PRAM CREW algorithm for counting odd numbers - algorithm

So I try to solve the following task:
Develop an CREW PRAM algorithm for counting the odd numbers of a sequence of integers x_1,x_2,...x_n.
n is the number of processors - the complexity should be O(log n) and log_2 n is a natural number
My solution so far:
Input: A:={x_1,x_2,...,x_n} Output:=oddCount
begin
1. global_read(A(n),a)
2. if(a mod 2 != 0) then
oddCount += 1
The problem is, due to CREW I am not allowed to use multiple write instructions at the same time oddCount += 1 is reading oddCount and then writes oddCount + 1, so there would be multiple writes.
Do I have to do something like this
Input: A:={x_1,x_2,...,x_n} Output:=oddCount
begin
1. global_read(A(n),a)
2. if(a mod 2 != 0) then
global_write(1, B(n))
3. if(n = A.length - 1) then
for i = 0 to B.length do
oddCount += B(i)
So first each process determines wether it is a odd or even number and the last process calculates the sum? But how would this affect the complexity and is there a better solution?
Thanks to libik I came to this solution: (n starts with 0)
Input: A:={x_1,x_2,...,x_n} Output:=A(0):=number off odd numbers
begin
1. if(A(n) mod 2 != 0) then
A(n) = 1
else
A(n) = 0
2. for i = 1 to log_2(n) do
if (n*(2^i)+2^(i-1) < A.length)
A(n*(2^i)) += A(n*(2^i) + (2^(i-1)))
end
i = 1 --> A(n * 2): 0 2 4 6 8 10 ... A(n*2 + 2^0): 1 3 5 7 ...
i = 2 --> A(n * 4): 0 4 8 12 16 ... A(n*4 + 2^1): 2 6 10 14 18 ...
i = 3 --> A(n * 8): 0 8 16 24 32 ... A(n*8 + 2^2): 4 12 20 28 36 ...
So the first if is the 1st Step and the for is representing log_2(n)-1 steps so over all there are log_2(n) steps. Solution should be in A(0).

Your solution is O(n) as there is for cycle that has to go through all the numbers (which means you dont utilize multiple processors at all)
The CREW means you cannot write into the same cell (in your example cell=processor memory), but you can write into multiple cells at once.
So how to do it as fast as possible?
At initialization all processors start with 1 or 0 (having odd number or not)
In first round just sum the neighbours x_2 with x_1, then x_4 with x_3 etc.
It will be done in O(1) as every second processor "p_x" look to "p_x+1" processor in parallel and add 0 or 1 (is there odd number or not)
Then in processors p1,p3,p5,p7.... you have part of solution. Lets do this again but now with p1 looks to p3, p5 looks to p7 and p_x looks to o_x+2
Then you have part of the solution only in processors p1, p5, p9 etc.
Repeat the process. Every step the number of processors halves, so you need log_2(n) steps.
If this would be real-life example, there is often calculated cost of synchronization. Basically after each step, all processors have to synchronize themselves so they now, they can do the second step (as you run the described code in each processor, but how do you know if you can already add number from processor p_x, because you can do it after p_x finished work).
You need either some kind of "clock" or synchronization.
At this example, the final complexity would be log(n)*k, where k is the complexity of synchronization.
The cost depends on machine, or definition. One way how to notify processors that you have finished is basically the same one as the one described here for counting the odd numbers. Then it would also cost k=log(n) which would result in log^2(n)

Related

MATLAB: Fast creation of random symmetric Matrix with fixed degree (sum of rows)

I am searching for a method to create, in a fast way a random matrix A with the follwing properties:
A = transpose(A)
A(i,i) = 0 for all i
A(i,j) >= 0 for all i, j
sum(A) =~ degree; the sum of rows are randomly distributed by a distribution I want to specify (here =~ means approximate equality).
The distribution degree comes from a matrix orig, specifically degree=sum(orig), thus I know that matrices with this distribution exist.
For example: orig=[0 12 7 5; 12 0 1 9; 7 1 0 3; 5 9 3 0]
orig =
0 12 7 5
12 0 1 9
7 1 0 3
5 9 3 0
sum(orig)=[24 22 11 17];
Now one possible matrix A=[0 11 5 8, 11 0 4 7, 5 4 0 2, 8 7 2 0] is
A =
0 11 5 8
11 0 4 7
5 4 0 2
8 7 2 0
with sum(A)=[24 22 11 17].
