Efficient algorithm to generate a kind of maze - algorithm

I have done a lot of searching for this and have found lots of help to generate a maze, but I have a very specific requirement and all the loops Iv tried have failed horribly.
I created an editor where I could draw what I need, but a generator would help a great deal and this has failed.
Requirement:
Given a square grid of DIV elements (no smaller than 10x10 and no larger than 60x60) I need a joined path through and around the grid that will not touch itself at any point except at start/finish.
There must always be at least one blank square between all path squares (any number of blanks is fine so long as the path never comes into contact with itself).
There can be no dead ends and no loops (Where the path would cross itself).
This is kind of like a reverse maze - I do not need to fill the entire grid, in fact I have no problem with lots of space around the path. It might be easier to think of this along similar lines to a Monopoly board game where the path around the board wanders about instead of going around the edges. I'm actually stuck for an adequate description, hence calling it a reverse maze.
Things I tried:
Lots and lots of overly complex loops. Iv not really come very close and the issue is also one of performance.
Lots and lots of code designed to generate a maze. Some of these have been very good indeed, but they all generate a typical maze, which is not what I need at all really, and adapting the code has proven trickier than writing an insane set of loops within loops.
Any ideas would be helpful. Thanks.
Update Code
Okay, I have translated KIKO's PHP code into Javascript but somewhere along the line I have made a simple error that I cannot track down: The code works and generates a table of the correct dimensions and generates a path through it.
However, in the function "isWithinGrid" I have to subtract 1 from the width and height of the table or the entire thing will fail, and, if I do this, the code will work and created a path through the table minus one cell which will be incorrectly colored although clearly a part of the path.
Note that sometimes the path will be broken or touching itself. I have little doubt that some small problem is causing all of this, but currently this is the best I have come up with and any further help would be much appreciated.
class Grid{
constructor(width,height){
this.width = width;
this.height = height;
this.cells = [];
for(var x=0; x < this.width; x++){
var tmparray = [];
for(var y=0; y < this.height; y++){
tmparray.push(false);
}
this.cells.push(tmparray);
}
}
isWithinGrid(x,y){
return (x >= 0) && (x <= this.width-1) && (y >= 0) && (y <= this.height-1);
}
isWithinPath(x,y){
return this.isWithinGrid(x,y) && this.cells[x][y];
}
setCellInPath(x,y,boolean){
this.cells[x][y] = boolean;
return this;
}
drawHorizontalLine(x1,x2,y){
for(var x=x1; x < x2; x++){
this.setCellInPath(x,y,true);
}
return this;
}
drawVerticalLine(x,y1,y2){
for(var y=y1; y < y2; y++){
this.setCellInPath(x,y,true);
}
return this;
}
drawSquare(){
var left = Math.round(this.width/5);
var right = Math.round(4*this.width/5);
var top = Math.round(this.height/5);
var bottom = Math.round(4*this.height/5);
this.drawHorizontalLine(left,right,top)
.drawHorizontalLine(left,right,bottom)
.drawVerticalLine(left,top,bottom)
.drawVerticalLine(right,top,bottom);
return this;
}
moveCell(x,y,dx,dy){
this.setCellInPath(x,y,false);
this.setCellInPath(x+dx,y+dy,true);
}
canMoveCell(x,y,dx,dy){
return this.isWithinPath(x,y) &&
this.isWithinGrid(x+dx,y+dy) &&
!this.isWithinPath(x+dx,y+dy) &&
!this.isWithinPath(x+2*dx,y+2*dy) &&
!this.isWithinPath(x+dy+dx,y+dx+dy)
!this.isWithinPath(x-dy+dx,y-dx+dy);
}
tryToDistortOnce(x,y,dx,dy){
if (!this.canMoveCell(x,y,dx,dy)) return false;
if (!this.canMoveCell(x+dy,y+dx,dx,dy)) return false;
if (!this.canMoveCell(x-dy,y-dx,dx,dy)) return false;
this.moveCell(x,y,dx,dy);
this.setCellInPath(x+dy+dx,y+dx+dy,true);
this.setCellInPath(x-dy+dx,y-dx+dy,true);
return true;
}
distortOnce(){
var x=0, y=0, dx=0, dy=0;
do {
x = Math.floor(Math.random() * this.width) + 1;
y = Math.floor(Math.random() * this.height) + 1;
} while (!this.isWithinPath(x,y));
switch (Math.floor(Math.random() * 4) + 1){
case 1: dx = -1; dy = 0; break;
case 2: dx = +1; dy = 0; break;
case 3: dx = 0; dy = +1; break;
case 4: dx = 0; dy = -1; break;
}
if (this.tryToDistortOnce(x,y,dx,dy)){
do {
x += dx;
y += dy;
} while (this.tryToDistortOnce(x,y,dx,dy));
return true;
}
return false;
}
distortPath(numberOfDistortions = 10){
for(var counter=1; counter < numberOfDistortions; counter++){
var tries = 0;
while (!this.distortOnce() && (tries < this.width+this.height)){ tries++; }
}
return this;
}
renderGrid(){
var str = '<table class="TSTTAB">';
for(var y=0; y < this.width; y++){
for(var x=0; x < this.height; x++){
str += '<td'+(this.cells[y][x] ? ' class="path">' : '>');
}
str += '</tr>';
}
str += '</table>';
document.getElementById('cont').innerHTML =str;
return this;
}
}
var Testgrid = new Grid(20,20);
Testgrid.drawSquare().distortPath(10).renderGrid();
.TSTTAB{background-color:#7F7F7F;border-collapse:collapse;}
.TSTTAB td{ width:20px; height: 20px; border: 1px solid #000;background-color: #E5E5E5; }
.TSTTAB td.path { background-color: #44F; }
<div id='cont'></div>

Well, I've given it a try. One hour of work seems more than enough for a simple question. It is, of course, far from perfect, but it illustrates what I was talking about. It generates solutions like this:
The complete code is:
<?php
// error reporting
ini_set('display_errors', 1);
ini_set('display_startup_errors', 1);
error_reporting(E_ALL);
// configuration
const SIZE_X = 20;
const SIZE_Y = 20;
const COMPLEXITY = 20;
// grid class
class Grid
{
public function __construct($width,$height)
{
// remember
$this->width = $width;
$this->height = $height;
// initiate grid
foreach (range(1,$width) as $x) {
foreach (range(1,$height) as $y) {
$this->cells[$x][$y] = FALSE; // false means: not in path
}
}
}
public function isWithinGrid($x,$y)
// testb whether (x,y) is within the grid
{
return ($x >= 1) && ($x <= $this->width) &&
($y >= 1) && ($y <= $this->height);
}
public function isWithinPath($x,$y)
// is a cell part of the path?
