I wrote an algorithm to get the biggest difference between two elements in an std::vector where the bigger of the two values must be at a higher index than the lower value.
unsigned short int min = input.front();
unsigned short res = 0;
for (size_t i = 1; i < input.size(); ++i)
{
if (input[i] <= min)
{
min = input[i];
continue;
}
int dif = input[i] - min;
res = dif > res ? dif : res;
}
return res != 0 ? res : -1;
Is it possible to optimize this algorithm using SIMD? I'm new to SIMD and so far I've been unsuccessful with this one
You didn't specify any particular architecture so I'll keep this mostly architecture neutral with an algorithm described in English. But it requires a SIMD ISA that can efficiently branch on SIMD compare results to check a usually-true condition, like x86 but not really ARM NEON.
This won't work well for NEON because it doesn't have a movemask equivalent, and SIMD -> integer causes stalls on many ARM microarchitectures.
The normal case while looping over the array is that an element, or a whole SIMD vector of elements, is not a new min, and not diff candidate. We can quickly fly through those elements, only slowing down to get the details right when there's a new min. This is like a SIMD strlen or SIMD memcmp, except instead of stopping at the first search hit, we just go scalar for one block and then resume.
For each vector v[0..7] of the input array (assuming 8 int16_t elements per vector (16 bytes), but that's arbitrary):
SIMD compare vmin > v[0..7], and check for any elements being true. (e.g. x86 _mm_cmpgt_epi16 / if(_mm_movemask_epi8(cmp) != 0)) If there's a new min somewhere, we have a special case: the old min applies to some elements, but the new min applies to others. And it's possible there are multiple new-min updates within the vector, and new-diff candidates at any of those points.
So handle this vector with scalar code (updating a scalar diff which doesn't need to be in sync with the vector diffmax because we don't need position).
Broadcast the final min to vmin when you're done. Or do a SIMD horizontal min so out-of-order execution of later SIMD iterations can get started without waiting for a vmin from scalar. Should work well if the scalar code is branchless, so there are no mispredicts in the scalar code that cause later vector work to be thrown out.
As an alternative, a SIMD prefix-sum type of thing (actually prefix-min) could produce a vmin where every element is the min up to that point. (parallel prefix (cumulative) sum with SSE). You could always do this to avoid any branching, but if new-min candidates are rare then it's expensive. Still, it could be viable on ARM NEON where branching is hard.
If there's no new min, SIMD packed max diffmax[0..7] = max(diffmax[0..7], v[0..7]-vmin). (Use saturating subtraction so you don't get wrap-around to a large unsigned difference, if you're using unsigned max to handle the full range.)
At the end of the loop, do a SIMD horizontal max of the diffmax vector. Notice that since we don't need the position of the max-difference, we don't need to update all elements inside the loop when one finds a new candidate. We don't even need to keep the scalar special-case diffmax and SIMD vdiffmax in sync with each other, just check at the end to take the max of the scalar and SIMD max diffs.
SIMD min/max is basically the same as a horizontal sum, except you use packed-max instead of packed-add. For x86, see Fastest way to do horizontal float vector sum on x86.
Or on x86 with SSE4.1 for 16-bit integer elements, phminposuw / _mm_minpos_epu16 can be used for min or max, signed or unsigned, with appropriate tweaks to the input. max = -min(-diffmax). You can treat diffmax as unsigned because it's known to be non-negative, but Horizontal minimum and maximum using SSE shows how to flip the sign bit to range-shift signed to unsigned and back.
We probably get a branch mispredict every time we find a new min candidate, or else we're finding new min candidates too often for this to be efficient.
If new min candidates are expected frequently, using shorter vectors could be good. Or on discovering there's a new-min in a current vector, then use narrower vectors to only go scalar over fewer elements. On x86, you might use bsf (bit-scan forward) to find which element had the first new-min. That gives your scalar code a data dependency on the vector compare-mask, but if the branch to it was mispredicted then the compare-mask will be ready. Otherwise if branch-prediction can somehow find a pattern in which vectors need the scalar fallback, prediction+speculative execution will break that data dependency.
Unfinished / broken (by me) example adapted from #harold's deleted answer of a fully branchless version that constructs a vector of min-up-to-that-element on the fly, for x86 SSE2.
(#harold wrote it with suffix-max instead of min, which is I think why he deleted it. I partially converted it from max to min.)