I am trying this for quite some time, but unfortunatly my two ideas didn't work:
version 1:
I switch Nswitch times two random elements: A(k1,k3)--; A(k1,k4)++; A(k2,k3)++; A(k2,k4)--; (the transposed elements aswell).
Unfortunatly, Nswitch = log(E)*E (with E=sum(sum(nn))) in order that the Matrices are very uncorrelated. As my E > 5.000.000, this is not feasible (in particular, as I need at least 10 of such matrices).
version 2:
I create the matrix according to the distribution from scratch. The idea is, to fill every row i with degree(i) numbers, based on the distribution of degree:
nn=orig;
nnR=zeros(size(nn));
for i=1:length(nn)
degree=sum(nn);
howmany=degree(i);
degree(i)=0;
full=rld_cumsum(degree,1:length(degree));
rr=randi(length(full),[1,howmany]);
ff=full(rr);
xx=i*ones([1,length(ff)]);
nnR = nnR + accumarray([xx(:),ff(:)],1,size(nnR));
end
A=nnR;
However, while sum(A')=degree, sum(A) systematically deviates from degree, and I am not able to find the reason for that.
Small deviations from degree are fine of course, but there seem to be systmatical deviations in particulat of the matrices contain in some places large numbers.
I would be very happy if somebody could either show me a fast method for version1, or a reason for the systematic deviation of the distribution in version 2, or a method to create such matrices in a different way. Thank you!
Edit:
This is the problem in matsmath's proposed solution:
Imagine you have the matrix:
orig =
0 12 3 1
12 0 1 9
3 1 0 3
1 9 3 0
with r(i)=[16 22 7 13].
Step 1: r(1)=16, my random integer partition is p(i)=[0 7 3 6].
Step 2: Check that all p(i)<=r(i), which is the case.
Step 3:
My random matrix starts looks like
A =
0 7 3 6
7 0 . .
3 . 0 .
6 . . 0
with the new row sum vector rnew=[r(2)-p(2),...,r(n)-p(n)]=[15 4 7]
Second iteration (here the problem occures):
Step 1: rnew(1)=15, my random integer partition is p(i)=[0 A B]: rnew(1)=15=A+B.
Step 2: Check that all p(i)<=rnew(i), which gives A<=4, B<=7. So A+B<=11, but A+B has to be 15. contradiction :-/
Edit2:
This is the code representing (to the best of my knowledge) the solution posted by David Eisenstat:
orig=[0 12 3 1; 12 0 1 9; 3 1 0 3; 1 9 3 0];
w=[2.2406 4.6334 0.8174 1.6902];
xfull=zeros(4);
for ii=1:1000
rndmat=[poissrnd(w(1),1,4); poissrnd(w(2),1,4); poissrnd(w(3),1,4); poissrnd(w(4),1,4)];
kkk=rndmat.*(ones(4)-eye(4)); % remove diagonal
hhh=sum(sum(orig))/sum(sum(kkk))*kkk; % normalisation
xfull=xfull+hhh;
end
xf=xfull/ii;
disp(sum(orig)); % gives [16 22 7 13]
disp(sum(xf)); % gives [14.8337 9.6171 18.0627 15.4865] (obvious systematic problem)
disp(sum(xf')) % gives [13.5230 28.8452 4.9635 10.6683] (which is also systematically different from [16, 22, 7, 13]
Since it's enough to approximately preserve the degree sequence, let me propose a random distribution where each entry above the diagonal is chosen according to a Poisson distribution. My intuition is that we want to find weights w_i such that the i,j entry for i != j has mean w_i*w_j (all of the diagonal entries are zero). This gives us a nonlinear system of equations:
for all i, (sum_{j != i} w_i*w_j) = d_i,
where d_i is the degree of i. Equivalently,
for all i, w_i * (sum_j w_j) - w_i^2 = d_i.
The latter can be solved by applying Newton's method as described below from a starting solution of w_i = d_i / sqrt(sum_j d_j).