{
return $this->isWithinGrid($x,$y) && $this->cells[$x][$y];
}
public function setCellInPath($x,$y,$boolean)
// remember whether a cell is part of the path or not
{
$this->cells[$x][$y] = $boolean;
return $this;
}
public function drawHorizontalLine($x1,$x2,$y)
// simple horizontal line
{
foreach (range($x1,$x2) as $x) $this->setCellInPath($x,$y,TRUE);
return $this;
}
public function drawVerticalLine($x,$y1,$y2)
// simple vertical line
{
foreach (range($y1,$y2) as $y) $this->setCellInPath($x,$y,TRUE);
return $this;
}
public function drawSquare()
// simple square
{
$left = round($this->width/5);
$right = round(4*$this->width/5);
$top = round($this->height/5);
$bottom = round(4*$this->height/5);
$this->drawHorizontalLine($left,$right,$top)
->drawHorizontalLine($left,$right,$bottom)
->drawVerticalLine($left,$top,$bottom)
->drawVerticalLine($right,$top,$bottom);
return $this;
}
private function moveCell($x,$y,$dx,$dy)
// move a cell
{
$this->setCellInPath($x,$y,FALSE);
$this->setCellInPath($x+$dx,$y+$dy,TRUE);
}
private function canMoveCell($x,$y,$dx,$dy)
// answers the question whether or not we can move (x,y) by (dx,dy)
{
return $this->isWithinPath($x,$y) && // must be part of path
$this->isWithinGrid($x+$dx,$y+$dy) && // stay within grid
!$this->isWithinPath($x+$dx,$y+$dy) && // but not on the path
!$this->isWithinPath($x+2*$dx,$y+2*$dy) && // and don't touch path
!$this->isWithinPath($x+$dy+$dx,$y+$dx+$dy) && // and don't touch path
!$this->isWithinPath($x-$dy+$dx,$y-$dx+$dy); // and don't touch path
}
private function tryToDistortOnce($x,$y,$dx,$dy)
{
// this one should be able to move
if (!$this->canMoveCell($x,$y,$dx,$dy)) return FALSE;
// but also its neighbours must be able to move
if (!$this->canMoveCell($x+$dy,$y+$dx,$dx,$dy)) return FALSE;
if (!$this->canMoveCell($x-$dy,$y-$dx,$dx,$dy)) return FALSE;
// move the target cell by displacement
$this->moveCell($x,$y,$dx,$dy);
// move neighbours by adding two cells
$this->setCellInPath($x+$dy+$dx,$y+$dx+$dy,TRUE);
$this->setCellInPath($x-$dy+$dx,$y-$dx+$dy,TRUE);
return TRUE; // success!
}
private function distortOnce()
// distort a random cell, returns success or failure
{
// find a random cell in path
do {
$x = rand(1,$this->width);
$y = rand(1,$this->height);
} while (!$this->isWithinPath($x,$y));
// choose one of four directions to move in
switch (rand(1,4))
{
case 1: $dx = -1; $dy = 0; break;
case 2: $dx = +1; $dy = 0; break;
case 3: $dx = 0; $dy = +1; break;
case 4: $dx = 0; $dy = -1; break;
}
// try to do it
if ($this->tryToDistortOnce($x,$y,$dx,$dy))
{
// more moves
do {
$x += $dx;
$y += $dy;
} while ($this->tryToDistortOnce($x,$y,$dx,$dy));
return TRUE; // it was a success!
}
return FALSE; // we failed
}
public function distortPath($numberOfDistortions = 10)
// distort up to a certain amount of times
{
// find a random cell that is part of the path to distort
for ($counter = 1; $counter <= $numberOfDistortions; $counter++) {
// we try that a limited number of times, depending on the grid size
$tries = 0;
while (!$this->distortOnce() &&
($tries < $this->width+$this->height)) { $tries++; }
}
return $this;
}
public function renderGrid()
// render grid
{
echo '<!DOCTYPE HTML><html><head><style>'.