A branchless intrinsics version for x86 could look something like this. But branchy is probably better unless you expect some kind of slope or trend that makes new min values frequent.
// BROKEN, see FIXME comments.
// converted from #harold's suffix-max version
int broken_unfinished_maxDiffSSE(const std::vector<uint16_t> &input) {
const uint16_t *ptr = input.data();
// construct suffix-min
// find max-diff at the same time
__m128i min = _mm_set_epi32(-1);
__m128i maxdiff = _mm_setzero_si128();
size_t i = input.size();
for (; i >= 8; i -= 8) {
__m128i data = _mm_loadu_si128((const __m128i*)(ptr + i - 8));
// FIXME: need to shift in 0xFFFF, not 0, for min.
// or keep the old data, maybe with _mm_alignr_epi8
__m128i d = data;
// link with suffix
d = _mm_min_epu16(d, _mm_slli_si128(max, 14));
// do suffix-min within block.
d = _mm_min_epu16(d, _mm_srli_si128(d, 2));
d = _mm_min_epu16(d, _mm_shuffle_epi32(d, 0xFA));
d = _mm_min_epu16(d, _mm_shuffle_epi32(d, 0xEE));
max = d;
// update max-diff
__m128i diff = _mm_subs_epu16(data, min); // with saturation to 0
maxdiff = _mm_max_epu16(maxdiff, diff);
}
// horizontal max
maxdiff = _mm_max_epu16(maxdiff, _mm_srli_si128(maxdiff, 2));
maxdiff = _mm_max_epu16(maxdiff, _mm_shuffle_epi32(maxdiff, 0xFA));
maxdiff = _mm_max_epu16(maxdiff, _mm_shuffle_epi32(maxdiff, 0xEE));
int res = _mm_cvtsi128_si32(maxdiff) & 0xFFFF;
unsigned scalarmin = _mm_extract_epi16(min, 7); // last element of last vector
for (; i != 0; i--) {
scalarmin = std::min(scalarmin, ptr[i - 1]);
res = std::max(res, ptr[i - 1] - scalarmin);
}
return res != 0 ? res : -1;
}
We could replace the scalar cleanup with a final unaligned vector, if we handle the overlap between the last full vector min.
Related
Are the traditional Fletcher/Adler checksum algorithms optimal?
I am not referring to the common optimizations applied to these
algorithms. For example, the controlling of loop iterations to
avoid sum overflows then truncating outside of the main loop.
I am referring to the design itself. I understand the second sum
(sum2) was introduced to make the algorithm position-dependent but
it is truly sub-optimal? Sum2 is just a modification of sum1 (the
sum of the previous sum1 value added to the current sum1 value).
If we take the 16-bit version as our example, sum1 is a 8-bit
product of the input data, while sum2 is a product of sum1, so
therefore the final 16-bit checksum is in fact an 8-bit product
of the data appended to 16-bits to catch out-of-sequence input.
This means our final checksum, an 8-bit sum of our input data,
is a value of only 256 possible values. As we are passing on
a 16-bit value with our data we could have a checksum value that
is one of 65536 possible values.
It occurred to me that if we had a means of ensuring a position-
dependent check without sacrificing any bits of the checksum we
would have an exponentially better validation.
As I understand it, sum2 was introduced solely to identify out-
of-sequence transmission, and so can be discarded if we find an
alternative to producing a position-dependent checksum. And as
it turns out, we do have an alternative and it comes cheap.
It is cheap because it does not add extra coding to the process
compared to current 'sum2' designs - it is the index position
in the sequence that when hashed with each corresponding byte
ensures a position-dependent check.
One final note - the design below is free of overflow checks,
lossless reduction, and possible loop optimizations, just for
clarity, as this is
about a new out-of-sequence error check technique, not about
implementation details. Fletch64 is not demonstrated below as
it may require a more complicated implementation but the
byte/index hash applies the same.
Revision - because a checksum algorithm can process a large data
count the index position check value could itself cause premature
overflow and require a higher number of reduction operations with
lower inner loop count. The fix was to truncate the index position
check to 8 bits. Now the checksum can process a much greater data
count in the inner loop before overflow.
