While calculating Big(oh), Where from upper bound g(n) comes? - algorithm

For example i have f(N) = 5N +3 from a program. I want to know what is the big (oh) of this function. we say higher order term O(N).
Is this correct method to find big(oh) of any program by dropping lower orders terms and constants?
If we got O(N) by simply looking on that complexity function 5N+3. then, what is the purpose of this formula F(N) <= C* G(N)?
i got to know that, this formula is just for comparing two functions. my question is,
In this formula, F(N) <= C* G(N), i have F(N) = 5N+3, but what is this upper bound G(N)? Where it comes from? where from will we take it?
i have studied many books, and many posts, but i am still facing confusions.

Q: Is this correct method to find big(oh) of any program by dropping
lower orders terms and constants?
Yes, most people who have at least some experience with examining time complexities use this method.
Q: If we got O(N) by simply looking on that complexity function 5N+3.
then, what is the purpose of this formula F(N) <= C* G(N)?
To formally prove that you correctly estimated big-oh for certain algorithm. Imagine that you have F(N) = 5N^2 + 10 and (incorrectly) conclude that the big-oh complexity for this example is O(N). By using this formula you can quickly see that this is not true because there does not exist constant C such that for large values of N holds 5N^2 + 10 <= C * N. This would imply C >= 5N + 10/N, but no matter how large constant C you choose, there is always N larger than this constant, so this inequality does not hold.
Q: In this formula, F(N) <= C* G(N), i have F(N) = 5N+3, but what is this
upper bound G(N)? Where it comes from? where from will we take it?
It comes from examining F(N), specifically by finding its highest order term. You should have some math knowledge to estimate which function grows faster than the other, for start check this useful link. There are several classes of complexities - constant, logarithmic, polynomial, exponential.. However, in most cases it is easy to find the highest order term for any function. If you are not sure, you can always plot a graph of a function or formally prove that one function grows faster than the other. For example, if F(N) = log(N^3) + sqrt(N) maybe it is not clear at first glance what's the highest order term, but if you calculate or plot log(N^3) for N = 1, 10 and 1000 and sqrt(N) for same values, it is immediately clear that sqrt(N) grows faster, so big-oh for this function is O(sqrt(N)).