' td { width:20px; height: 20px; border: 1px solid #000; }'.
' .path { background-color: #44F; }'.
'</style></head><body><table>';
foreach (range(1,SIZE_Y) as $y) {
echo '<tr>';
foreach (range(1,SIZE_X) as $x) {
echo '<td'.($this->cells[$x][$y] ? ' class="path">' : '>');
}
echo '</tr>';
}
echo '</body></html></table>';
return $this;
}
}
// create grid
$grid = new Grid(SIZE_X,SIZE_Y);
// start with a square, distort and then render
$grid->drawSquare()
->distortPath(COMPLEXITY)
->renderGrid();
There are lots of things you can do to improve on this.... have fun!
On my server this code takes between 2 and 5 milliseconds to execute. Mileage may vary...

Related

Need to upload user's image input - P5 JavaScript library

I have a Sketch in Processing written in P5.js, but I don't know how to implement user's input.
The program needs to get .jpg image and it's working on it.
Every my attempt of user-input implementation ends with blank screen or endless "Loading..." screen.
Below is example with preloaded image (I need user to do it).
let img;
let size;
let pixels = [];
function preload(){
img=loadImage('image.jpg');
}
function setup() {
img.resize(windowHeight,0);
size = img.height/2;
createCanvas(img.width, img.height);
background(0);
makePixels();
drawPortrait();
}
function makePixels(){
for(let y=0; y<height; y+=size){
for(let x=0; x<width; x+=size){
let c = img.get(x,y);
tint(c);
pixels.push ( new Pixel (x,y,size,c) );
}
}
}
function drawPortrait(){
for(let p of pixels){
p.show();
}
}
function drawLastFour(){
for(let i = pixels.length-4; i<pixels.length; i++){
pixels[i].show();
}
}
function mouseMoved(){
for(let i = 0; i<pixels.length; i++){
if( (mouseX > pixels[i].x) && (mouseX <= pixels[i].x+pixels[i].s) && (mouseY > pixels[i].y) && (mouseY <= pixels[i].y+pixels[i].s) ){
for(let py = pixels[i].y; py<pixels[i].y+pixels[i].s; py+=pixels[i].s/2){
for(let px = pixels[i].x; px<pixels[i].x+pixels[i].s; px+=pixels[i].s/2){
let c = img.get(px, py);
pixels.push( new Pixel(px,py,pixels[i].s/2, c) );
}
}
pixels.splice(i,1);
break;
}
}
drawLastFour();
}
You can use the createFileInput function to create an input element of type file. Your user can then select an image file, which can be used by your sketch. Here is the (slightly modified) example code that shows how you can use it:
let inputElement;
let userImage;
function setup() {
inputElement = createFileInput(handleFile);
inputElement.position(0, 0);
}
function draw() {
background(255);
if (userImage != null) {
image(userImage, 0, 0, width, height);
}
}
function handleFile(file) {
print(file);
if (file.type === 'image') {
userImage = createImg(file.data, '');
userImage.hide();
} else {
userImage = null;
}
}
<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.3.1/p5.min.js"></script>

Grouping points after cut plane three js

I found all intersection points between the object and plane, as in this great example. But now I want to connect these points between themselves (dividing into separate arrays) where the plane passes and connect them again. I tried to connect them by distance, but this does not give an effective result
//SORT POINTS DISTANCE
var pointsArray = []; //point after intersection
var sortedPoints = [];
var sortedPointsDis = [];
sortedPoints.push( pointsArray.pop() );
while( pointsArray.length ) {
var distance = sortedPoints[sortedPoints.length - 1].distanceTo( pointsArray[0] );
var index = 0;
for(var i = 1; i < pointsArray.length; i++) {
var tempDistance = sortedPoints[sortedPoints.length - 1].distanceTo( pointsArray[i] );
if( tempDistance < distance ) {
distance = tempDistance;
index = i;
}
}
sortedPoints.push( pointsArray.splice(index, 1)[0] );
sortedPointsDis.push( distance );
}
//GROUP POINTS
var result = [[]];
for(var i = 0; i < sortedPoints.length; i++) {
var lastArr = result[result.length - 1];
if( lastArr.length < 3 ) {
lastArr.push( sortedPoints[i] );
} else {
var distance = lastArr[0].distanceTo( sortedPoints[i] );
if( distance < sortedPointsDis[i - 1] ) {
result.push([]);
lastArr = result[result.length - 1];
}
lastArr.push(sortedPoints[i]);
}
}
JSfiddle.
Ideas? Examples? Thank in advance for your replies!
So, yes, this answer based on that one and extends it. The solution is rough and can be optimized.
I've used modified .equals() method of THREE.Vector3() (I hope it (or something similar) will be a part of the core one day as it's a very useful feature), taken from here:
THREE.Vector3.prototype.equals = function(v, tolerance) {
if (tolerance === undefined) {
return ((v.x === this.x) && (v.y === this.y) && (v.z === this.z));
} else {
return ((Math.abs(v.x - this.x) < tolerance) && (Math.abs(v.y - this.y) < tolerance) && (Math.abs(v.z - this.z) < tolerance));
}
}
The idea:
When we're getting points of intersection, to each point we add information about which face a point belongs to. It means that there are always pairs of points with the same face index.
Then, we recursively find all the contours our points form.
Also, all points mark as unchecked (.checked = false).
