I have polygons that define the contour of counties in the UK. These shapes are very detailed (10k to 20k points each), thus rendering the related computations (is point X in polygon P?) quite computationaly expensive.
Thus, I would like to "subsample" my polygons, to obtain a similar shape but with less points. What are the different techniques to do so?
The trivial one would be to take one every N points (thus subsampling by a factor N), but this feels too "crude". I would rather do some averaging of points, or something of that flavor. Any pointer?
Two solutions spring to mind:
1) since the map of the UK is reasonably squarish, you could choose to render a bitmap with the counties. Assign each a specific colour, and then render the borders with a 1 or 2 pixel thick black line. This means you'll only have to perform the expensive interior/exterior calculation if a sample happens to lie on the border. The larger the bitmap, the less often this will happen.
2) simplify the county outlines. You can use a recursive Ramer–Douglas–Peucker algorithm to recursively simplify the boundaries. Just make sure you cache the results. You may also have to solve this not for entire county boundaries but for shared boundaries only, to ensure no gaps. This might be quite tricky.
Here you can find a project dealing exactly with your issues. Although it works primarily with an area "filled" by points, you can set it to work with a "perimeter" type definition as yours.
It uses a k-nearest neighbors approach for calculating the region.
Samples:
Here you can request a copy of the paper.
Seemingly they planned to offer an online service for requesting calculations, but I didn't test it, and probably it isn't running.
HTH!
Polygon triangulation should help here. You'll still have to check many polygons, but these are triangles now, so they are easier to check and you can use some optimizations to determine only a small subset of polygons to check for a given region or point.
As it seems you have all the algorithms you need for polygons, not only for triangles, you can also merge several triangles that are too small after triangulation or if triangle count gets too high.
Related
Given a "density" scalar field in the plane, how can I divide the plane into nice (low moment of inertia) regions so that each region contains a similar amount of "mass"?
That's not the best description of what my actual problem is, but it's the most concise phrasing I could think of.
I have a large map of a fictional world for use in a game. I have a pretty good idea of approximately how far one could walk in a day from any given point on this map, and this varies greatly based on the terrain etc. I would like to represent this information by dividing the map into regions, so that one day of walking could take you from any region to any of its neighboring regions. It doesn't have to be perfect, but it should be significantly better than simply dividing the map into a hexagonal grid (which is what many games do).
I had the idea that I could create a gray-scale image with the same dimensions as the map, where each pixel's color value represents how quickly one can travel through the pixel in the same place on the map. Well-maintained roads would be encoded as white pixels, and insurmountable cliffs would be encoded as black, or something like that.
My question is this: does anyone have an idea of how to use such a gray-scale image (the "density" scalar field) to generate my "grid" from the previous paragraph (regions of similar "mass")?
I've thought about using the gray-scale image as a discrete probability distribution, from which I can generate a bunch of coordinates, and then use some sort of clustering algorithm to create the regions, but a) the clustering algorithms would have to create clusters of a similar size, I think, for that idea to work, which I don't think they usually do, and b) I barely have any idea if any of that even makes sense, as I'm way out of my comfort zone here.
Sorry if this doesn't belong here, my idea has always been to solve it programatically somehow, so this seemed the most sensible place to ask.
UPDATE: Just thought I'd share the results I've gotten so far, trying out the second approach suggested by #samgak - recursively subdividing regions into boxes of similar mass, finding the center of mass of each region, and creating a voronoi diagram from those.
I'll keep tweaking, and maybe try to find a way to make it less grid-like (like in the upper right corner), but this worked way better than I expected!
Building upon #samgak's solution, if you don't want the grid-like structure, you can just add a small random perturbation to your centers. You can see below for example the difference I obtain:
without perturbation
adding some random perturbation
A couple of rough ideas:
You might be able to repurpose a color-quantization algorithm, which partitions color-space into regions with roughly the same number of pixels in them. You would have to do some kind of funny mapping where the darker the pixel in your map, the greater the number of pixels of a color corresponding to that pixel's location you create in a temporary image. Then you quantize that image into x number of colors and use their color values as co-ordinates for the centers of the regions in your map, and you could then create a voronoi diagram from these points to define your region boundaries.
