Elasticsearch best practices - elasticsearch

1) We are fairly new to Elasticsearch. In our spring boot application, we are using Spring's Elasticsearch that is based on in-memory node client. Insert/update/deletes happen on our primary relational database (DB2) and we use Elasticsearch solely for handling searches. We have a synchronizing mechanism to keep elastic search up to date with the latest changes
2) In production, we have 4 instances of our application running. To synchronize the in-memory elastic store on all 4 servers, we have a JMS topic in place where all the DB2 updates are posted. Application has a topic listener that will consume any DB changes posted to this JMS topic and update the in-memory elastic store.
Question:
i) Is the above an ideal way to implement Elasticsearch in your application? If not, what else would you recommend?
ii) Any Elasticsearch best practices that you can point us to?
Thanks Much!

1- In Prod, choose 3 master and 4 data nodes. Always an odd number of total servers
2- Define your mappings and index in advance, dont choose auto-create option.
Should define data types
Define amount as sclaed_float with 100 precision
All numeric fields should be defined as long so query ' between', 'sort' or aggregation.
Chose carefully between keyword and text field type. Use text where it is necessary.
3- Define external version if you update the same record, again and again, to avoid updating with stale data.

Related

Elastic search API Vs Spring data Vs logstash

I am planing to use elastic search for our dashboard using spring boot based rest services. After research i see top 3 options
Option A:
Use Elastic Search Java API ( from comment looks like going to go away)
Use Elastic Search Java Rest Client
Use spring-data-elasticsearch ( planing to use es 5.6 but challenging for latest es 6 as I don't see it's supports right now)
Option B:
Or shall I use logstash approach to
Sync data between postgressql and elastic search using logstash ?
Which one among them will be long term approach to get near real time data from ES in high load scenario ??
Usecase: I need to save some data from postgresql table to elastic search for my dashboard (near real time )
Update is frequent for both tables and es
to maintain current state
Load is going to increase in couple of week
The options you listed, in essence, are: should you go with a ready to use solution (logstash) or should you implement your own.
Try logstash first to see if it works for you - it'll take less time than implementing your own solution, and you can get working solution in minutes (if it's not hundreds of tables)
If you want near-real time, then you need to figure out if it allows you to:
handle incremental updates, i.e. if its 'tracking_column' configuration will work for your data structure and it will only load updated records in each run, not the whole table.
run it at the desired frequency
and in general, satisfies your latency requirements
If you decide to go with your own solution, keep in mind that spring-data-elasticsearch is a higher level wrapper for underlying elasticsearch client. If there are latency goals, then working on the lower level (elasticsearch clients) may give you better control and more options to tune the pipeline.
Otherwise, the client choice will not matter that much as data feed features (volume/update frequency) and db/es cluster configuration.