The only down-side to this change is if a contiguous string of the
data of exactly 256 byte is displaced any multiple of 256 positions
from its original position the error would go undetected.
uint8_t Fletch8( uint8_t *data, int count )
{
uint32_t sum = 0;
int index;
for ( index = 0; index < count; ++index )
sum = sum + ( data[index] xor index & ffh );
return sum & ffh;
}
uint16_t Fletch16( uint8_t *data, int count )
{
uint32_t sum = 0;
int index;
for ( index = 0; index < count; ++index )
sum = sum + ( data[index] xor index & ffh );
return sum & ffffh;
}
uint32_t Fletch32( uint8_t *data, int count )
{
uint64_t sum = 0;
int index;
for ( index = 0; index < count; ++index )
sum = sum + ( data[index] xor index & ffh );
return sum & ffffffffh;
}
So, I'm trying to implement selection sort in Cuda, but so far I haven't been as successful.
__device__ void selection_sort( int *data, int left, int right ){
for( int i = left ; i <= right ; ++i ){
int min_val = data[i];
int min_idx = i;
// Find the smallest value in the range [left, right].
for( int j = i+1 ; j <= right ; ++j ){
int val_j = data[j];
if( val_j < min_val ){
min_idx = j;
min_val = val_j;
}
}
// Swap the values.
if( i != min_idx ){
data[min_idx] = data[i];
data[i] = min_val;
}
}
}
My main attempt here is to find the minimum and parallelize the solution. Now, I realize the code looks very C++ 'ish but I'm nowhere qualified as skilled in Cuda.
Is there a way to parallelize the solution? Are there any more additions to be made?
Selection sort algorithm for N numbers can be roughly described as:
for i from N-1 down to 0
find the maximum element among data[0] ~ data[i]
swap that maximum element with data[i] within the data array
The first part (finding the maximum element) falls into a widely known and well documented class of problems called reduction. However, to perform the second part (swapping), you must track the index of the maximum element while comparing the values, and it is not so natural to do that while performing reduction. This is one of the reasons why selection sort do not port well to parallel architectures.
Also, you can see that the problem size diminishes by one for each loop, and this is another aspect of the selection sort algorithm that does not map well to parallel architectures. In case of CUDA, 32 threads form a warp, which execute at the same time. Although you can tell arbitrary number of threads to run within a warp, it is generally not recommended to do so because it is a loss of computing power.
I've tried to build a CUDA version of selection sort myself, but I stopped doing it because it seems there are better algorithms well suited for CUDA. But I'll just show you what I've done so far to illustrate why selection sort is not good for CUDA.
Firstly, start from a small and simple problem: sorting 32 elements. Since 32 threads form a warp, you can use shuffle instructions to find maximum value. (Full code)
// Finds the maximum element within a warp and gives the maximum element to
// thread with lane id 0. Note that other elements do not get lost but their
// positions are shuffled.
__inline__ __device__ int warpMax(int data, unsigned int threadId)
{
for (int mask = 16; mask > 0; mask /= 2) {
int dual_data = __shfl_xor(data, mask, 32);
if (threadId & mask)
data = min(data, dual_data);
else
data = max(data, dual_data);
}
return data;
}
__global__ void selection32(int* d_data, int* d_data_sorted)
{
unsigned int threadId = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int laneId = threadIdx.x % 32;
int n = N;
while(n-- > 0) {
// get the maximum element among d_data and put it in d_data_sorted[n]
int data = d_data[threadId];
data = warpMax(data, threadId);
d_data[threadId] = data;
// now maximum element is in d_data[0]
if (laneId == 0) {
d_data_sorted[n] = d_data[0];
d_data[0] = INT_MIN; // this element is ignored from now on
}
}
}
int main()
{
// ... build data and trasfer to d_data ...
selection32<<<1, 32>>>(d_data, d_data_sorted);
// ... get the sorted array stored at d_data_sorted ...
}
(Some may argue that this is not exactly a selection sort since 1) the array elements of the unsorted area keep shuffling, and 2) it is not an in-place sort. Please note that I'm just trying to show that selection sort does not fit in for CUDA. Also, note that warpMax has highly divergent branches, making it less optimal for CUDA.)
The case with only 1 warp of elements may look parallel-ish, but the thing gets worse when the problem size increases to multiple warps. Let's see the case for 1024 elements. (I've chosen the number 1024 becuase it is the maximum number limit of threads in a block.) Now there are 32 warps, and after calling warpMax for each warp, we must compare the maximum elements of each warp to get the maximum element among the 1024 elements. This problem of comparing 32 warp-maximum-values cannot be done with warpMax because we need to track in which warp the maximum value came from to swap the maximum value with the last element in the data array. One way I can think of for doing this is using one single thread to compare warp-maximum-values. This is not a good implemenation for CUDA becuase other 1023 threads in the block become idle.