Another approach (which is similar to how some color quantization algorithms work under the hood anyway) could be to recursively subdivide regions of your map into axis-aligned boxes by taking each rectangular region and choosing the optimal splitting line (x or y) and position to create 2 smaller rectangles of similar "mass". You would end up with a power of 2 count of rectangular regions, and you could get rid of the blockiness by taking the centre of mass of each rectangle (not simply the center of the bounding box) and creating a voronoi diagram from all the centre-points. This isn't guaranteed to create regions of exactly equal mass, but they should be roughly equal. The algorithm could be improved by allowing recursive splitting along lines of arbitrary orientation (or maybe a finite number of 8, 16, 32 etc possible orientations) but of course that makes it more complicated.
I've an indeterminate number of closed CGPath elements of various shapes and sizes all containing a single concave bezier curve, like the red and blue shapes in the diagram below.
What is the simplest and most efficient method of dividing these shapes into n regions of (roughly) equal size?
What you want is Delaunay triangulation. Here is an example which resembles what you want to do. It uses an as3 library. Here is an iOS port, that should help you:
https://github.com/czgarrett/delaunay-ios
I don't really understand the context of what you want to achieve and what the constraints are. For instance, is there a hard requirement that the subdivided regions are equal size?
Often the solutions to a performance problem is not a faster algorithm but a different approach, usually one or more of the following:
Pre-compute the values, or compute as much as possible offline. Say by using another server API which is able to do the subdivision offline and cache the results for multiple clients. You could serve the post-computed result as a bitmap where each colour indexes into the table of values you want to display. Looking up the value would be a simple matter of indexing the pixel at the touch position.
Simplify or approximate a solution. Would a grid sub-division be accurate enough? At 500 x 6 = 3000 subdivisions, you only have about 51 square points for each region, that's a region of around 7x7 points. At that size the user isn't going to notice if the region is perfectly accurate. You may need to end up aggregating adjacent regions anyway due to touch resolution.
Progressive refinement. You often don't need to compute the entire algorithm up front. Very often algorithms run in discrete (often symmetrical) units, meaning you're often re-using the information from previous steps. You could compute just the first step up front, and then use a background thread to progressively fill in the rest of the detail. You could also defer final calculation until the the touch occurs. A delay of up to a second is still tolerable at that point, or in the worst case you can display an animation while the calculation is in progress.
You could use some hybrid approach, and possibly compute one or two levels using Delaunay triangulation, and then using a simple, fast triangular sub-division for two more levels.
Depending on the required accuracy, and if discreet samples are not required, the final levels could be approximated using a weighted average between the points of the triangle, i.e., if the touch is halfway between two points, pick the average value between them.
I'm considering trying to make a game that takes place on an essentially infinite grid.
The grid is very sparse. Certain small regions of relatively high density. Relatively few isolated nonempty cells.
The amount of the grid in use is too large to implement naively but probably smallish by "big data" standards (I'm not trying to map the Internet or anything like that)
This needs to be easy to persist.
Here are the operations I may want to perform (reasonably efficiently) on this grid:
Ask for some small rectangular region of cells and all their contents (a player's current neighborhood)
Set individual cells or blit small regions (the player is making a move)
Ask for the rough shape or outline/silhouette of some larger rectangular regions (a world map or region preview)
Find some regions with approximately a given density (player spawning location)
Approximate shortest path through gaps of at most some small constant empty spaces per hop (it's OK to be a bad approximation often, but not OK to keep heading the wrong direction searching)
Approximate convex hull for a region
Here's the catch: I want to do this in a web app. That is, I would prefer to use existing data storage (perhaps in the form of a relational database) and relatively little external dependency (preferably avoiding the need for a persistent process).
Guys, what advice can you give me on actually implementing this? How would you do this if the web-app restrictions weren't in place? How would you modify that if they were?
Thanks a lot, everyone!