Find first unchecked point. Add it to the array of the current contour.
Find its pair point (with the same face index). Add it to the array of the current contour.
Find an unchecked point, the closest one to the point found last. Makr it as checked .checked = true.
Find its pair point (with the same face index). Mark it as checked .checked = true.
Check, if the last found point equals (with some tolerance) to the first found point (the beginning of the contour)
5.1. If no, then just add the last found point in the array of the current contour and go to step 3.
5.2. If yes, then clone the first point of the current contour and add it to the array of the current contour, add the contour to the array of contours.
Check, if we have have all points marked as checked.
6.1. If no, then go to step 1.
6.2. If yes, we finished. Return the array of contours.
Modified function of setting a point of intersection:
function setPointOfIntersection(line, plane, faceIdx) {
pointOfIntersection = plane.intersectLine(line);
if (pointOfIntersection) {
let p = pointOfIntersection.clone();
p.faceIndex = faceIdx;
p.checked = false;
pointsOfIntersection.vertices.push(p);
};
}
How to get contours and how to draw them:
var contours = getContours(pointsOfIntersection.vertices, [], true);
contours.forEach(cntr => {
let cntrGeom = new THREE.Geometry();
cntrGeom.vertices = cntr;
let contour = new THREE.Line(cntrGeom, new THREE.LineBasicMaterial({
color: Math.random() * 0xffffff
}));
scene.add(contour);
});
Where
function getContours(points, contours, firstRun) {
console.log("firstRun:", firstRun);
let contour = [];
// find first line for the contour
let firstPointIndex = 0;
let secondPointIndex = 0;
let firsPoint, secondPoint;
for (let i = 0; i < points.length; i++) {
if (points[i].checked == true) continue;
firstPointIndex = i;
firstPoint = points[firstPointIndex];
firstPoint.checked = true;
secondPointIndex = getPairIndex(firstPoint, firstPointIndex, points);
secondPoint = points[secondPointIndex];
secondPoint.checked = true;
contour.push(firstPoint.clone());
contour.push(secondPoint.clone());
break;
}
contour = getContour(secondPoint, points, contour);
contours.push(contour);
let allChecked = 0;
points.forEach(p => { allChecked += p.checked == true ? 1 : 0; });
console.log("allChecked: ", allChecked == points.length);
if (allChecked != points.length) { return getContours(points, contours, false); }
return contours;
}
function getContour(currentPoint, points, contour){
let p1Index = getNearestPointIndex(currentPoint, points);
let p1 = points[p1Index];
p1.checked = true;
let p2Index = getPairIndex(p1, p1Index, points);
let p2 = points[p2Index];
p2.checked = true;
let isClosed = p2.equals(contour[0], tolerance);
if (!isClosed) {
contour.push(p2.clone());
return getContour(p2, points, contour);
} else {
contour.push(contour[0].clone());
return contour;
}
}
function getNearestPointIndex(point, points){
let index = 0;
for (let i = 0; i < points.length; i++){
let p = points[i];
if (p.checked == false && p.equals(point, tolerance)){
index = i;
break;
}
}
return index;
}
function getPairIndex(point, pointIndex, points) {
let index = 0;
for (let i = 0; i < points.length; i++) {
let p = points[i];
if (i != pointIndex && p.checked == false && p.faceIndex == point.faceIndex) {
index = i;
break;
}
}
return index;
}
jsfiddle example r87.

Algorithms find shortest path to all cells on grid

I have a grid [40 x 15] with 2 to 16 units on it, and unknown amount of obstacles.
How to find the shortest path to all the units from my unit location.
I have two helper methods that we can consider as O(1)
getMyLocation() - return the (x, y) coordinates of my location on the grid
investigateCell(x, y) - return information about cell at (x,y) coordinates
I implemented A* search algorithm, that search simultaneously to all the directions. At the end it output a grid where each cell have a number representing the distance from my location, and collection of all the units on the grid. It performs with O(N) where N is the number of cells - 600 in my case.
I implement this using AS3, unfortunately it takes my machine 30 - 50 milliseconds to calculate.
Here is my source code. Can you suggest me a better way?
package com.gazman.strategy_of_battle_package.map
{
import flash.geom.Point;
/**
* Implementing a path finding algorithm(Similar to A* search only there is no known target) to calculate the shortest path to each cell on the map.
* Once calculation is complete the information will be available at cellsMap. Each cell is a number representing the
* number of steps required to get to that location. Enemies and Allies will be represented with negative distance. Also the enemy and Allys
* coordinations collections are provided. Blocked cells will have the value 0.<br><br>
* Worth case and best case efficiency is O(N) where N is the number of cells.
