Merging two ordered lists ProLog - prolog

Hey so this is my code so far. I am only a begginer in prolog but i need it for school
firstElement([_|_], [Elem1|List1], [Elem2|List2]):-
Elem1 =< Elem2, merge([Elem1] , List1, [Elem2|List2]);
merge([], [Elem2], List2).
merge([Head|Tail], [Elem1|List1], [Elem2|List2]):-
Elem1 =< Elem2,!, add(Elem1,[Head|Tail],[Head|Tail1]),
merge([Head|Tail1], List1, [Elem2|List2]);
add(Elem2,[Head|Tail],[Head|Tail1]),
merge([Head|Tail1], [Elem1|List1], List2).
merge([Head|Tail], [], [Elem2|List2]):-
add(Elem2,[Head|Tail],[Head|Tail1]).
merge([Head|Tail], [Elem1|List1], []):-
add(Elem1,[Head|Tail],[Head|Tail1]).
merge([Head|Tail], [], []).
add(X,[],[X]).
add(X,[Y|Tail],[Y|Tail1]):-
add(X,Tail,Tail1).
I found out that everytime it gets out of a merge it keeps forgetting the last number so it gets back to nothing in the end.

I think you’ve gotten very mixed up here with your code. A complete solution can be had without helpers and with only a few clauses.
First let us discuss the two base cases involving empty lists:
merge(X, [], X).
merge([], X, X).
You don’t quite have these, but I see some sort of recognition that you need to handle empty lists specially in your second and third clauses, but I think you got confused and overcomplicated them. There’s really three scenarios covered by these two clauses. The case where both lists are empty is a freebie covered by both of them, but since that case would work out to merge([], [], []), it’s covered. The big idea here is that if you exhaust either list, because they were sorted, what you have left in the other list is your result. Think about it.
This leaves the interesting case, which is one where we have some items in both lists. Essentially what you want to do is select the smaller of the two, and then recur on the entire other list and the remainder of the one you selected the smaller value from. This is one clause for that:
merge([L|Ls], [R|Rs], [L|Merged]) :-
L #< R,
merge(Ls, [R|Rs], Merged).
Here’s what you should note:
The “result” has L prepended to the recursively constructed remainder.
The recursive call to merge rebuilds the entire second list, using [R|Rs].
It should be possible to build the other clause by looking at this.
As an intermediate Prolog user, I would be naturally a bit suspicious of using two clauses to do this work, because it’s going to create unnecessary choice points. As a beginner, you will be tempted to erase those choice points using cuts, which will go badly for you. A more intermediate approach would be to subsume both of the necessary clauses into one using a conditional operator:
merge([L|Ls], [R|Rs], [N|Ns]) :-
( L #< R ->
N = L, merge(Ls, [R|Rs], Ns)
; —- other case goes here
).
An expert would probably build it using if_/3 instead:
#<(X,Y,true) :- X #< Y.
#<(X,Y,false) :- X #>= Y.
merge([L|Ls], [R|Rs], [N|Ns]) :-
if_(#<(L,R),
(N = L, merge(Ls, [R|Rs], Ns)),
( -- other case here )).
Anyway, I hope this helps illustrate the situation.

