here. You'll still have to check many polygons, but these are triangles now, so they are easier to check and you can use some optimizations to determine only a small subset of polygons to check for a given region or point.
As it seems you have all the algorithms you need for polygons, not only for triangles, you can also merge several triangles that are too small after triangulation or if triangle count gets too high.

Reproducing images with primitive shapes. (Graphics optimization problem)

Based on this original idea, that many of you have probably seen before:
http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/
I wanted to try taking a different approach:
You have a target image. Let's say you can add one triangle at a time. There exists some triangle (or triangles in case of a tie) that maximizes the image similarity (fitness function). If you could brute force through all possible shapes and colors, you would find it. But that is prohibitively expensive. Searching all triangles is a 10-dimensional space: x1, y1, x2, y2, x3, y3, r, g, b, a.
I used simulated annealing with pretty good results. But I'm wondering if I can further improve on this. One thought was to actually analyze the image difference between the target image and current image and look for "hot spots" that might be good places to put a new triangle.
What algorithm would you use to find the optimal triangle (or other shape) that maximizes image similarity?
Should the algorithm vary to handle coarse details and fine details differently? I haven't let it run long enough to start refining the finer image details. It seems to get "shy" about adding new shapes the longer it runs... it uses low alpha values (very transparent shapes).
Target Image and Reproduced Image (28 Triangles):
Edit! I had a new idea. If shape coordinates and alpha value are given, the optimal RGB color for the shape can be computed by analyzing the pixels in the current image and the target image. So that eliminates 3 dimensions from the search space, and you know the color you're using is always optimal! I've implemented this, and tried another run using circles instead of triangles.
300 Circles and 300 Triangles:
I would start experimenting with vertex-colours (have a different RGBA value for each vertex), this will slightly increase the complexity but massively increase the ability to quickly match the target image (assuming photographic images which tend to have natural gradients in them).
Your question seems to suggest moving away from a genetic approach (i.e. trying to find a good triangle to fit rather than evolving it). However, it could be interpreted both ways, so I'll answer from a genetic approach.
A way to focus your mutations would be to apply a grid over the image, calculate which grid-square is the least-best match of the corresponding grid-square in the target image and determine which triangles intersect with that grid square, then flag them for a greater chance of mutation.
You could also (at the same time) improve fine-detail by doing a smaller grid-based check on the best matching grid-square.
For example if you're using an 8x8 grid over the image:
Determine which of the 64 grid squares is the worst match and flag intersecting (or nearby/surrounding) triangles for higher chance of mutation.
Determine which of the 64 grid-squares is the best match and repeat with another smaller 8x8 grid within that square only (i.e. 8x8 grid within that best grid-square). These can be flagged for likely spots for adding new triangles, or just to fine-tune the detail.
An idea using multiple runs:
Use your original algorithm as the first run, and stop it after a predetermined number of steps.
Analyze the first run's result. If the result is pretty good on most part of the image but was doing badly in a small part of the image, increase the emphasis of this part.
When running the second run, double the error contribution from the emphasized part (see note). This will cause the second run to do a better match in that area. On the other hand, it will do worse in the rest of the image, relative to the first run.
Repeatedly perform many runs.
Finally, use a genetic algorithm to merge the results - it is allowed to choose from triangles generated from all of the previous runs, but is not allowed to generate any new triangles.
Note: There was in fact some algorithms for calculating how much the error contribution should be increased. It's called http://en.wikipedia.org/wiki/Boosting. However, I think the idea will still work without using a mathematically precise method.
Very interesting problem indeed ! My way of analyzing such problem was usage of evolutionary strategy optimization algorithm. It's not fast and is suitable if number of triangles is small. I've not achieved good approximations of original image - but that is partly because my original image was too complex - so I didn't tried a lot of algorithm restarts to see what other sub-optimal results EVO could produce... In any case - this is not bad as abstract art generation method :-)
i think that algorithm is at real very simple.
P = 200 # size of population
max_steps = 100
def iteration
create P totally random triangles (random points and colors)
select one triangle that has best fittness
#fitness computing is described here: http://rogeralsing.com/2008/12/09/genetic-programming-mona-lisa-faq/
put selected triangle on the picture (or add it to array of triangles to manipulate them in future)
end
for i in 1..max_steps {iteration}