Once we have the w_is, we can sample repeatedly using poissrnd to generate samples of multiple Poisson distributions at once.
(If I have time, I'll try implementing this in numpy.)
The Jacobian matrix of the equation system for a 4 by 4 problem is
(w_2 + w_3 + w_4) w_1 w_1 w_1
w_2 (w_1 + w_3 + w_4) w_2 w_2
w_3 w_3 (w_1 + w_2 + w_4) w_3
w_4 w_4 w_4 (w_1 + w_2 + w_3).
In general, let A be a diagonal matrix where A_{i,i} = sum_j w_j - 2*w_i. Let u = [w_1, ..., w_n]' and v = [1, ..., 1]'. The Jacobian can be written J = A + u*v'. The inverse is given by the Sherman--Morrison formula
A^-1*u*v'*A^-1
J^-1 = (A + u*v')^-1 = A^-1 - -------------- .
1 + v'*A^-1*u
For the Newton step, we need to compute J^-1*y for some given y. This can be done straightforwardly in time O(n) using the above equation. I'll add more detail when I get the chance.
First approach (based on version2)
Let your row sum vector given by the matrix orig [r(1),r(2),...,r(n)].
Step 1. Take a random integer partition of the integer r(1) into exactly n-1 parts, say p(2), p(3), ..., p(n)
Step 2. Check if p(i)<=r(i) for all i=2...n. If not, go to Step 1.
Step 3. Fill out your random matrix first row and colum by the entries 0, p(2), ... , p(n), and consider the new row sum vector [r(2)-p(2),...,r(n)-p(n)].
Repeat these steps with a matrix of order n-1.
The point is, that you randomize one row at a time, and reduce the problem to searching for a matrix of size one less.
As pointed out by OP in the comment, this naive algorithm fails. The reason is that the matrices in question have a further necessary condition on their entries as follows:
FACT:
If A is an orig matrix with row sums [r(1), r(2), ..., r(n)] then necessarily for every i=1..n it holds that r(i)<=-r(i)+sum(r(j),j=1..n).
That is, any row sum, say the ith, r(i), is necessarily at most as big as the sum of the other row sums (not including r(i)).
In light of this, a revised algorithm is possible. Note that in Step 2b. we check if the new row sum vector has the property discussed above.
Step 1. Take a random integer partition of the integer r(1) into exactly n-1 parts, say p(2), p(3), ..., p(n)
Step 2a. Check if p(i)<=r(i) for all i=2...n. If not, go to Step 1.
Step 2b. Check if r(i)-p(i)<=-r(i)+p(i)+sum(r(j)-p(j),j=2..n) for all i=2..n. If not, go to Step 1.
Step 3. Fill out your random matrix first row and colum by the entries 0, p(2), ... , p(n), and consider the new row sum vector [r(2)-p(2),...,r(n)-p(n)].
Second approach (based on version1)
I am not sure if this approach gives you random matrices, but it certainly gives you different matrices.
The idea here is to change some parts of your orig matrix locally, in a way which maintains all of its properties.
You should look for a random 2x2 submatrix below the main diagonal which contains strictly positive entries, like [[a,b],[c,d]] and perturbe its contents by a random value r to [[a+r,b-r],[c-r,d+r]]. You make the same change above the main diagonal too, to keep your new matrix symmetric. Here the point is that the changes within the entries "cancel" each other out.
Of course, r should be chosen in a way such that b-r>=0 and c-r>=0.
You can pursue this idea to modify larger submatrices too. For example, you might choose 3 random row coordinates r1, r2, r2 and 3 random column coordinates c1, c2, and c3 and then make changes in your orig matrix at the 9 positions (ri,cj) as follows: you change your 3x3 submatrix [[a b c],[d e f], [g h i]] to [[a-r b+r c] [d+r e f-r], [g h-r i+r]]. You do the same at the transposed places. Again, the random value r must be chosen in a way so that a-r>=0 and f-r>=0 and h-r>=0. Moreover, c1 and r1, and c3 and r3 must be distinct as you can't change the 0 entries in the main diagonal of the matrix orig.
You can repeat such things over and over again, say 100 times, until you find something which looks random. Note that this idea uses the fact that you have existing knowledge of a solution, this is the matrix orig, while the first approach does not use such knowledge at all.