*/
public class MapFilter
{
private static const PULL:Vector.<MapFilter> = new Vector.<MapFilter>();
public var cellsMap:Vector.<Vector.<int>>;
public var allys:Vector.<Point>;
public var enemies:Vector.<Point>;
private var stack:Vector.<MapFilter>;
private var map:Map;
private var x:int;
private var y:int;
private var count:int;
private var commander:String;
private var hash:Object;
private var filtered:Boolean;
public function filter(map:Map, myLocation:Point, commander:String):void{
filtered = true;
this.commander = commander;
this.map = map;
this.x = myLocation.x;
this.y = myLocation.y;
init();
cellsMap[x][y] = 1;
excecute();
while(stack.length > 0){
var length:int = stack.length;
for(var i:int = 0; i < length; i++){
var mapFilter:MapFilter = stack.shift();
mapFilter.excecute();
PULL.push(mapFilter);
}
}
}
public function navigateTo(location:Point):Point{
if(!filtered){
throw new Error("Must filter before navigating");
}
var position:int = Math.abs(cellsMap[location.x][location.y]);
if(position == 0){
throw new Error("Target unreachable");
}
while(position > 2){
if(canNavigateTo(position, location.x + 1, location.y)){
location.x++;
}
else if(canNavigateTo(position, location.x - 1, location.y)){
location.x--;
}
else if(canNavigateTo(position, location.x, location.y + 1)){
location.y++;
}
else if(canNavigateTo(position, location.x, location.y - 1)){
location.y--;
}
position = cellsMap[location.x][location.y];
}
return location;
throw new Error("Unexpected filtering error");
}
private function canNavigateTo(position:int, targetX:int, targetY:int):Boolean
{
return isInMapRange(targetX, targetY) && cellsMap[targetX][targetY] < position && cellsMap[targetX][targetY] > 0;
}
private function excecute():void
{
papulate(x + 1, y);
papulate(x - 1, y);
papulate(x, y + 1);
papulate(x, y - 1);
}
private function isInMapRange(x:int, y:int):Boolean{
return x < cellsMap.length &&
x >= 0 &&
y < cellsMap[0].length &&
y >= 0;
}
private function papulate(x:int, y:int):void
{
if(!isInMapRange(x,y) ||
cellsMap[x][y] != 0 ||
hash[x + "," + y] != null ||
map.isBlocked(x,y)){
return;
}
// we already checked that is not block
// checking if there units
if(map.isEmpty(x,y)){
cellsMap[x][y] = count;
addTask(x,y);
}
else{
cellsMap[x][y] = -count;
if(map.isAlly(x,y, commander)){
hash[x + "," + y] = true;
allys.push(new Point(x,y));
}
else {
hash[x + "," + y] = true;
enemies.push(new Point(x,y));
}
}
}
private function addTask(x:int, y:int):void
{
var mapFilter:MapFilter = PULL.pop();
if(mapFilter == null){
mapFilter = new MapFilter();
}
mapFilter.commander = commander;
mapFilter.hash = hash;
mapFilter.map = map;
mapFilter.cellsMap = cellsMap;
mapFilter.allys = allys;
mapFilter..enemies = enemies;
mapFilter.stack = stack;
mapFilter.count = count + 1;
mapFilter.x = x;
mapFilter.y = y;
stack.push(mapFilter);
}
private function init():void
{
hash = new Object();
cellsMap = new Vector.<Vector.<int>>();
for(var i:int = 0; i < map.width;i++){
cellsMap.push(new Vector.<int>);
for(var j:int = 0; j < map.height;j++){
cellsMap[i].push(0);
}
}
allys = new Vector.<Point>();
enemies = new Vector.<Point>();
stack = new Vector.<MapFilter>();
count = 2;
}
}
}
You can use Floyd Warshall to find the shortest path between every pair of points. This would be O(|V|^3) and you would not have to run it for each unit, just once on each turn. It's such a simple algorithm I suspect it might be faster in practice than running something like BFS / Bellman Ford for each unit.

Why Is My Genetic Algorithm Terrible (Why Doesn't It Converge)?

I wrote a quick experiment with a genetic algorithm. It simply takes a grid of squares and tries to mutate their color to make them all yellow. It fails miserably and I can't seem to figure out why. I've included a link to JSFiddle that demonstrates working code, as well as a copy of the code in its entirety.
http://jsfiddle.net/mankyd/X6x9L/
<!DOCTYPE html>
<html lang="en">
<head>
</head>
<body>
<div class="container">
<h1>The randomly flashing squares <i>should</i> be turning yellow</h1>
<div class="row">
<canvas id="input_canvas" width="100" height="100"></canvas>
<canvas id="output_canvas" width="100" height="100"></canvas>
</div>
<div class="row">
<span id="generation"></span>
<span id="best_fitness"></span>
<span id="avg_fitness"></span>
</div>
</div>
</body>
</html>
Note that the below javascript relies on jquery in a few places.
// A bit of code that draws several squares in a canvas
// and then attempts to use a genetic algorithm to slowly
// make those squares all yellow.
// Knobs that can be tweaked
var mutation_rate = 0.1; // how often should we mutate something
var crossover_rate = 0.6; // how often should we crossover two parents
var fitness_influence = 1; // affects the fitness's influence over mutation
var elitism = 1; // how many of the parent's generation to carry over
var num_offspring = 20; // how many spawn's per generation
var use_rank_selection = true; // false == roulette_selection
// Global variables for easy tracking
var children = []; // current generation
var best_spawn = null; // keeps track of our best so far
var best_fitness = null; // keeps track of our best so far
var generation = 0; // global generation counter
var clear_color = 'rgb(0,0,0)';
// used for output
var $gen_span = $('#generation');
var $best_fit = $('#best_fitness');
var $avg_fit = $('#avg_fitness');
var $input_canvas = $('#input_canvas');
var input_ctx = $input_canvas[0].getContext('2d');
var $output_canvas = $('#output_canvas');
var output_ctx = $output_canvas[0].getContext('2d');
// A spawn represents a genome - a collection of colored
// squares.
var Spawn = function(nodes) {
var _fitness = null; // a cache of our fitness
this.nodes = nodes; // the squares that make up our image
this.fitness = function() {
// fitness is simply a function of how close to yellow we are.