Elasticsearch vs Cassandra vs Elasticsearch with Cassandra

I am learning NoSQL and looking at different options for one of my client's requirements. I have gone through various resources before putting up this question (a person with little knowledge in NoSQL)
I need to store data at faster rate and read data.
Fully fail-safe and easily scalable.
Able to search through data for Analytics.
I ended up with a short list of: Cassandra and Elasticsearch
What I do understand is Cassandra is a perfect NoSQL storage solution for me, as I can write data and read data using indexes. Where it fails or it could fail is on Analytics. In the future, if I want to get data from from_date to to_date, or more ways to get data for analytics, if I don't design the Data model properly or keeping long term sight, which might be quite hard in ever changing world.
While Elastic Search is best at indexing (backed by Lucene), and can search the data randomly by throwing some random text. But does it work the same for even if I want to retrieve data from_date to to_date (I expect it might be). But the real question is, is it a Search Engine, or perfect NoSQL data storage like Cassandra? If yes, why do we still need Cassandra?
If both of these are in different world, please explain that! How do we combine them to get a more effective solution?
One of our applications uses data that is stored into both Cassandra and ElasticSearch. We use Cassandra to access those records whenever we can, and have data duplicated into query tables designed to adhere to specific application-side requests. For a more liberal search than our query tables can allow, ElasticSearch performs that functionality nicely.
We have asked that same question (of ourselves)..."Why don't we just get everything from ElastsicSearch?"
The answer is that ElasticSearch was designed to be a search engine, and not a persistent data store. Sometimes ElasticSearch loses writes. Schema changes are difficult to do in ElasticSearch without blowing everything away and reloading. For that purpose, I have written jobs that are designed to keep ElasticSearch in-sync with our Cassandra cluster. There was also a fairly recent discussion on Quora about this topic, that yielded similar points.
That being said, ElasticSearch works great as a search engine. And Cassandra works great as a scalable, high-performance datastore. But querying data is different from searching for data. There are times that we need one or the other, and a combination of the two works well for our application. It may (or it may not) work well for yours.
As for analytics, I have had some success in using the Cassandra Spark connector, to serve more complex OLAP queries.
Edit 20200421
I've written a newer answer to a similar question:
ElasticSearch vs. ElasticSearch+Cassandra
Cassandra + Lucene is a great option. There are different initiatives for this issue, for example:
Stratio’s Cassandra Lucene Index - Derived from Stratio Cassandra, is a plugin for Apache Cassandra that extends its index functionality. (https://github.com/Stratio/cassandra-lucene-index)
Stratio Cassandra, it's a native integration with Apache Lucene, it is very interesting. (https://github.com/Stratio/stratio-cassandra) - THIS PROJECT HAS BEEN DISCONTINUED IN FAVOUR OF Stratio’s Cassandra Lucene Index
Tuplejump Calliope, it's like Stratio Cassandra, but it's less active. (https://github.com/tuplejump/stargate-core)
DSE Search by Datastax. It allows using Cassandra with Apache Solr, but it's a proprietary option.(http://www.datastax.com/what-we-offer/products-services/datastax-enterprise)
After working on this problem myself I have realized that NoSQL databases like casandra are good when you want to make sure you are preserving your data schema with reliable writing operation, and don't want to take advantage of indexing operations that elasticsearch offers. In case you want to preserve some indexes data then elasticsearch is good in case you are trusting your scheme and only going to do far more reads than writes.
My case was data analytics. So I preserved a lot of my Latices in elastic search since later I wanted to traverse through the data a lot to see what should be my next step. I would have used casandra if I wanted to have a lot of changes in the schema of the data in my analytic pilelines.
Also there are many nice representing tools like kibana that you can use to present your data with some good graphics. Maybe I am lazy but they are very good looking and they helped me.
Storing data in a combination of Cassandra and ElasticSearch gives you most functionality. It allows you to lookup key-value tables, and also allows you to search data in indexes.
The combination gives you a lot of flexibility, ideal for your application.
Elassandra is the combined solution of Cassandra + Elastic search , It uses Elastic search to index the data and Cassandra as the data store , i'm not sure about the performance but as per this article , its performance is good.
If your application needs search feature then , Elassandra is the best open source option. DSE search is available but its expensive.
We had developed an application where we used Elasticsearch and Cassandra.
Similar data was stored into Cassandra and indexed into Elasticsearch.
Our application's UI was having features like searches, aggregations, data export, etc.
The back-end microservices were continuously getting huge data (on Kafka topics) and storing it into Cassandra. Once the data is stored into Cassandra, the services would make sure the data is indexed into Elasticsearch.
Cassandra was acting as "Source of truth" for Elasticsearch. In the cases, where reindexing of the ES index was required, we queried Cassandra and reindexed the data into ES.
This solution helped us, as this was very easy to scale and the searches and aggregations were much faster.
Cassandra is great at retrieving data by ID. I don't know much about secondary index performance, but I doubt it's as fast as Elasticsearch. Certainly Elasticsearch wins when it comes to full text search functionality (text analysis, relevancy scoring, etc).
Cassandra wins on update performance, too. Elasticsearch supports updates, but an update is really a reindex + soft delete in an atomic operation.
Cassandra has a very nice replication model (if you need to be extra-fail-safe). Elasticsearch is OK, too, I'm not in the camp that says ES is particularly unreliable (it has issues sometimes, like all software).
Elasticsearch also has aggregations for real-time analytics. And because searches are so fast, analytics on a subset of data will be fast, too.
If your requirements are satisfied well enough by one of them (like here it seems like ES would work well), I would just use one. If you have requirements from both worlds, then you can either:
use one of them and work around the downsides. For example, you may be able to handle many updates with Elasticsearch, but with more shards and more hardware
use both and make sure they're in sync
As elasticsearch is built on Lucene index and if you want to store indexing in elasticsearch it performs best comparing to indexing in Cassandra itself for retrieving the data.
If your requirements are not related to real-time retrieval then you can use elasticsearch as NoSQL database also, there are thoughts that ElasticSearch loses writes & Schema changes are difficult, but if your volume of data is not too big. You can easily achive elasticsearch as a search engine with best indexing along with elasticsearch as aNoSQL database. There are several way that you can prevent it. I have worked on the schema changes in elasticsearch, if your data structure is consistent then it will create any issues.
Being a supporter of ElasticSearch or SOlr. I have worked on both the search engines and i experienced that both the search engines can be used fluently if you configure them correctly.
Only cons that i can think of it, if you are targetting real time result and can't comprosie milliseconds delay in your response. Then its better to take help of other NoSQL databases like cassandra or couchbase.
Cassandra with solr, work better than Cassandra with elasticSearch.