Related

Asymptotic analysis, Upper bound

I have some confusion regarding the Asymptotic Analysis of Algorithms.
I have been trying to understand this upper bound case, seen a couple of youtube videos. In one of them, there was an example of this equation
where we have to find the upper bound of the equation 2n+3. So, by looking at this, one can say that it is going o be O(n).
My first question :
In algorithmic complexity, we have learned to drop the constants and find the dominant term, so is this Asymptotic Analysis to prove that theory? or does it have other significance? otherwise, what is the point of this analysis when it is always going to be the biggest n in the equation, example- if it were n+n^2+3, then the upper bound would always be n^2 for some c and n0.
My second question :
as per rule the upper bound formula in Asymptotic Analysis must satisfy this condition f(n) = O(g(n)) IFF f(n) < c.g(n) where n>n0,c>0, n0>=1
i) n is the no of inputs, right? or does n represent the number of steps we perform? and does f(n) represents the algorithm?
ii) In the following video to prove upper bound of the equation 2n+3 could be n^2 the presenter considered c =1, and that is why to satisfy the equation n had to be >= 3 whereas one could have chosen c= 5 and n=1 as well, right? So then why were, in most cases in the video, the presenter was changing the value of n and not c to satisfy the conditions? is there a rule, or is it random? Can I change either c or n(n0) to satisfy the condition?
My Third Question:
In the same video, the presenter mentioned n0 (n not) is the number of steps. Is that correct? I thought n0 is the limit after which the graph becomes the upper bound (after n0, it satisfies the condition for all values of n); hence n0 also represents the input.
Would you please help me understand because people come up with different ideas in different explanations, and I want to understand them correctly?
Edit
The accepted answer clarified all of the questions except the first one. I have gone through many articles on the web, and here I am documenting my conclusion if anyone else has the same question. This will help them.
My first question was
In algorithmic complexity, we have learned to drop the constants and
find the dominant term, so is this Asymptotic Analysis to prove that
theory?
No, Asymptotic Analysis describes the algorithmic complexity, which is all about understanding or visualizing the Asymptotic behavior or the tail behavior of a function or a group of functions by plotting mathematical expression.
In computer science, we use it to evaluate (note: evaluate is not measuring) the performance of an algorithm in terms of input size.
for example, these two functions belong to the same group
mySet = set()
def addToMySet(n):
for i in range(n):
mySet.add(i*i)
mySet2 = set()
def addToMySet2(n):
for i in range(n):
for j in range(500):
mySet2.add(i*j)
Even though the execution time of the addToMySet2(n) is always > the execution time of addToMySet(n), the tail behavior of both of these functions would be the same with respect to the largest n, if one plot them in a graph the tendency of that graph for both of the functions would be linear thus they belong to the same group. Using Asymptotic Analysis, we get to see the behavior and group them.
A mistake that I made assuming upper bound represents the worst case. In reality, The upper bound of any algorithm is associated with all of the best, average, and worst cases. so the correct way of putting that would be
upper/lower bound in the best/average/worst case of an
algorithm
.
We can't relate the upper bound of an algorithm with the worst-case time complexity and the lower bound with the best-case complexity. However, an upper bound can be higher than the worst-case because upper bounds are usually asymptotic formulae that have been proven to hold.
I have seen this kind of question like find the worst-case time complexity of such and such algorithm, and the answer is either O(n) or O(n^2) or O(log-n), etc.
For example, if we consider the function addToMySet2(n), one would say the algorithmic time complexity of that function is O(n), which is technically wrong because there are three factors bound, bound type, (inclusive upper bound and strict upper bound) and case are involved determining the algorithmic time complexity.
When one denote O(n) it is derived from this Asymptotic Analysis f(n) = O(g(n)) IFF for any c>0, there is a n0>0 from which f(n) < c.g(n) (for any n>n0) so we are considering upper bound of best/average/worst case. In the above statement the case is missing.
I think We can consider, when not indicated, the big O notation generally describes an asymptotic upper bound on the worst-case time complexity. Otherwise, one can also use it to express asymptotic upper bounds on the average or best case time complexities
The whole point of asymptotic analysis is to compare algorithms performance scaling. For example, if I write two version of the same algorithm, one with O(n^2) time complexity and the other with O(n*log(n)) time complexity, I know for sure that the O(n*log(n)) one will be faster when n is "big". How big? it depends. You actually can't know unless you benchmark it. What you know is at some point, the O(n*log(n)) will always be better.
Now with your questions:
the "lower" n in n+n^2+3 is "dropped" because it is negligible when n scales up compared to the "dominant" one. That means that n+n^2+3 and n^2 behave the same asymptotically. It is important to note that even though 2 algorithms have the same time complexity, it does not mean they are as fast. For example, one could be always 100 times faster than the other and yet have the exact same complexity.
(i) n can be anything. It may be the size of the input (eg. an algorithm that sorts a list) but it may also be the input itself (eg. an algorithm that give the n-th prime number) or a number of iteration, etc
(ii) he could have taken any c, he chose c=1 as an example as he could have chosen c=1.618. Actually the correct formulation would be:
f(n) = O(g(n)) IFF for any c>0, there is a n0>0 from which f(n) < c.g(n) (for any n>n0)
the n0 from the formula is a pure mathematical construct. For c>0, it is the n value from which the function f is bounded by g. Since n can represent anything (size of a list, input value, etc), it is the same for n0