Furthermore, if the problem size grows larger than a block can cover, we need to compare the maximum values of each block, implying that we will have to launch separate kernels since we need to synchronize between blocks. And it is redundant to say that we need to keep track of in which block the maximum value came from. All of these just tells that implementing selection sort for CUDA is not a good idea.
I am working on a Cuda kernel which performs vector dot product (A x B). I assumed that the length of each vector is multiple of 32 (32,64, ...) and defined the block size to be equal to the length of the array. Each thread in the block multiplies one element of A to the corresponding element of B (thread i ==>psum = A[i]xB[i]). After multiplication, I used the following functions which used warp shuffling technique to perform reduction and calculate the sum all multiplications.
__inline__ __device__
float warpReduceSum(float val) {
int warpSize =32;
for (int offset = warpSize/2; offset > 0; offset /= 2)
val += __shfl_down(val, offset);
return val;
}
__inline__ __device__
float blockReduceSum(float val) {
static __shared__ int shared[32]; // Shared mem for 32 partial sums
int lane = threadIdx.x % warpSize;
int wid = threadIdx.x / warpSize;
val = warpReduceSum(val); // Each warp performs partial reduction
if (lane==0)
shared[wid]=val; // Write reduced value to shared memory
__syncthreads(); // Wait for all partial reductions
//read from shared memory only if that warp existed
val = (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : 0;
if (wid==0)
val = warpReduceSum(val); // Final reduce within first warp
return val;
}
I simply call blockReduceSum(psum) which psum is the multiplication of two elements by a thread.
This approach doesn't work when the length of the array is not multiple of 32, so my question is, can we change this code so that it also works for any length? or is it impossible because if the length of the array is not multiple of 32, some warps have elements belonging more than one array?
First of all, depending on the GPU you are using, performing dot product with just 1 block will probably not be very efficient (as long as you are not batching several dot products in 1 kernel, each done by a single block).
To answer your question: you can reuse the code you have written by just calling your kernel with the number of threads being the closest multiple of 32 higher than N (length of the array) and introducing if statement before calling to blockReduceSum that would like this:
__global__ void kernel(float * A, float * B, int N) {
float psum = 0;
if(threadIdx.x < N) //threadIDx.x because your are using single block, you will need to change it to more general id once you move to multiple blocks
psum = A[threadIdx.x] * B[threadIdx.x];
blockReduceSum(psum);
//The rest of computation
}
That way, threads that do not have array element associated with them, but that need to be there due to use of __shfl, will contribute 0 to the sum.
I'm a learning Cuda student, and I would like to optimize the execution time of my kernel function. As a result, I realized a short program computing the difference between two pictures. So I compared the execution time between a classic CPU execution in C, and a GPU execution in Cuda C.
Here you can find the code I'm talking about:
int *imgresult_data = (int *) malloc(width*height*sizeof(int));
int size = width*height;
switch(computing_type)
{
case GPU:
HANDLE_ERROR(cudaMalloc((void**)&dev_data1, size*sizeof(unsigned char)));
HANDLE_ERROR(cudaMalloc((void**)&dev_data2, size*sizeof(unsigned char)));
HANDLE_ERROR(cudaMalloc((void**)&dev_data_res, size*sizeof(int)));
HANDLE_ERROR(cudaMemcpy(dev_data1, img1_data, size*sizeof(unsigned char), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(dev_data2, img2_data, size*sizeof(unsigned char), cudaMemcpyHostToDevice));
HANDLE_ERROR(cudaMemcpy(dev_data_res, imgresult_data, size*sizeof(int), cudaMemcpyHostToDevice));
float time;
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate(&start) );
HANDLE_ERROR( cudaEventCreate(&stop) );
HANDLE_ERROR( cudaEventRecord(start, 0) );
for(int m = 0; m < nb_loops ; m++)
{
diff<<<height, width>>>(dev_data1, dev_data2, dev_data_res);
}
HANDLE_ERROR( cudaEventRecord(stop, 0) );
HANDLE_ERROR( cudaEventSynchronize(stop) );
HANDLE_ERROR( cudaEventElapsedTime(&time, start, stop) );
HANDLE_ERROR(cudaMemcpy(imgresult_data, dev_data_res, size*sizeof(int), cudaMemcpyDeviceToHost));
printf("Time to generate: %4.4f ms \n", time/nb_loops);
break;
case CPU:
clock_t begin = clock(), diff;
for (int z=0; z<nb_loops; z++)
{
// Apply the difference between 2 images
for (int i = 0; i < height; i++)
{
tmp = i*imgresult_pitch;
for (int j = 0; j < width; j++)
{
imgresult_data[j + tmp] = (int) img2_data[j + tmp] - (int) img1_data[j + tmp];
}
}
}
diff = clock() - begin;
float msec = diff*1000/CLOCKS_PER_SEC;
msec = msec/nb_loops;
printf("Time taken %4.4f milliseconds", msec);
break;
}
And here is my kernel function:
__global__ void diff(unsigned char *data1 ,unsigned char *data2, int *data_res)
{
int row = blockIdx.x;
int col = threadIdx.x;
int v = col + row*blockDim.x;
if (row < MAX_H && col < MAX_W)
{
data_res[v] = (int) data2[v] - (int) data1[v];
}
}
I obtained these execution time for each one
CPU: 1,3210ms
GPU: 0,3229ms
I wonder why GPU result is not as lower as it should be. I am a beginner in Cuda so please be comprehensive if there are some classic errors.