Related

Prolog - remove the non unique elements

I have a predicate to check if the element is member of list and looks the following:
member(X,[X|_]).
member(X,[_|T]) :- member(X,T).
When I called: ?- member(1,[2,3,1,4])
I get: true.
And now I have to use it to write predicate which will remove all non unique elements from list of lists like the following:
remove([[a,m,t,a],[k,a,w],[i,k,b,b],[z,m,m,c]],X).
X = [[t],[w],[i,b,b],[z,c]]
How can I do that?
Using library(reif) for
SICStus|SWI:
lists_uniques(Xss, Yss) :-
maplist(tfilter(in_unique_t(Xss)), Xss, Yss).
in_unique_t(Xss, E, T) :-
tfilter(memberd_t(E), Xss, [_|Rs]),
=(Rs, [], T).
Remark that while there is no restriction how to name a predicate, a non-relational, imperative name often hides the pure relation behind. remove is a real imperative, but we only want a relation. A relation between a list of lists and a list of lists with only unique elements.
An example usage:
?- lists_uniques([[X,b],[b]], [[X],[]]).
dif(X, b).
So in this case we have left X an uninstantiated variable. Therefore, Prolog computes the most general answer possible, figuring out what X has to look like.
(Note that the answer you have accepted incorrectly fails in this case)
Going by your example and #false's comment, the actual problem seems to be something like removing elements from each sublist that occur in any other sublist. My difficulty conceptualizing this into words has led me to build what I consider a pretty messy and gross piece of code.
So first I want a little helper predicate to sort of move member/2 up to lists of sublists.
in_sublist(X, [Sublist|_]) :- member(X, Sublist).
in_sublist(X, [_|Sublists]) :- in_sublist(X, Sublists).
This is no great piece of work, and in truth I feel like it should be inlined somehow because I just can't see myself ever wanting to use this on its own.
Now, my initial solution wasn't correct and looked like this:
remove([Sub1|Subs], [Res1|Result]) :-
findall(X, (member(X, Sub1), \+ in_sublist(X, Subs)), Res1),
remove(Subs, Result).
remove([], []).
You can see the sort of theme I'm going for here though: let's use findall/3 to enumerate the elements of the sublist in here and then we can filter out the ones that occur in the other lists. This doesn't quite do the trick, the output looks like this.
?- remove([[a,m,t,a],[k,a,w],[i,k,b,b],[z,m,m,c]], R).
R = [[t], [a, w], [i, k, b, b], [z, m, m, c]].
So, it starts off looking OK with [t] but then loses the plot with [a,w] because there is not visibility into the input [a,m,t,a] when we get to the first recursive call. There are several ways we could deal with it; a clever one would probably be to form a sort of zipper, where we have the preceding elements of the list and the succeeding ones together. Another approach would be to remove the elements in this list from all the succeeding lists before the recursive call. I went for a "simpler" solution which is messier and harder to read but took less time. I would strongly recommend you investigate the other options for readability.
remove(In, Out) :- remove(In, Out, []).
remove([Sub1|Subs], [Res1|Result], Seen) :-
findall(X, (member(X, Sub1),
\+ member(X, Seen),
\+ in_sublist(X, Subs)), Res1),
append(Sub1, Seen, Seen1),
remove(Subs, Result, Seen1).
remove([], [], _).
So basically now I'm keeping a "seen" list. Right before the recursive call, I stitch together the stuff I've seen so far and the elements of this list. This is not particularly efficient, but it seems to get the job done:
?- remove([[a,m,t,a],[k,a,w],[i,k,b,b],[z,m,m,c]], R).
R = [[t], [w], [i, b, b], [z, c]].
This strikes me as a pretty nasty problem. I'm surprised how nasty it is, honestly. I'm hoping someone else can come along and find a better solution that reads better.
Another thing to investigate would be DCGs, which can be helpful for doing these kinds of list processing tasks.

Prolog no_duplicate function

I'm trying to write a simple procedure that checks if a list has any duplicates. This is what I have tried so far:
% returns true if the list has no duplicate items.
no_duplicates([X|XS]) :- member(X,XS) -> false ; no_duplicates(XS).
no_duplicates([]) :- true.
If I try no_duplicates([1,2,3,3]). It says true. Why is this? I'm probably misunderstanding Prolog here, but any help is appreciated.
To answer your questions: your solution actually fails as expected for no_duplicates([1,2,3,3]). So there is no problem.
Now take the queries:
?- A = 1, no_duplicates([A, 2]).
A = 1.
?- no_duplicates([A, 2]), A = 1.
They both mean the same, so we should expect that Prolog will produce the same answer. (To be more precise we expect the same ignoring errors and non-termination).
However, four proposed solutions differ! And the one that does not, differs for:
?- A = 2, no_duplicates([A, 2]).
false.
?- no_duplicates([A, 2]), A = 2.
Note that it is always the second query that makes troubles. To solve this problem we need a good answer for no_duplicates([A, 2]). It cannot be false, since there are some values for A to make it true. Like A = 1. Nor can it be true, since some values do not fit, like A = 2.
Another possibility would be to issue an instantiation_error in this case. Meaning: I have not enough information so I better stop than mess around with potentially incorrect information.
Ideally, we get one answer that covers all possible solutions. This answer is dif(A, 2) which means that all A that are different to 2 are solutions.
dif/2 is one of the oldest built-in predicates, already Prolog 0 did possess it. Unfortunately, later developments discarded it in Prolog I and thus Edinburgh Prolog and thus ISO Prolog.
However, current systems including SICStus, YAP, SWI all offer it. And there is a safe way to approximate dif/2 safely in ISO-Prolog
no_duplicates(Xs) :-
all_different(Xs). % the common name
all_different([]).
all_different([X|Xs]) :-
maplist(dif(X),Xs).
all_different(Xs).
See: prolog-dif
Here's yet another approach, which works because sort/2 removes duplicates:
no_duplicates(L) :-
length(L, N),
sort(L, LS),
length(LS, N).
I'd go at the problem more descriptively:
no_duplicates( [] ) . % the empty list is unique
no_duplicates( [X|Xs] ) :- % a list of length 1+ is unique
\+ member(X,Xs) , % - if its head is not found in the tail,
no_duplicates(Xs) % - and its tail is itself unique.
. %
Thinking on this, since this is a somewhat expensive operation — O(n2)? — it might be more efficient to use sort/2 and take advantage of the fact that it produces an ordered set, removing duplicates. You could say something like
no_duplicates( L ) :-
sort(L,R) , % sort the source list, removing duplicates
length(L,N) , % determine the length of the source list
length(R,N) . % check that against the result list
Or you could use msort/3 (which doesn't remove duplicates), might be a bit faster, too:
no_duplicates( L ) :-
msort(L,R), % order the list
\+ append(_,[X,X|_],R) % see if we can find two consecutive identical members
.
Duplicates in a list are same elements not at the same place in the list, so no_duplicates can be written :
no_duplicates(L) :-
\+((nth0(Id1, L, V), nth0(Id2, L, V), Id1 \= Id2)).
Jay already noted that your code is working. An alternative, slightly less verbose
no_duplicates(L) :- \+ (append(_, [X|XS], L), memberchk(X, XS)).