Running time/time complexity for while loop with square root

This question looks relatively simple, but I can't seem to find the running time in terms of n.
Here is the problem:
j = n;
while(j >= 2) {
j = j^(1/2)
}
I don't really need the total running time, I just need to know how to calculate the amount of times the second and third lines are hit (they should be the same). I'd like to know if there is some sort of formula for finding this, as well. I can see that the above is the equivalent of:
for(j = n; n >= 2; j = j^(1/2)
Please note that the type of operation doesn't matter, each time a line is executed, it counts as 1 time unit. So line 1 would just be 1 time unit, line 2 would be:
0 time units if n were 1,
1 time unit if n were 2,
2 time units if n were 4,
3 time units if n were 16, etc.
Thanks in advance to anyone who offers help! It is very much appreciated!
Work backwards to get the number of time units for line 2:
time
n n log_2(n) units
1 1 0 0
2 2 1 1
4 4 2 2
16 16 4 3
16^2 256 8 4
(16^2)^2 65536 16 5
((16^2)^2)^2) ... 32 6
In other words, for the number of time units t, n is 2^(2^(t-1)) except for the case t = 0 in which case n = 1.
To reverse this, you have
t = 0 when n < 2
t = log2(log2(n)) + 1 when n >= 2
where log2(x) is known as the binary logarithm of x.

Number of steps taken to split a number

I cannot get my head around this:
Say I got a number 9. I want to know the minimum steps needed to split it so that no number is greater than 3.
I always thought that the most efficient way is to halve it every loop.
So, 9 -> 4,5 -> 2,2,5 -> 2,2,2,3 so 3 steps in total. However, I just realised a smarter way: 9 -> 3,6 -> 3,3,3 which is 2 steps only...
After some research, the number of steps is in fact (n-1)/target, where target=3 in my example.
Can someone please explain this behaviour to me?
If we want to cut a stick of length L into pieces of size no greater than S, we need ceiling(L/S) pieces. Each time we make a new cut, we increase the number of pieces by 1. It doesn't matter what order we make the cuts in, only where. For example, if we want to break a stick of length 10 into pieces of size 2 or less:
-------------------
0 1 2 3 4 5 6 7 8 9 10
we should cut it in the following places:
---|---|---|---|---
0 1 2 3 4 5 6 7 8 9 10
and any order of cuts is fine, as long as these are the cuts that are made. On the other hand, if we start by breaking it in half:
---------|---------
0 1 2 3 4 5 6 7 8 9 10
we have made a cut that isn't part of the optimal solution, and we have wasted our time.
I really like #user2357112's explanation of why cutting in half is not the right first step, but I also like algebra, and you can prove that ceil(n / target) - 1 is optimal using induction.
Let's prove first that you can always do it in ceil(n / target) - 1 steps.
If n <= target, obviously no step are required, so the formula works. Suppose n > target. Split n into target and n - target (1 step). By induction, n - target can be split in ceil((n - target)/target) - 1 steps. Therefore the total number of steps is
1 + ceil((n - target) / target) - 1
= 1 + ceil(n / target) - target/target - 1
= ceil(n / target) - 1.
Now let's prove that you can't do it in fewer than ceil(n / target) - 1 steps. This is obvious if n <= target. Suppose n > target and the first step is n -> a + b. By induction, a requires at least ceil(a / target) - 1 steps and b requires at least ceil(b / target) - 1 steps. The minimum number of steps required is therefore at least
1 + ceil(a / target) - 1 + ceil(b / target) - 1
>= ceil((a + b) / target) - 1 using ceil(x) + ceil(y) >= ceil(x + y)
= ceil(n / target) - 1 using a + b = n
Every n can be thought of as a priority queue of \lfloor n/target \rfloor target elements placed first on the queue and one element whose value is n%target. Every time you remove an element from the queue, you place it back on the queue. Remove all but the last element: you have clearly removed \lfloor (n-1)/target \rfloor elements. If the last element is less than or equal to the target, we are done. If it is greater than the target, we have a contradiction. So, after \lfloor (n-1)/target \rfloor steps we have a queue consisting only of elements less than or equal to target.