// This is defined through euclidian distance. Smaller fitnesses
// are better.
if (_fitness === null) {
_fitness = 0;
for (var i = 0; i < nodes.length; i++) {
_fitness += Math.pow(-nodes[i].color[0], 2) +
Math.pow(255 - nodes[i].color[1], 2) +
Math.pow(255 - nodes[i].color[2], 2);
}
_fitness /= 255*255*3*nodes.length; // divide by the worst possible distance
}
return _fitness;
};
this.mutate = function() {
// reset our cached fitness to unknown
_fitness = null;
var health = this.fitness() * fitness_influence;
var width = $output_canvas[0].width;
var height = $output_canvas[0].height;
for (var i = 0; i < nodes.length; i++) {
// Sometimes (most times) we don't mutate
if (Math.random() > mutation_rate) {
continue;
}
// Mutate the colors.
for (var j = 0; j < 3; j++) {
// colors can move by up to 32 in either direction
nodes[i].color[j] += 64 * (.5 - Math.random()) * health;
// make sure that our colors stay between 0 and 255
nodes[i].color[j] = Math.max(0, Math.min(255, nodes[i].color[j]));
}
}
};
this.draw = function(ctx) {
// This draw function is a little overly generic in that it supports
// arbitrary polygons.
ctx.save();
ctx.fillStyle = clear_color;
ctx.fillRect(0, 0, ctx.canvas.width, ctx.canvas.height);
for (var i = 0; i < nodes.length; i++) {
ctx.fillStyle = 'rgba(' + Math.floor(nodes[i].color[0]) + ',' + Math.floor(nodes[i].color[1]) + ',' + Math.floor(nodes[i].color[2]) + ',' + nodes[i].color[3] + ')';
ctx.beginPath();
ctx.moveTo(nodes[i].points[0][0], nodes[i].points[0][1]);
for (var j = 1; j < nodes[i].points.length; j++) {
ctx.lineTo(nodes[i].points[j][0], nodes[i].points[j][1]);
}
ctx.fill();
ctx.closePath();
}
ctx.restore();
};
};
Spawn.from_parents = function(parents) {
// Given two parents, mix them together to get another spawn
var nodes = [];
for (var i = 0; i < parents[0].nodes.length; i++) {
if (Math.random() > 0.5) {
nodes.push($.extend({}, parents[0].nodes[i]));
}
else {
nodes.push($.extend({}, parents[1].nodes[i]));
}
}
var s = new Spawn(nodes);
s.mutate();
return s;
};
Spawn.random = function(width, height) {
// Return a complete random spawn.
var nodes = [];
for (var i = 0; i < width * height; i += 10) {
var n = {
color: [Math.random() * 256, Math.random() * 256, Math.random() * 256, 1],
points: [
[i % width, Math.floor(i / width) * 10],
[(i % width) + 10, Math.floor(i / width) * 10],
[(i % width) + 10, Math.floor(i / width + 1) * 10],
[i % width, Math.floor(i / width + 1) * 10],
]
};
nodes.push(n);
}
return new Spawn(nodes);
};
var select_parents = function(gene_pool) {
if (use_rank_selection) {
return rank_selection(gene_pool);
}
return roulette_selection(gene_pool);
};
var roulette_selection = function(gene_pool) {
var mother = null;
var father = null;
gene_pool = gene_pool.slice(0);
var sum_fitness = 0;
var i = 0;
for (i = 0; i < gene_pool.length; i++) {
sum_fitness += gene_pool[i].fitness();
}
var choose = Math.floor(Math.random() * sum_fitness);
for (i = 0; i < gene_pool.length; i++) {
if (choose <= gene_pool[i].fitness()) {
mother = gene_pool[i];
break;
}
choose -= gene_pool[i].fitness();
}
// now remove the mother and repeat for the father
sum_fitness -= mother.fitness();
gene_pool.splice(i, 1);
choose = Math.floor(Math.random() * sum_fitness);
for (i = 0; i < gene_pool.length; i++) {
if (choose <= gene_pool[i].fitness()) {
father = gene_pool[i];
break;
}
choose -= gene_pool[i].fitness();
}
return [mother, father];
};
var rank_selection = function(gene_pool) {
gene_pool = gene_pool.slice(0);
gene_pool.sort(function(a, b) {
return b.fitness() - a.fitness();
});
var choose_one = function() {
var sum_fitness = (gene_pool.length + 1) * (gene_pool.length / 2);
var choose = Math.floor(Math.random() * sum_fitness);
for (var i = 0; i < gene_pool.length; i++) {
// figure out the sume of the records up to this point. if we exceed
// our chosen spot, we've found our spawn.