EDIT1:
Thank you for your feedback. I tried to delete the 'if' condition from the kernel but it didn't change deeply my program execution time.
However, after having install Cuda profiler, it told me that my threads weren't running concurrently. I don't understand why I have this kind of message, but it seems true because I only have a 5 or 6 times faster application with GPU than with CPU. This ratio should be greater, because each thread is supposed to process one pixel concurrently to all the other ones. If you have an idea of what I am doing wrong, it would be hepful...
Flow.
Here are two things you could do which may improve the performance of your diff kernel:
1. Let each thread do more work
In your kernel, each thread handles just a single element; but having a thread do anything already has a bunch of overhead, at the block and the thread level, including obtaining the parameters, checking the condition and doing address arithmetic. Now, you could say "Oh, but the reads and writes take much more time then that; this overhead is negligible" - but you would be ignoring the fact, that the latency of these reads and writes is hidden by the presence of many other warps which may be scheduled to do their work.
So, let each thread process more than a single element. Say, 4, as each thread can easily read 4 bytes at once into a register. Or even 8 or 16; experiment with it. Of course you'll need to adjust your grid and block parameters accordingly.
2. "Restrict" your pointers
__restrict is not part of C++, but it is supported in CUDA. It tells the compiler that accesses through different pointers passed to the function never overlap. See:
What does the restrict keyword mean in C++?
Realistic usage of the C99 'restrict' keyword?
Using it allows the CUDA compiler to apply additional optimizations, e.g. loading or storing data via non-coherent cache. Indeed, this happens with your kernel although I haven't measured the effects.
3. Consider using a "SIMD" instruction
CUDA offers this intrinsic:
__device__ unsigned int __vsubss4 ( unsigned int a, unsigned int b )
Which subtracts each signed byte value in a from its corresponding one in b. If you can "live" with the result, rather than expecting a larger int variable, that could save you some of work - and go very well with increasing the number of elements per thread. In fact, it might let you increase it even further to get to the optimum.
I don't think you are measuring times correctly, memory copy is a time consuming step in GPU that you should take into account when measuring your time.
I see some details that you can test:
I suppose you are using MAX_H and MAX_H as constants, you may consider doing so using cudaMemcpyToSymbol().
Remember to sync your threads using __syncthreads(), so you don't get issues between each loop iteration.
CUDA works with warps, so block and number of threads per block work better as multiples of 8, but not larger than 512 threads per block unless your hardware supports it. Here is an example using 128 threads per block: <<<(cols*rows+127)/128,128>>>.
Remember as well to free your allocated memory in GPU and destroying your time events created.
In your kernel function you can have a single variable int v = threadIdx.x + blockIdx.x * blockDim.x .
Have you tested, beside the execution time, that your result is correct? I think you should use cudaMallocPitch() and cudaMemcpy2D() while working with arrays due to padding.
Probably there are other issues with the code, but here's what I see. The following lines in __global__ void diff are considered not optimal:
if (row < MAX_H && col < MAX_W)
{
data_res[v] = (int) data2[v] - (int) data1[v];
}
Conditional operators inside a kernel result in warp divergence. It means that if and else parts inside a warp are executed in sequence, not in parallel. Also, as you might have realized, if evaluates to false only at borders. To avoid the divergence and needless computation, split your image in two parts:
Central part where row < MAX_H && col < MAX_W is always true. Create an additional kernel for this area. if is unnecessary here.