Explanation for asymptotic notation graph

I am currently going over an algorithms course and I have come across the following graph
I am having a hard time understanding what f(n) stands for, what g(n) means and what c and n0 mean. Furthermore, I want to know how they are related to the concept of bounds and what that means.
Most tutorials just start by explaining how the above terms are related, but not what they mean
Imagine you wrote a program to sort a list. Your program inputs a list, performs computations for some time, then outputs a sorted list.
The "big-O" notation f(n) = O(g(n)) is a way to compare two functions f and g.
When dealing with numbers, you are used to making comparisons, for instant "x < y".
When dealing with functions, we have several different ways of making comparisons. For instance, you could say "function f is always smaller than function g" and you would write that formally: "forall n, f(n) < g(n)".
However, this comparison is a bit extreme. On the graph you have shown in your question, the purple function is not always smaller than the blue function. But you can notice that it is only larger for a few small values of n. So it makes sense to say "after a few initial values, function f finally becomes smaller than function cg" or formally "there exists a number n0 such that forall n > n0, f(n) < cg(n)".
Now, the functions we wanted to compare originally were f and g, not f and cg. However, maybe we don't care about a multiplicative constant; maybe we only care how f(n) behaves when n increases, and how g(n) behaves when n increases. For instance, maybe you notice that when n is 10 times bigger, f(n) becomes roughly 100 times bigger. This means that f(n) is roughly proportional to n^2. It doesn't matter to us whether f is about equal to n^2 + 5 or to 7 * n^2 + 2 * n + 12. What matters to us is that it's roughly proportional to n^2.
So Big-O notation gives us a way to compare two functions f(n) and g(n) while ignoring multiplicative constants, and ignoring values of f(n) and g(n) for small values of n.
f(n) = O(g(n)) litterally means "there exists a value n0 and a multiplicative constant c such that as long as n is bigger than n0, f(n) will be smaller than c g(n).
This definition is relevant to complexity analysis of algorithms. Imagine you have written an algorithm to sort a list. Let's call f(n) the maximum number of operations your algorithm needs to sort a list of n items. You want to prove that your algorithm is efficient. You want to make statements such as "f(n) = O(n^2)", which would mean roughly "if the size of the list is multiplied by 10, then the time of execution will be multiplied by less than 100". This doesn't give the exact number of operations - maybe f(n) = 4 n^2, or maybe f(n) = (n^2 - n) / 2. But who cares about the exact number. What's important is that if the list is 10 times longer, the time of execution will be at most 100 times longer.

BigO Notation, understanding

I had seen in one of the videos (https://www.youtube.com/watch?v=A03oI0znAoc&t=470s) that, If suppose f(n)= 2n +3, then BigO is O(n).
Now my question is if I am a developer, and I was given O(n) as upperbound of f(n), then how I will understand, what exact value is the upper bound. Because in 2n +3, we remove 2 (as it is a constant) and 3 (because it is also a constant). So, if my function is f(n) where n = 1, I can't say g(n) is upperbound where n = 1.
1 cannot be upperbound for 1. I find hard understanding this.
I know it is a partial (and probably wrong answer)
From Wikipedia,
Big O notation characterizes functions according to their growth rates: different functions with the same growth rate may be represented using the same O notation.
In your example,
f(n) = 2n+3 has the same growth rate as f(n) = n
If you plot the functions, you will see that both functions have the same linear growth; and as n -> infinity, the difference between the 2 gets minimal.
In Big O notation, f(n) = 2n+3 when n=1 means nothing; you need to look at the trend, not discreet values.
As a developer, you will consider big-O as a first indication for deciding which algorithm to use. If you have an algorithm which is say, O(n^2), you will try to understand whether there is another one which is, say, O(n). If the problem is inherently O(n^2), then the big-O notation will not provide further help and you will need to use other criterion for your decision. However, if the problem is not inherently O(n^2), but O(n), you should discard any algorithm that happen to be O(n^2) and find an O(n) one.
So, the big-O notation will help you to better classify the problem and then try to solve it with an algorithm whose complexity has the same big-O. If you are lucky enough as to find 2 or more algorithms with this complexity, then you will need to ponder them using a different criterion.