if ((i + 1) * (i / 2) >= choose) {
return gene_pool.splice(i, 1)[0];
}
}
return gene_pool.pop(); // last element, if for some reason we get here
};
var mother = choose_one();
var father = choose_one();
return [mother, father];
};
var start = function() {
// Initialize our first generation
var width = $output_canvas[0].width;
var height = $output_canvas[0].height;
generation = 0;
children = [];
for (var j = 0; j < num_offspring; j++) {
children.push(Spawn.random(width, height));
}
// sort by fitness so that our best comes first
children.sort(function(a, b) {
return a.fitness() - b.fitness();
});
best_spawn = children[0];
best_fitness = best_spawn.fitness();
best_spawn.draw(output_ctx);
};
var generate = function(spawn_pool) {
// generate a new set of offspring
var offspring = [];
for (var i = 0; i < num_offspring; i++) {
var parents = select_parents(spawn_pool);
// odds of crossover decrease as we get closer
if (Math.random() * best_fitness < crossover_rate) {
var s = Spawn.from_parents(parents);
}
else {
// quick hack to copy our mother, with possible mutation
var s = Spawn.from_parents([parents[0], parents[0]]);
}
offspring.push(s);
}
// select a number of best from the parent pool (elitism)
for (var i = 0; i < elitism; i++) {
offspring.push(spawn_pool[i]);
}
// sort our offspring by fitness (this includes the parents from elitism). Fittest first.
offspring.sort(function(a, b) {
return a.fitness() - b.fitness();
});
// pick off the number that we want
offspring = offspring.slice(0, num_offspring);
best_spawn = offspring[0];
best_fitness = best_spawn.fitness();
best_spawn.draw(output_ctx);
generation++;
return offspring;
};
var average_fitness = function(generation) {
debugger;
var a = 0;
for (var i = 0; i < generation.length; i++) {
a += generation[i].fitness();
}
return a / generation.length;
};
//Draw yellow and then initialize our first generation
input_ctx.fillStyle = 'yellow';
input_ctx.fillRect(0, 0, input_ctx.canvas.width, input_ctx.canvas.height);
start();
// Our loop function. Use setTimeout to prevent things from freezing
var gen = function() {
children = generate(children);
$gen_span.text('Generation: ' + generation);
$best_fit.text('Best Fitness: ' + best_fitness);
$avg_fit.text('Avg. Fitness: ' + average_fitness(children));
if (generation % 100 === 0) {
console.log('Generation', generation);
console.log('Fitness', best_fitness);
}
setTimeout(gen, 1);
};
gen();​
I've commented the code to try to make parsing it easy. The basic idea is quite simple:
Select 1 or 2 parents from the current generation
Mix those one or two parents together
Mutate the result slightly and add it to the next generation
Select the best few parents (1 in the example) and add them to the next generation
Sort and slice off N results and use them for the next generation (potentially a mix of parents and offspring)
Rinse and repeat
The output never gets anywhere near yellow. It quickly falls into a steady state of a sort that looks awful. Where have I gone wrong?
Solved it. It was in the "from_parents" method:
if (Math.random() > 0.5) {
nodes.push($.extend({}, parents[0].nodes[i]));
}
else {
nodes.push($.extend({}, parents[1].nodes[i]));
}
The $.extend() was doing a shallow copy. The obvious solution was to either put true as the first argument which causes a deep copy. This, however, is incredibly slow performance-wise. The better solution was to remove the $.extend() from that chunk of code entirely and instead to move it up to the mutate() method, where I call $.extend() only if a node is actually about to be changed. In other words, it becomes a copy-on-write.
Also, the color I put in the fitness function was wrong :P

Count the number of "holes" in a bitmap

Consider a MxN bitmap where the cells are 0 or 1. '1' means filled and '0' means empty.
Find the number of 'holes' in the bitmap, where a hole is a contiguous region of empty cells.
For example, this has two holes:
11111
10101
10101
11111
... and this has only one:
11111
10001
10101
11111
What is the fastest way, when M and N are both between 1 and 8?
Clarification: diagonals are not considered contiguous, only side-adjacency matters.
Note: I am looking for something that takes advantage of the data format. I know how to transform this into a graph and [BD]FS it but that seems overkill.
You need to do connected component labeling on your image. You can use the Two-pass algorithm described in the Wikipedia article I linked above. Given the small size of your problem, the One-pass algorithm may suffice.
You could also use BFS/DFS but I'd recommend the above algorithms.
This seems like a nice use of the disjoint-set data structure.
Convert the bitmap to a 2d array
loop through each element
if the current element is a 0, merge it with the set of one its 'previous' empty neighbors (already visited)
if it has no empty neighbors, add it to its own set
then just count the number of sets
There may be advantages gained by using table lookups and bitwise operations.
For example whole line of 8 pixels may be looked up in 256 element table, so number of holes in a field 1xN is got by single lookup. Then there may be some lookup table of 256xK elements, where K is number of hole configurations in previous line, contatining number of complete holes and next hole configuration. That's just an idea.
I wrote an article describe the answer on Medium https://medium.com/#ahmed.wael888/bitmap-holes-count-using-typescript-javascript-387b51dd754a
but here is the code, the logic isn't complicated and you can understand it without reading the article.