minimum steps required to make array of integers contiguous

given a sorted array of distinct integers, what is the minimum number of steps required to make the integers contiguous? Here the condition is that: in a step , only one element can be changed and can be either increased or decreased by 1 . For example, if we have 2,4,5,6 then '2' can be made '3' thus making the elements contiguous(3,4,5,6) .Hence the minimum steps here is 1 . Similarly for the array: 2,4,5,8:
Step 1: '2' can be made '3'
Step 2: '8' can be made '7'
Step 3: '7' can be made '6'
Thus the sequence now is 3,4,5,6 and the number of steps is 3.
I tried as follows but am not sure if its correct?
//n is the number of elements in array a
int count=a[n-1]-a[0]-1;
for(i=1;i<=n-2;i++)
{
count--;
}
printf("%d\n",count);
Thanks.
The intuitive guess is that the "center" of the optimal sequence will be the arithmetic average, but this is not the case. Let's find the correct solution with some vector math:
Part 1: Assuming the first number is to be left alone (we'll deal with this assumption later), calculate the differences, so 1 12 3 14 5 16-1 2 3 4 5 6 would yield 0 -10 0 -10 0 -10.
sidenote: Notice that a "contiguous" array by your implied definition would be an increasing arithmetic sequence with difference 1. (Note that there are other reasonable interpretations of your question: some people may consider 5 4 3 2 1 to be contiguous, or 5 3 1 to be contiguous, or 1 2 3 2 3 to be contiguous. You also did not specify if negative numbers should be treated any differently.)
theorem: The contiguous numbers must lie between the minimum and maximum number. [proof left to reader]
Part 2: Now returning to our example, assuming we took the 30 steps (sum(abs(0 -10 0 -10 0 -10))=30) required to turn 1 12 3 14 5 16 into 1 2 3 4 5 6. This is one correct answer. But 0 -10 0 -10 0 -10+c is also an answer which yields an arithmetic sequence of difference 1, for any constant c. In order to minimize the number of "steps", we must pick an appropriate c. In this case, each time we increase or decrease c, we increase the number of steps by N=6 (the length of the vector). So for example if we wanted to turn our original sequence 1 12 3 14 5 16 into 3 4 5 6 7 8 (c=2), then the differences would have been 2 -8 2 -8 2 -8, and sum(abs(2 -8 2 -8 2 -8))=30.
Now this is very clear if you could picture it visually, but it's sort of hard to type out in text. First we took our difference vector. Imagine you drew it like so:
4|
3| *
2| * |
1| | | *
0+--+--+--+--+--*
-1| |
-2| *
We are free to "shift" this vector up and down by adding or subtracting 1 from everything. (This is equivalent to finding c.) We wish to find the shift which minimizes the number of | you see (the area between the curve and the x-axis). This is NOT the average (that would be minimizing the standard deviation or RMS error, not the absolute error). To find the minimizing c, let's think of this as a function and consider its derivative. If the differences are all far away from the x-axis (we're trying to make 101 112 103 114 105 116), it makes sense to just not add this extra stuff, so we shift the function down towards the x-axis. Each time we decrease c, we improve the solution by 6. Now suppose that one of the *s passes the x axis. Each time we decrease c, we improve the solution by 5-1=4 (we save 5 steps of work, but have to do 1 extra step of work for the * below the x-axis). Eventually when HALF the *s are past the x-axis, we can NO LONGER IMPROVE THE SOLUTION (derivative: 3-3=0). (In fact soon we begin to make the solution worse, and can never make it better again. Not only have we found the minimum of this function, but we can see it is a global minimum.)
Thus the solution is as follows: Pretend the first number is in place. Calculate the vector of differences. Minimize the sum of the absolute value of this vector; do this by finding the median OF THE DIFFERENCES and subtracting that off from the differences to obtain an improved differences-vector. The sum of the absolute value of the "improved" vector is your answer. This is O(N) The solutions of equal optimality will (as per the above) always be "adjacent". A unique solution exists only if there are an odd number of numbers; otherwise if there are an even number of numbers, AND the median-of-differences is not an integer, the equally-optimal solutions will have difference-vectors with corrective factors of any number between the two medians.