How to prevent Prolog from backtracking where it shouldn't

I'm trying to solve a CSP where I need to distribute cocktails over bartenders so that each bartender has at most one cocktail and all cocktails are given a bartender. I solved it by creating a list of clpfd variables,first giving them the full domain of all bartenders and then removing all bartenders that don't know how to make that cocktail.
My code works, but there is one problem: it's too slow. If I look in the profiler, remove_domain gets called 2000 times(for the input I'm giving my program), while it's Redo statistic is >100 000.
What do I need to change in one of these functions(or both) so that prolog doesn't need to backtrack?
produce_domains(_,_,[],[]) :- !.
produce_domains(Bartenders,NBartenders,[Cocktail|Cocktails],[Var|Vars]) :-
Var in 1..NBartenders,
remove_domain(Bartenders,NBartenders,Cocktail,Var),!,
produce_domains(Bartenders,NBartenders,Cocktails,Vars),!.
remove_domain([],0,_,_) :- !.
remove_domain([Bartender|Bartenders],NBartenders,Cocktail,Var) :-
(\+ member(Cocktail,Bartender) -> Var #\= NBartenders;!),!,
NNBartenders is NBartenders - 1,
remove_domain(Bartenders,NNBartenders,Cocktail,Var),!.
I have already read this related question, but I am using the latest Windows build of SWI-Prolog(5.10.5), so that shouldn't be the problem here.
You do not need so many !/0: Prolog can often tell that your predicates are deterministic.
Let me first offer the following version of your code. It uses names that are more relational, contains no !/0 and uses higher-order predicates to make the code shorter.
:- use_module(library(clpfd)).
bartenders_cocktails_variables(Bs, Cs, Vs) :-
length(Bs, LBs),
maplist(bartenders_cocktail_variable(Bs, LBs), Cs, Vs).
bartenders_cocktail_variable(Bs, N, C, V) :-
V in 1..N,
foldl(compatible_bartender(C,V), Bs, 1, _).
compatible_bartender(C, V, Cs, N0, N1) :-
( member(C, Cs) -> true
; V #\= N0
),
N1 #= N0 + 1.
Notice that I am counting upwards instead of downwards to enumerate the bartenders (which are just lists of cocktails they are able to mix), since this seems more natural. I was also able to omit a (\+)/1 by simply switching the branches of the if-then-else.
Example query, showing that the predicate is deterministic in this use case:
?- bartenders_cocktails_variables([[a,b],[a,b],[x,y]], [x,a,b], Vars).
Vars = [3, _G1098, _G1101],
_G1098 in 1..2,
_G1101 in 1..2.
We see: Cocktail x must be mixed by the third bartender etc.
I think this part of your program may not be responsible for the slow performance you are describing. Maybe other parts of your program are (unintentionally) not deterministic? Maybe try different labeling strategies or other constraints? We may be able to help you more if you post more context.