I think you can do everything using quadtrees, as others have suggested, and maybe a few additional data structures. Here's a bit more detail:
Asking for cell contents, setting cell contents: these are the basic quadtree operations.
Rough shape/outline: Given a rectangle, go down sufficiently many steps within the quadtree that most cells are empty, and make the nonempty subcells at that level black, the others white.
Region with approximately given density: if the density you're looking for is high, then I would maintain a separate index of all objects in your map. Take a random object and check the density around that object in the quadtree. Most objects will be near high density areas, simply because high-density areas have many objects. If the density near the object you picked is not the one you were looking for, pick another one.
If you're looking for low-density, then just pick random locations on the map - given that it's a sparse map, that should typically give you low density spots. Again, if it doesn't work right try again.
Approximate shortest path: if this is a not-too-frequent operation, then create a rough graph of the area "between" the starting point A and end point B, for some suitable definition of between (maybe the square containing the circle with the midpoint of AB as center and 1.5*AB as diameter, except if that diameter is less than a certain minimum, in which case... experiment). Make the same type of grid that you would use for the rough shape / outline, then create (say) a Delaunay triangulation of the black points. Do a shortest path on this graph, then overlay that on the actual map and refine the path to one that makes sense given the actual map. You may have to redo this at a few different levels of refinement - start with a very rough graph, then "zoom in" taking two points that you got from the higher level as start and end point, and iterate.
If you need to do this very frequently, you'll want to maintain this type of graph for the entire map instead of reconstructing it every time. This could be expensive, though.
Approx convex hull: again start from something like the rough shape, then take the convex hull of the black points in that.
I'm not sure if this would be easy to put into a relational database; a file-based storage could work but it would be impractical to have a write operation be concurrent with anything else, which you would probably want if you want to allow this to grow to a reasonable number of players (per world / map, if there are multiple worlds / maps). I think in that case you are probably best off keeping a separate process alive... and even then making this properly respect multithreading is going to be a headache.
A kd tree or a quadtree is a good data structure to solve your problem. Especially the latter it's a clever way to address the grid and to reduce the 2d complexity to a 1d complexity. Quadtrees is also used in many maps application like bing and google maps. Here is a good start: Nick quadtree spatial index hilbert curve blog.
I've been searching far and wide on the seven internets, and have come to no avail. The closest to what I need seems to be The cutting stock problem, only in 2D (which is disappointing since Wikipedia doesn't provide any directions on how to solve that one). Another look-alike problem would be UV unwrapping. There are solutions there, but only those that you get from add-ons on various 3D software.
Cutting the long talk short - what I want is this: given a rectangle of known width and height, I have to find out how many shapes (polygons) of known sizes (which may be rotated at will) may I fit inside that rectangle.
For example, I could choose a T-shaped piece and in the same rectangle I could pack it both in an efficient way, resulting in 4 shapes per rectangle
as well as tiling them based on their bounding boxes, case in which I could only fit 3
But of course, this is only an example... and I don't think it would be much use to solving on this particular case. The only approaches I can think of right now are either like backtracking in their complexity or solve only particular cases of this problem. So... any ideas?
Anybody up for a game of Tetris (a subset of your problem)?
This is known as the packing problem. Without knowing what kind of shapes you are likely to face ahead of time, it can be very difficult if not impossible to come up with an algorithm that will give you the best answer. More than likely unless your polygons are "nice" polygons (circles, squares, equilateral triangles, etc.) you will probably have to settle for a heuristic that gives you the approximate best solution most of the time.
One general heuristic (though far from optimal depending on the shape of the input polygon) would be to simplify the problem by drawing a rectangle around the polygon so that the rectangle would be just big enough to cover the polygon. (As an example in the diagram below we draw a red rectangle around a blue polygon.)
Once we have done this, we can then take that rectangle and try to fit as many of that rectangle into the large rectangle as possible. This simplfies the problem into a rectangle packing problem which is easier to solve and wrap your head around. An example of an algorithm for this is at the following link:
An Effective Recursive Partitioning Approach for the Packing of Identical Rectangles in a Rectangle.