So I guess this wouldn't be complete without a final example.
input: 2 3 4 10 14 14 15 100
difference vector: 2 3 4 5 6 7 8 9-2 3 4 10 14 14 15 100 = 0 0 0 -5 -8 -7 -7 -91
note that the medians of the difference-vector are not in the middle anymore, we need to perform an O(N) median-finding algorithm to extract them...
medians of difference-vector are -5 and -7
let us take -5 to be our correction factor (any number between the medians, such as -6 or -7, would also be a valid choice)
thus our new goal is 2 3 4 5 6 7 8 9+5=7 8 9 10 11 12 13 14, and the new differences are 5 5 5 0 -3 -2 -2 -86*
this means we will need to do 5+5+5+0+3+2+2+86=108 steps
*(we obtain this by repeating step 2 with our new target, or by adding 5 to each number of the previous difference... but since you only care about the sum, we'd just add 8*5 (vector length times correct factor) to the previously calculated sum)
Alternatively, we could have also taken -6 or -7 to be our correction factor. Let's say we took -7...
then the new goal would have been 2 3 4 5 6 7 8 9+7=9 10 11 12 13 14 15 16, and the new differences would have been 7 7 7 2 1 0 0 -84
this would have meant we'd need to do 7+7+7+2+1+0+0+84=108 steps, the same as above
If you simulate this yourself, can see the number of steps becomes >108 as we take offsets further away from the range [-5,-7].
Pseudocode:
def minSteps(array A of size N):
A' = [0,1,...,N-1]
diffs = A'-A
medianOfDiffs = leftMedian(diffs)
return sum(abs(diffs-medianOfDiffs))
Python:
leftMedian = lambda x:sorted(x)[len(x)//2]
def minSteps(array):
target = range(len(array))
diffs = [t-a for t,a in zip(target,array)]
medianOfDiffs = leftMedian(diffs)
return sum(abs(d-medianOfDiffs) for d in diffs)
edit:
It turns out that for arrays of distinct integers, this is equivalent to a simpler solution: picking one of the (up to 2) medians, assuming it doesn't move, and moving other numbers accordingly. This simpler method often gives incorrect answers if you have any duplicates, but the OP didn't ask that, so that would be a simpler and more elegant solution. Additionally we can use the proof I've given in this solution to justify the "assume the median doesn't move" solution as follows: the corrective factor will always be in the center of the array (i.e. the median of the differences will be from the median of the numbers). Thus any restriction which also guarantees this can be used to create variations of this brainteaser.
Get one of the medians of all the numbers. As the numbers are already sorted, this shouldn't be a big deal. Assume that median does not move. Then compute the total cost of moving all the numbers accordingly. This should give the answer.
community edit:
def minSteps(a):
"""INPUT: list of sorted unique integers"""
oneMedian = a[floor(n/2)]
aTarget = [oneMedian + (i-floor(n/2)) for i in range(len(a))]
# aTargets looks roughly like [m-n/2?, ..., m-1, m, m+1, ..., m+n/2]
return sum(abs(aTarget[i]-a[i]) for i in range(len(a)))
This is probably not an ideal solution, but a first idea.
Given a sorted sequence [x1, x2, …, xn]:
Write a function that returns the differences of an element to the previous and to the next element, i.e. (xn – xn–1, xn+1 – xn).
If the difference to the previous element is > 1, you would have to increase all previous elements by xn – xn–1 – 1. That is, the number of necessary steps would increase by the number of previous elements × (xn – xn–1 – 1). Let's call this number a.
If the difference to the next element is >1, you would have to decrease all subsequent elements by xn+1 – xn – 1. That is, the number of necessary steps would increase by the number of subsequent elements × (xn+1 – xn – 1). Let's call this number b.
If a < b, then increase all previous elements until they are contiguous to the current element. If a > b, then decrease all subsequent elements until they are contiguous to the current element. If a = b, it doesn't matter which of these two actions is chosen.
Add up the number of steps taken in the previous step (by increasing the total number of necessary steps by either a or b), and repeat until all elements are contiguous.
First of all, imagine that we pick an arbitrary target of contiguous increasing values and then calculate the cost (number of steps required) for modifying the array the array to match.