Prolog: temporary list storage

I'm new to Prolog and I'm stuck on a predicate that I'm trying to do. The aim of it is to recurse through a list of quads [X,Y,S,P] with a given P, when the quad has the same P it stores it in a temporary list. When it comes across a new P, it looks to see if the temporary list is greater than length 2, if it is then stores the temporary list in the output list, if less than 2 deletes the quad, and then starts the recursion again the new P.
Heres my code:
deleteUP(_,[],[],[]).
deleteUP(P,[[X,Y,S,P]|Rest],Temp,Output):-
!,
appends([X,Y,S,P],Temp,Temp),
deleteUP(P,[Rest],Temp,Output).
deleteUP(NextP,[[X,Y,S,P]|Rest],Temp,Output):-
NextP =\= P,
listlen(Temp,Z),
Z > 1, !,
appends(Temp,Output,Output),
deleteUP(NextP,[_|Rest],Temp,Output).
listlen([], 0).
listlen([_|T],N) :-
listlen(T,N1),
N is N1 + 1.
appends([],L,L).
appends([H|T],L,[H|Result]):-
appends(T,L,Result).
Thanks for any help!
Your problem description talks about storing, recursing and starting. That is a very imperative, procedural description. Try to focus first on what the relation should describe. Actually, I still have not understood what minimal length of 2 is about.
Consider to use the predefined append/3 and length/2 in place of your own definitions. But actually, both are not needed in your example.
You might want to use a dedicated structure q(X,Y,S,P) in place of the list [X,Y,S,P].
The goal appends([X,Y,S,P],Temp,Temp) shows that you assume that the logical variable Temp can be used like a variable in an imperative language. But this is not the case. By default SWI creates here a very odd structure called an "infinite tree". Forget this for the moment.
?- append([X,Y,S,P],Temp,Temp).
Temp = [X, Y, S, P|Temp].
There is a safe way in SWI to avoid such cases and to detect (some of) such errors automatically. Switch on the occurs check!
?- set_prolog_flag(occurs_check,error).
true.
?- append([X,Y,S,P],Temp,Temp).
sto. % ERROR: lists:append/3: Cannot unify _G392 with [_G395,_G398,_G401,_G404|_G392]: would create an infinite tree
The goal =\=/2 means arithmetical inequality, you might prefer dif/2 instead.
Avoid the ! - it is not needed in this case.
length(L, N), N > 1 is often better expressed as L = [_,_|_].
The major problem, however, is what the third and fourth argument should be. You really need to clarify that first.
Prolog variables can't be 'modified', as you are attempting calling appends: you need a fresh variables to place results. Note this code is untested...
deleteUP(_,[],[],[]).
deleteUP(P,[[X,Y,S,P]|Rest],Temp,Output):-
!,
appends([X,Y,S,P],Temp,Temp1),
deleteUP(P, Rest, Temp1,Output). % was deleteUP(P,[Rest],Temp,Output).
deleteUP(NextP,[[X,Y,S,P]|Rest],Temp,Output1):-
% NextP =\= P, should be useless given the test in clause above
listlen(Temp,Z),
Z > 1, !, % else ?
deleteUP(NextP,[_|Rest],Temp,Output),
appends(Temp,Output,Output1).

Simple Prolog delete from list

(This is NOT a coursework question. Just my own personal learning.)
I'm trying to do an exercise in Prolog to delete elements from a list. Here's my code :
deleteall([],X,[]).
deleteall([H|T],X,Result) :-
H==X,
deleteall(T,X,Result).
deleteall([H|T],X,[H|Result]) :- deleteall(T,X,Result).
When I test it, I first get a good answer (ie. with all the Xs removed.) But then the backtracking offers me all the other variants of the list with some or none of the instances of X removed.
Why should this be? Why do cases where H==X ever fall through to the last clause?
When you are using (==)/2 for comparison you would need the opposite in the third rule, i.e. (\==)/2. On the other hand, such a definition is no longer a pure relation. To see this, consider deleteall([X],Y,Zs), X = Y.
For a pure relation we need (=)/2 and dif/2. Many Prologs like SWI, YAP, B, SICStus offer dif/2.
deleteall([],X,[]).
deleteall([H|T],X,Result) :-
H=X,
deleteall(T,X,Result).
deleteall([H|T],X,[H|Result]) :-
dif(H,X),
deleteall(T,X,Result).
Look at the answers for deleteall([X,Y],Z,Xs)!
Edit (after four years):
More efficiently, but in the same pure vein, this can be written using if_/3 and (=)/3:
deleteall([], _X, []).
deleteall([E|Es], X, Ys0) :-
if_( E = X, Ys0 = Ys, Ys0 = [E|Ys] ),
deleteall(Es, X, Ys).
The last clause says that when removing X from a list, the head element may stay (independently of its value). Prolog may use this clause at any time it sees fit, independently of whether the condition in the preceding clause is true or not backtrack into this clause if another clause fails, or if you direct it to do so (e.g. by issuing ; in the top-level to get the next solution). If you add a condition that the head element may not equal X, it should work.
Edit: Removed the incorrect assertion I originally opened with.

Resources