Now obviously this heuristic is not optimal when the polygon in question is not close to being the same shape as a rectangle, but it does give you a minimum baseline to work with especially if you don't have much knowledge of what your polygon will look like (or there is high variance in what the polygon will look like). Using this algorithm, it would fill up a large rectangle like so:
Here is the same image without the intermediate rectangles:
For the case of these T-shaped polygons, the heuristic is not the best it could be (in fact it may be almost a worst case scenario for this proposed approximation), but it would work very well for other types of polygons.
consider what the other answer said by placing the t's into a square, but instead of just leaving it as a square set the shapes up in a list. Then use True and False to fill the nested list as the shape i.e. [[True,True,True],[False,True,False]] for your T shape. Then use a function to place the shapes on the grid. To optimize the results, create a tracker which will pay attention to how many false in a new shape overlap with trues that are already on the grid from previous shapes. The function will place the shape in the place with the most overlaps. There will have to be modifications to create higher and higher optimizations, but that is the general premise which you are looking for.
I have a set of 3d points that approximate a surface. Each point, however, are subject to some error. Furthermore, the set of points contain a lot more points than is actually needed to represent the underlying surface.
What I am looking for is an algorithm to create a new (much smaller) set of points representing a simplified, smoother version of the surface (pardon for not having a better definition than "simplified, smoother"). The underlying surface is not a mathematical one so I'm not hoping to fit the data set to some mathematical function.
Instead of dealing with it as a point cloud, I would recommend triangulating a mesh using Delaunay triangulation: http://en.wikipedia.org/wiki/Delaunay_triangulation
Then decimate the mesh. You can research decimation algorithms, but you can get pretty good quick and dirty results with an algorithm that just merges adjacent tris that have similar normals.
I think you are looking for 'Level of detail' algorithms.
A simple one to implement is to break your volume (surface) into some number of sub-volumes. From the points in each sub-volume, choose a representative point (such as the one closest to center, or the closest to the average, or the average etc). use these points to redraw your surface.
You can tweak the number of sub-volumes to increase/decrease detail on the fly.
I'd approach this by looking for vertices (points) that contribute little to the curvature of the surface. Find all the sides emerging from each vertex and take the dot products of pairs (?) of them. The points representing very shallow "hills" will subtend huge angles (near 180 degrees) and have small dot products.
Those vertices with the smallest numbers would then be candidates for removal. The vertices around them will then form a plane.
Or something like that.
Google for Hugues Hoppe and his "surface reconstruction" work.
Surface reconstruction is used to find a meshed surface to fit the point cloud; however, this method yields lots of triangles. You can then apply mesh a reduction technique to reduce the polygon count in a way to minimize error. As an example, you can look at OpenMesh's decimation methods.
OpenMesh
Hugues Hoppe
There exist several different techniques for point-based surface model simplification, including:
clustering;
particle simulation;
iterative simplification.
See the survey:
M. Pauly, M. Gross, and L. P. Kobbelt. Efficient simplification of point-
sampled surfaces. In Proceedings of the conference on Visualization’02,
pages 163–170, Washington, DC, 2002. IEEE.
unless you parametrise your surface in some way i'm not sure how you can decide which points carry similar information (and can thus be thrown away).
i guess you can choose a bunch of points at random to get rid of, but that doesn't sound like what you want to do.
maybe points near each other (for some definition of 'near') can be considered to contain similar information, and so reduced to single representatives for each such group.
could you give some more details?
It's simpler to simplify a point cloud without the constraints of mesh triangles and indices.
smoothing and simplification are different tasks though. To simplify the cloud you should first get rid of noise artefacts by making a profile of the kind of noise that you have, it's frequency and directional caracteristics and do a noise profile compared type reduction. good normal vectors are helfpul for that.
here is a document about 5-6 simplifications using delauney, voronoi, and k nearest neighbour maths:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.9640&rep=rep1&type=pdf
A later version from 2008:
http://www.wseas.us/e-library/transactions/research/2008/30-705.pdf
here is a recent c++ version:
https://github.com/tudelft3d/masbcpp/blob/master/src/simplify.cpp