Original: 3 5 7 8 10 16
Target: 4 5 6 7 8 9
Difference: +1 0 -1 -1 -2 -7 -> Cost = 12
Sign: + 0 - - - -
Because the input array is already ordered and distinct, it is strictly increasing. Because of this, it can be shown that the differences will always be non-increasing.
If we change the target by increasing it by 1, the cost will change. Each position in which the difference is currently positive or zero will incur an increase in cost by 1. Each position in which the difference is currently negative will yield a decrease in cost by 1:
Original: 3 5 7 8 10 16
New target: 5 6 7 8 9 10
New Difference: +2 +1 0 0 -1 -6 -> Cost = 10 (decrease by 2)
Conversely, if we decrease the target by 1, each position in which the difference is currently positive will yield a decrease in cost by 1, while each position in which the difference is zero or negative will incur an increase in cost by 1:
Original: 3 5 7 8 10 16
New target: 3 4 5 6 7 8
New Difference: 0 -1 -2 -2 -3 -8 -> Cost = 16 (increase by 4)
In order to find the optimal values for the target array, we must find a target such that any change (increment or decrement) will not decrease the cost. Note that an increment of the target can only decrease the cost when there are more positions with negative difference than there are with zero or positive difference. A decrement can only decrease the cost when there are more positions with a positive difference than with a zero or negative difference.
Here are some example distributions of difference signs. Remember that the differences array is non-increasing, so positives always have to be first and negatives last:
C C
+ + + - - - optimal
+ + 0 - - - optimal
0 0 0 - - - optimal
+ 0 - - - - can increment (negatives exceed positives & zeroes)
+ + + 0 0 0 optimal
+ + + + - - can decrement (positives exceed negatives & zeroes)
+ + 0 0 - - optimal
+ 0 0 0 0 0 optimal
C C
Observe that if one of the central elements (marked C) is zero, the target must be optimal. In such a circumstance, at best any increment or decrement will not change the cost, but it may increase it. This result is important, because it gives us a trivial solution. We pick a target such that a[n/2] remains unchanged. There may be other possible targets that yield the same cost, but there are definitely none that are better. Here's the original code modified to calculate this cost:
//n is the number of elements in array a
int targetValue;
int cost = 0;
int middle = n / 2;
int startValue = a[middle] - middle;
for (i = 0; i < n; i++)
{
targetValue = startValue + i;
cost += abs(targetValue - a[i]);
}
printf("%d\n",cost);
You can not do it by iterating once on the array, that's for sure.
You need first to check the difference between each two numbers, for example:
2,7,8,9 can be 2,3,4,5 with 18 steps or 6,7,8,9 with 4 steps.
Create a new array with the difference like so: for 2,7,8,9 it wiil be 4,1,1. Now you can decide whether to increase or decrease the first number.
Lets assume that the contiguous array looks something like this -
c c+1 c+2 c+3 .. and so on
Now lets take an example -
5 7 8 10
The contiguous array in this case will be -
c c+1 c+2 c+3
In order to get the minimum steps, the sum of the modulus of the difference of the integers(before and after) w.r.t the ith index should be the minimum. In which case,
(c-5)^2 + (c-6)^2 + (c-6)^2 + (c-7)^2 should be minimum
Let f(c) = (c-5)^2 + (c-6)^2 + (c-6)^2 + (c-7)^2
= 4c^2 - 48c + 146
Applying differential calculus to get the minima,
f'(c) = 8c - 48 = 0
=> c = 6
So our contiguous array is 6 7 8 9 and the minimum cost here is 2.
To sum it up, just generate f(c), get the first differential and find out c.
This should take O(n).
Brute force approach O(N*M)
If one draws a line through each point in the array a then y0 is a value where each line starts at index 0. Then the answer is the minimum among number of steps reqired to get from a to every line that starts at y0, in Python:
y0s = set((y - i) for i, y in enumerate(a))
nsteps = min(sum(abs(y-(y0+i)) for i, y in enumerate(a))
for y0 in xrange(min(y0s), max(y0s)+1)))
Input
2,4,5,6
2,4,5,8
Output
1
3

Fastest algorithm of getting precise answer (not approximated) when square-rooting

Sorry for unclear title, but I don't know how to state it properly (feel free to edit), so I will give example:
sqrt(108) ~ 10.39... BUT I want it to be like this sqrt(108)=6*sqrt(3) so it means expanding into two numbers
So that's my algorithm
i = floor(sqrt(number)) //just in case, floor returns lowest integer value :)
while (i > 0) //in given example number 108
if (number mod (i*i) == 0)
first = i //in given example first is 6
second = number / (i*i) //in given example second is 3
i = 0
i--
Maybe you know better algorithm?