export class CountBitMapHoles {
bitMapArr: number[][];
holesArr: Hole[] = [];
maxRows: number;
maxCols: number;
constructor(bitMapArr: string[] | number[][]) {
if (typeof bitMapArr[0] == 'string') {
this.bitMapArr = (bitMapArr as string[]).map(
(word: string): number[] => word.split('').map((bit: string): number => +bit))
} else {
this.bitMapArr = bitMapArr as number[][]
}
this.maxRows = this.bitMapArr.length;
this.maxCols = this.bitMapArr[0].length;
}
moveToDirection(direction: Direction, currentPosition: number[]) {
switch (direction) {
case Direction.up:
return [currentPosition[0] - 1, currentPosition[1]]
case Direction.down:
return [currentPosition[0] + 1, currentPosition[1]]
case Direction.right:
return [currentPosition[0], currentPosition[1] + 1]
case Direction.left:
return [currentPosition[0], currentPosition[1] - 1]
}
}
reverseDirection(direction: Direction) {
switch (direction) {
case Direction.up:
return Direction.down;
case Direction.down:
return Direction.up
case Direction.right:
return Direction.left
case Direction.left:
return Direction.right
}
}
findNeighbor(parentDir: Direction, currentPosition: number[]) {
let directions: Direction[] = []
if (parentDir === Direction.root) {
directions = this.returnAvailableDirections(currentPosition);
} else {
this.holesArr[this.holesArr.length - 1].positions.push(currentPosition)
directions = this.returnAvailableDirections(currentPosition).filter((direction) => direction != parentDir);
}
directions.forEach((direction) => {
const childPosition = this.moveToDirection(direction, currentPosition)
if (this.bitMapArr[childPosition[0]][childPosition[1]] === 0 && !this.checkIfCurrentPositionExist(childPosition)) {
this.findNeighbor(this.reverseDirection(direction), childPosition)
}
});
return
}
returnAvailableDirections(currentPosition: number[]): Direction[] {
if (currentPosition[0] == 0 && currentPosition[1] == 0) {
return [Direction.right, Direction.down]
} else if (currentPosition[0] == 0 && currentPosition[1] == this.maxCols - 1) {
return [Direction.down, Direction.left]
} else if (currentPosition[0] == this.maxRows - 1 && currentPosition[1] == this.maxCols - 1) {
return [Direction.left, Direction.up]
} else if (currentPosition[0] == this.maxRows - 1 && currentPosition[1] == 0) {
return [Direction.up, Direction.right]
} else if (currentPosition[1] == this.maxCols - 1) {
return [Direction.down, Direction.left, Direction.up]
} else if (currentPosition[0] == this.maxRows - 1) {
return [Direction.left, Direction.up, Direction.right]
} else if (currentPosition[1] == 0) {
return [Direction.up, Direction.right, Direction.down]
} else if (currentPosition[0] == 0) {
return [Direction.right, Direction.down, Direction.left]
} else {
return [Direction.right, Direction.down, Direction.left, Direction.up]
}
}
checkIfCurrentPositionExist(currentPosition: number[]): boolean {
let found = false;
return this.holesArr.some((hole) => {
const foundPosition = hole.positions.find(
(position) => (position[0] == currentPosition[0] && position[1] == currentPosition[1]));
if (foundPosition) {
found = true;
}
return found;
})
}
exec() {
this.bitMapArr.forEach((row, rowIndex) => {
row.forEach((bit, colIndex) => {
if (bit === 0) {
const currentPosition = [rowIndex, colIndex];
if (!this.checkIfCurrentPositionExist(currentPosition)) {
this.holesArr.push({
holeNumber: this.holesArr.length + 1,
positions: [currentPosition]
});
this.findNeighbor(Direction.root, currentPosition);
}
}
});
});
console.log(this.holesArr.length)
this.holesArr.forEach(hole => {
console.log(hole.positions)
});
return this.holesArr.length
}
}
enum Direction {
up = 'up',
down = 'down',
right = 'right',
left = 'left',
root = 'root'
}
interface Hole {
holeNumber: number;
positions: number[][]
}
main.ts file
import {CountBitMapHoles} from './bitmap-holes'
const line = ['1010111', '1001011', '0001101', '1111001', '0101011']
function main() {
const countBitMapHoles = new CountBitMapHoles(line)
countBitMapHoles.exec()
}
main()
function BitmapHoles(strArr) {
let returnArry = [];
let indexOfZ = [];
let subarr;
for(let i=0 ; i < strArr.length; i++){
subarr = strArr[i].split("");
let index = [];
for(let y=0 ; y < subarr.length; y++){
if(subarr[y] == 0)
index.push(y);
if(y == subarr.length-1)
indexOfZ.push(index);
}
}
for(let i=0 ; i < indexOfZ.length; i++){
for(let j=0; j<indexOfZ[i].length ; j++){
if(indexOfZ[i+1] && (indexOfZ[i][j]==indexOfZ[i+1][j] || indexOfZ[i+1].indexOf(indexOfZ[i][j])))
returnArry.indexOf(strArr[i]) < 0 ? returnArry.push(strArr[i]): false;
if(Math.abs(indexOfZ[i][j]-indexOfZ[i][j+1])==1)
returnArry.indexOf(strArr[i]) < 0 ? returnArry.push(strArr[i]): false;
}
}
return returnArry.length;
}
// keep this function call here
console.log(BitmapHoles(readline()));
function findHoles(map) {
let hole = 0;
const isHole = (i, j) => map[i] && map[i][j] === 0;
for (let i = 0; i < map.length; i++) {
for (let j = 0; j < map[i].length; j++) {
if (isHole(i, j)) {
markHole(i, j);
hole++;
}
}
}
function markHole(i, j) {
if (isHole(i, j)) {
map[i][j] = 2;
markHole(i, j - 1);
markHole(i, j + 1);
markHole(i + 1, j);
markHole(i - 1, j);
}
}
return hole;
}

Resources