Border areas that will use your diff kernel.
Obviously you'll have modify your code that calls the kernels.
And on a separate note:
GPU has throughput-oriented architecture, but not latency-oriented as CPU. It means CPU may be faster then CUDA when it comes to processing small amounts of data. Have you tried using large data sets?
CUDA Profiler is a very handy tool that will tell you're not optimal in the code.
Here's the sample C code that I am trying to accelerate using SSE, the two arrays are 3072 element long with doubles, may drop it down to float if i don't need the precision of doubles.
double sum = 0.0;
for(k = 0; k < 3072; k++) {
sum += fabs(sima[k] - simb[k]);
}
double fp = (1.0 - (sum / (255.0 * 1024.0 * 3.0)));
Anyway my current problem is how to do the fabs step in a SSE register for doubles or float so that I can keep the whole calculation in the SSE registers so that it remains fast and I can parallelize all of the steps by partly unrolling this loop.
Here's some resources I've found fabs() asm or possibly this flipping the sign - SO however the weakness of the second one would need a conditional check.
I suggest using bitwise and with a mask. Positive and negative values have the same representation, only the most significant bit differs, it is 0 for positive values and 1 for negative values, see double precision number format. You can use one of these:
inline __m128 abs_ps(__m128 x) {
static const __m128 sign_mask = _mm_set1_ps(-0.f); // -0.f = 1 << 31
return _mm_andnot_ps(sign_mask, x);
}
inline __m128d abs_pd(__m128d x) {
static const __m128d sign_mask = _mm_set1_pd(-0.); // -0. = 1 << 63
return _mm_andnot_pd(sign_mask, x); // !sign_mask & x
}
Also, it might be a good idea to unroll the loop to break the loop-carried dependency chain. Since this is a sum of nonnegative values, the order of summation is not important:
double norm(const double* sima, const double* simb) {
__m128d* sima_pd = (__m128d*) sima;
__m128d* simb_pd = (__m128d*) simb;
__m128d sum1 = _mm_setzero_pd();
__m128d sum2 = _mm_setzero_pd();
for(int k = 0; k < 3072/2; k+=2) {
sum1 += abs_pd(_mm_sub_pd(sima_pd[k], simb_pd[k]));
sum2 += abs_pd(_mm_sub_pd(sima_pd[k+1], simb_pd[k+1]));
}
__m128d sum = _mm_add_pd(sum1, sum2);
__m128d hsum = _mm_hadd_pd(sum, sum);
return *(double*)&hsum;
}
By unrolling and breaking the dependency (sum1 and sum2 are now independent), you let the processor execute the additions our of order. Since the instruction is pipelined on a modern CPU, the CPU can start working on a new addition before the previous one is finished. Also, bitwise operations are executed on a separate execution unit, the CPU can actually perform it in the same cycle as addition/subtraction. I suggest Agner Fog's optimization manuals.
Finally, I don't recommend using openMP. The loop is too small and the overhead of distribution the job among multiple threads might be bigger than any potential benefit.
The maximum of -x and x should be abs(x). Here it is in code:
x = _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), x), x)
Probably the easiest way is as follows:
__m128d vsum = _mm_set1_pd(0.0); // init partial sums
for (k = 0; k < 3072; k += 2)
{
__m128d va = _mm_load_pd(&sima[k]); // load 2 doubles from sima, simb
__m128d vb = _mm_load_pd(&simb[k]);
__m128d vdiff = _mm_sub_pd(va, vb); // calc diff = sima - simb
__m128d vnegdiff = mm_sub_pd(_mm_set1_pd(0.0), vdiff); // calc neg diff = 0.0 - diff
__m128d vabsdiff = _mm_max_pd(vdiff, vnegdiff); // calc abs diff = max(diff, - diff)
vsum = _mm_add_pd(vsum, vabsdiff); // accumulate two partial sums
}
Note that this may not be any faster than scalar code on modern x86 CPUs, which typically have two FPUs anyway. However if you can drop down to single precision then you may well get a 2x throughput improvement.
Note also that you will need to combine the two partial sums in vsum into a scalar value after the loop, but this is fairly trivial to do and is not performance-critical.