how do you update or sync with a jdbc river

A question about rivers and data syncing with a production database using elastic search:
Are rivers suited for only bulk loading data initially, or does it somehow listen or monitor for changes.
If I have a nightly import of data, is it just better to delete rivers and indexes, and re-index and recreate the rivers?
If I update or change a river, do I have to delete and re-create the index?
How do I set up a schedule with a river to fetch new data periodically. Can it store last maxid so that it can do diff queries in the sql to select into the river?
Any suggestions on a better way to keep the database and elastic search in sync - without calling individual index update functions with a PUT command?
All of the Elasticsearch rivers are different - some are provided directly by Elasticsearch, many more are developed by third parties:
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-plugins.html
Each operates differently, so to answer your questions you have to choose a specific river. For your case, since you're looking to index data from a production database, I'll assume that the JDBC river is what you would use:
https://github.com/jprante/elasticsearch-river-jdbc
This river will index data from your JDBC source, including picking up changes. It can do so on a schedule (there is detailed documentation on the schedule parameter on this page: https://github.com/jprante/elasticsearch-river-jdbc). However, this river will not pick up deletes:
https://github.com/jprante/elasticsearch-river-jdbc/issues/213
you may find this discussion useful, concerning getting around the lack of delete support with building a new river/index daily and using index aliases: ElasticSearch river JDBC MySQL not deleting records
You can just map your id in your DB to be _id with alias, this way the elastic will identify when the document was changed or not.

Use Elasticsearch as backup store

My application receives and parse thousands of small JSON snippets each about ~1Kb every hour. I want to create a backup of all incoming JSON snippets.
Is it a good idea to use Elasticsearch to backup this snippets in an index with f.ex. "number_of_replicas:" 4? Never read that anyone has used Elasticsearch for this.
Is my data safe in Elasticsearch when I use a cluster of servers and replicas or should I better use another storage for this use case?
(Writing it to the local file system isn't safe, as our hard discs crashes often. First I have thought about using HDFS, but this isn't made for small files.)
First you need to find difference between replica and backups.
replica is more than one copy of data at run time.It increases high availability and failover support,it wont support accidental delete of data.
Backup is copy of whole data at backup time.it will be used to restore when system crashed.
Elastic search for back up.. its not good idea.. Elastic search is a search engine not DB.If you have not configured ES cluster carefully,then you will end up with loss of data.
So in my opinion ,
To store json object, we got lot of dbs.. For example mongodb is a nosql db.We can easily configure it with more replicas.It means high availability of data and failover support.As you asked its also opensource and more reliable.
for more info about mongodb refer https://www.mongodb.org/
Update:
In elasticsearch if you create index with more shards it'll be distributed among nodes.If a node fails then the data will be lost.But in mongoDB more node means ,each mongodb node contains its own copy of data.If a mongodb fails then we can retrieve out data from replica mongodbs. We need to be more conscious about replica setup and shard allocation in Elasticsearch. But in mongoDB it's easier and good architecture too.
Note: I didn't say storing data in elasticsearch is not safe.I mean, comparing to mongodb,it's difficult to configure replica and maintain in elasticsearch.
Hope it helps..!