If it matters I will use PHP and of course I will use appropriate syntax
There is no fast algorithm for this. It requires you to find all the square factors. This requires at least some factorizing.
But you can speed up your approach by quite a bit. For a start, you only need to find prime factors up to the cube root of n, and then test whether n itself is a perfect square using the advice from Fastest way to determine if an integer's square root is an integer.
Next speed up, work from the bottom factors up. Every time you find a prime factor, divide n by it repeatedly, accumulating out the squares. As you reduce the size of n, reduce your limit that you'll go to. This lets you take advantage of the fact that most numbers will be divisible by some small numbers, which quickly reduces the size of the number you have left to factor, and lets you cut off your search sooner.
Next performance improvement, start to become smarter about which numbers you do trial divisions by. For instance special case 2, then only test odd numbers. You've just doubled the speed of your algorithm again.
But be aware that, even with all of these speedups, you're just getting more efficient brute force. It is still brute force, and still won't be fast. (Though it will generally be much, much faster than your current idea.)
Here is some pseudocode to make this clear.
integer_sqrt = 1
remainder = 1
# First we special case 2.
while 0 == number % 4:
integer_sqrt *= 2
number /= 4
if 0 == number / 2:
number /= 2
remainder *= 2
# Now we run through the odd numbers up to the cube root.
# Note that beyond the cube root there is no way to factor this into
# prime * prime * product_of_bigger_factors
limit = floor(cube_root(number + 1))
i = 3
while i <= limit:
if 0 == number % i:
while 0 == number % (i*i):
integer_sqrt *= i
number /= i*i
if 0 == number % (i*i):
number /= i
remainder *= i
limit = floor(cube_root(number + 1))
i += 2
# And finally check whether we landed on the square of a prime.
possible_sqrt = floor(sqrt(number + 1))
if number == possible_sqrt * possible_sqrt:
integer_sqrt *= possible_sqrt
else:
remainder *= number
# And the answer is now integer_sqrt * sqrt(remainder)
Note that the various +1s are to avoid problems with the imprecision of floating point numbers.
Running through all of the steps of the algorithm for 2700, here is what happens:
number = 2700
integer_sqrt = 1
remainder = 1
enter while loop
number is divisible by 4
integer_sqrt *= 2 # now 2
number /= 4 # now 675
number is not divisible by 4
exit while loop
number is not divisible by 2
limit = floor(cube_root(number + 1)) # now 8
i = 3
enter while loop
i < =limit # 3 < 8
enter while loop
number is divisible by i*i # 9 divides 675
integer_sqrt *= 3 # now 6
number /= 9 # now 75
number is not divisible by i*i # 9 does not divide 75
exit while loop
i divides number # 3 divides 75
number /= 3 # now 25
remainder *= 3 # now 3
limit = floor(cube_root(number + 1)) # now 2
i += 2 # now 5
i is not <= limit # 5 > 2
exit while loop
possible_sqrt = floor(sqrt(number + 1)) # 5
number == possible_sqrt * possible_sqrt # 25 = 5 * 5
integer_sqrt *= possible_sqrt # now 30
# and now answer is integer_sqrt * sqrt(remainder) ie 30 * sqrt(3)
It's unlikely that there is a fast algorithm for this. See https://mathoverflow.net/questions/16098/complexity-of-testing-integer-square-freeness especially https://mathoverflow.net/questions/16098/complexity-of-testing-integer-square-freeness/16100#16100
List all prime divisors in increasing order e.g. 2700 = 2*2*3*3*3*5*5. This is the slowest step and requires sqrt(N) operations.
Create an accumulator (start with 1). Scan this list. For every pair of numbers, multiply the accumulator by (one of) them. So after scanning the list above, you get 2*3*5.
Accumulator is your multiplier. The rest remains under square root.

Resources