Compare three-dimensional structures

I need to evaluate if two sets of 3d points are the same (ignoring translations and rotations) by finding and comparing a proper geometric hash. I did some paper research on geometric hashing techniques, and I found a couple of algorithms, that however tend to be complicated by "vision requirements" (eg. 2d to 3d, occlusions, shadows, etc).
Moreover, I would love that, if the two geometries are slightly different, the hashes are also not very different.
Does anybody know some algorithm that fits my need, and can provide some link for further study?
Thanks
Your first thought may be trying to find the rotation that maps one object to another but this a very very complex topic... and is not actually necessary! You're not asking how to best match the two, you're just asking if they are the same or not.
Characterize your model by a list of all interpoint distances. Sort the list by that distance. Now compare the list for each object. They should be identical, since interpoint distances are not affected by translation or rotation.
Three issues:
1) What if the number of points is large, that's a large list of pairs (N*(N-1)/2). In this case you may elect to keep only the longest ones, or even better, keep the 1 or 2 longest ones for each vertex so that every part of your model has some contribution. Dropping information like this however changes the problem to be probabilistic and not deterministic.
2) This only uses vertices to define the shape, not edges. This may be fine (and in practice will be) but if you expect to have figures with identical vertices but different connecting edges. If so, test for the vertex-similarity first. If that passes, then assign a unique labeling to each vertex by using that sorted distance. The longest edge has two vertices. For each of THOSE vertices, find the vertex with the longest (remaining) edge. Label the first vertex 0 and the next vertex 1. Repeat for other vertices in order, and you'll have assigned tags which are shift and rotation independent. Now you can compare edge topologies exactly (check that for every edge in object 1 between two vertices, there's a corresponding edge between the same two vertices in object 2) Note: this starts getting really complex if you have multiple identical interpoint distances and therefore you need tiebreaker comparisons to make the assignments stable and unique.
3) There's a possibility that two figures have identical edge length populations but they aren't identical.. this is true when one object is the mirror image of the other. This is quite annoying to detect! One way to do it is to use four non-coplanar points (perhaps the ones labeled 0 to 3 from the previous step) and compare the "handedness" of the coordinate system they define. If the handedness doesn't match, the objects are mirror images.
Note the list-of-distances gives you easy rejection of non-identical objects. It also allows you to add "fuzzy" acceptance by allowing a certain amount of error in the orderings. Perhaps taking the root-mean-squared difference between the two lists as a "similarity measure" would work well.
Edit: Looks like your problem is a point cloud with no edges. Then the annoying problem of edge correspondence (#2) doesn't even apply and can be ignored! You still have to be careful of the mirror-image problem #3 though.
There a bunch of SIGGRAPH publications which may prove helpful to you.
e.g. "Global Non-Rigid Alignment of 3-D Scans" by Brown and Rusinkiewicz:
http://portal.acm.org/citation.cfm?id=1276404
A general search that can get you started:
http://scholar.google.com/scholar?q=siggraph+point+cloud+registration
spin images are one way to go about it.
Seems like a numerical optimisation problem to me. You want to find the parameters of the transform which transforms one set of points to as close as possible by the other. Define some sort of residual or "energy" which is minimised when the points are coincident, and chuck it at some least-squares optimiser or similar. If it manages to optimise the score to zero (or as near as can be expected given floating point error) then the points are the same.
Googling
least squares rotation translation
turns up quite a few papers building on this technique (e.g "Least-Squares Estimation of Transformation Parameters Between Two Point Patterns").
Update following comment below: If a one-to-one correspondence between the points isn't known (as assumed by the paper above), then you just need to make sure the score being minimised is independent of point ordering. For example, if you treat the points as small masses (finite radius spheres to avoid zero-distance blowup) and set out to minimise the total gravitational energy of the system by optimising the translation & rotation parameters, that should work.
If you want to estimate the rigid
transform between two similar
point clouds you can use the
well-established
Iterative Closest Point method. This method starts with a rough
estimate of the transformation and
then iteratively optimizes for the
transformation, by computing nearest
neighbors and minimizing an
associated cost function. It can be
efficiently implemented (even
realtime) and there are available
implementations available for
matlab, c++... This method has been
extended and has several variants,
including estimating non-rigid
deformations, if you are interested
in extensions you should look at
Computer graphics papers solving
scan registration problem, where
your problem is a crucial step. For
a starting point see the Wikipedia
page on Iterative Closest Point
which has several good external
links. Just a teaser image from a matlab implementation which was designed to match to point clouds:
(source: mathworks.com)
After aligning you could the final
error measure to say how similar the
two point clouds are, but this is
very much an adhoc solution, there
should be better one.
Using shape descriptors one can
compute fingerprints of shapes which
are often invariant under
translations/rotations. In most cases they are defined for meshes, and not point clouds, nevertheless there is a multitude of shape descriptors, so depending on your input and requirements you might find something useful. For this, you would want to look into the field of shape analysis, and probably this 2004 SIGGRAPH course presentation can give a feel of what people do to compute shape descriptors.
This is how I would do it:
Position the sets at the center of mass
Compute the inertia tensor. This gives you three coordinate axes. Rotate to them. [*]
Write down the list of points in a given order (for example, top to bottom, left to right) with your required precision.
Apply any algorithm you'd like for a resulting array.
To compare two sets, unless you need to store the hash results in advance, just apply your favorite comparison algorithm to the sets of points of step 3. This could be, for example, computing a distance between two sets.
I'm not sure if I can recommend you the algorithm for the step 4 since it appears that your requirements are contradictory. Anything called hashing usually has the property that a small change in input results in very different output. Anyway, now I've reduced the problem to an array of numbers, so you should be able to figure things out.
[*] If two or three of your axis coincide select coordinates by some other means, e.g. as the longest distance. But this is extremely rare for random points.
Maybe you should also read up on the RANSAC algorithm. It's commonly used for stitching together panorama images, which seems to be a bit similar to your problem, only in 2 dimensions. Just google for RANSAC, panorama and/or stitching to get a starting point.

Resources