Couchbase XDCR Elasticsearch speed and deletions

We are thinking about implementing some sort of message cache which would hold onto the messages we send to our search index so we could persist while the index was down for an extended period of time (for example a complete re-index) then 're-apply' the messages. These messages are creations or updates of the documents we index. If space were cheap enough, with something as scalable as Couchbase we may even be able to hold all messages but I haven't done any sort of estimations of message size and quantity yet. Anyway, I suggested Couchbase + XDCR + Elasticsearch for this task as most of the work would be done automatically however there are 4 questions I have remaining:
If we were implementing this as a cache, I would not want Elasticsearch to remove any documents that were not in Couchbase, is this possible to do (perhaps it is even the default behaviour)?
Is it possible to apply some sort of versioning so that a document in the index is not over-written by an older version coming from Couchbase?
If I were to add a new field to the index, I might need to re-index from the actual document datasource then re-apply all the messages stored in Couchbase. I may have 100 million documents in Elasticsearch and say 500,000 documents in Couchbase that I want to re-apply to Elasticsearch? What would the speed be like.
Would I be able to apply any sort of logic in-between Couchbase and Elasticsearch?
Update:
So we store documents in an RDBMS as we need instant access to inserted docs plus some other stuff. We send limited versions of the document to a search engine via messages. If we want to add a field to the index we need to re-index the system from the RDBMS somehow. If we have this Couchbase message cache we could add the field to messages first, then switch off the indexing of old messages and re-index from the RDBMS. We could then switch back on the indexing of the messages and the entire 'queue' of messages would be indexed without having lost anything.
This system (if it worked) would remove the need for an MQ server, a message listener and make sure no documents were missing from the index.
The versioning would be necessary as we don't want to apply an 'update' to the index which actually contains a more recent document (not sure if this would ever happen now I think about it).
I appreciate it's probably not too great a job to implement points 1 and 4 by changing the Elasticsearch plugin code but I would like to confirm that the idea is reasonable first!
The Couchbase-Elasticsearch integration today should be seen as an indexing engine for Couchbase. This means the index is "managed/controlled" by the data that are in Couchbase.
The XDCR is used to sent "all the events" to Elasticsearch. This means the index is update/delete every time a document (stored in Couchbase) is created, modified or deleted.
So "all the documents" stored into a Couchbase bucket are indexed into Elasticsearch.
Let's answer your questions one by one, based on the current implementation of the Couchbase-Elasticsearch.
When a document is removed from Couchbase, the Elasticsearch index is update (entry removed).
Not sure to understand the question. How an "older" version could come from Couchbase? Anyway once again everytime the document that is stored into Couchbase is modified, the index in Elasticsearch is updated.
Not sure to understand where you want to add a new field? If this is into a document that is stored into Couchbase, when the document will be sent to Elasticsearch the index will be updated. But based on what I have said before : all document "stored" into Couchbase will be present in Elasticsearch index.
Not with the plugin as it is today, but as you know it is an open source project so you can either add some logic to it or even contribute your ideas to the project ( https://github.com/couchbaselabs/elasticsearch-transport-couchbase )
So let me ask you more questions:
- how do you inser the document into you application? (and where Couchbase? Elasticsearch?)
- what are the types of documents?
- what do you want to cache into Couchbase?

Resources