Counting the steps of an algorithm for an upper bound

I know that If I have a for loop, and a nested for loop, which both iterate 1 to n times, I can multiply the run times of both loops to get O(n^2). This is a clean and simple calculation. However, if you had iterations like so,
n = 2, k = 5
n = 3, k = 9
n = 4, k = 14
where k is the number of times the inner for loop iterates. At one point, it is larger than n^2, then it is exactly n^2, then it becomes less than n^2. Assuming you cannot determine k based on n, and maybe even having these points of n very far apart how do you calculate Big-O?
I tried graphing points. And at one point, I could say it was O(n^3) since some points exceed n^2, and further down, it would be O(n^2). Which one should I choose?
You state in your question that k is:
"... At one point, it is larger than n^2"
This is the uncertainty (or non-specificity) in your question that makes it hard to answer rigorously. Anyway, for the remainder of this answer, we shall assume that what you mean by the quote above is that:
For all values of n, the value of k(n) is bounded from above by
C·n^2, for some constant C>0.
From here on, let's refer to this statement as (+).
Now, since you're mentioning Big-O notation, we'll proceed to somewhat loosely define what this actually means:
f(n) = O(g(n)) means c · g(n) is an upper bound on f(n). Thus
there exists some constant c such that f(n) is always ≤ c · g(n),
for sufficiently large n (i.e. , n ≥ n0 for some constant n0).
I.e., Big-O notation is a way to describe an upper bound here for the asymptotic (limiting) behaviour of our algorithm. You write in your question, however, that:
"And at one point, I could say it was O(n^3) since some points exceed n^2, and further down, it would be O(n^2)"
Now this is a very specific analysis of how the inner loop of your algorithm behaves for specific values of n, and really not something that is related to asymptotic analysis (or Big-O notation). We're not interested in specifics about how the algorithms behaves for specific values of n, but whether we can find some general upper bound for the algorithm given n is "sufficiently large" (n ≥ n0 for some constant n0).
Now, with these comments above, we can proceed to analysing the asymptotic behaviour of your algorithm.
We can approach this using Sigma notation, making use of statement (+) above, k(n) < C·n:
The last step (++) follows from the definition of Big-O-notation, that we loosely stated above.
Hence, given that we interpret your information regarding k as (+), your algorithm runs in O(n^3) (which is an upper bound, not necessarily a tight one).

Big Theta Notation - simplifying

I have used the Master Theorem to solve recurrence relations. I have gotten it down to Θ(3n2-9n). Does this equal Θ(n2)? I have another recurrence for which the solution is Θ(2n3 - 1002). In BigTheta notation do you always use only the largest term? So my second one would be Θ(n3)? It just seems like 100n2 would be more important in the second case. So will it matter if I discard it?
Any suggestions?
Yes. Your assumptions are correct. The first one is Θ(n2) and the second one is Θ(n3). When you are using Θ notation you only require the largest term.
In case of your second recurrence consider the n = 1000, then n3 = 1000000000. Where as 100n2 is just 100000000. As the value of n increases, n3 becomes more and more predominant than 100n2.
For theoretical purpose you don't need to consider the constant, how ever large it might be. But practical applications might prefer an algorithm with a small constant even if the complexity is high. For example it might be better to use an algorithm having complexity 0.01n 3 over an algorithm having 10000n2 complexity if the value of n is not very large.
if we have function f(n) = 3n^2-9n , lower order terms and costants can be ignored, we consider higher order terms ,because they play major role in growth of function.
By considering only higher order term we can easily find the upper bound, here is the example.
f(n)= 3n^2-9n
For all sufficient large value of n>=1,
3n^2<=3n^2
and -9n <= n^2
thus, f(n)=3n^2 -9n <= 3n^2 + n^2
<= 4n^2
*The upper bound of f(n) is 4n^2 , that means for all sufficient large
value of n>=1, the value of f(n) wouldn't be greater than 4n^2.*
therefore, f(n)= Θ(n^2) where c=4 and n0=1
we can directly find the upper bound by saying to ignore lower order terms and constants in the equation f(n)= 3n^2-9n , result will be the same Θ(n^2)

Resources