Javascript Function syntax in plain English - syntax

I'm a part-time English teacher and I want to teach students basic programming so I try to rewrite syntax into plain English for them to understand more easily.
So I rewrite Javascript:
function functionName(a, b, c) {
// actual function
return a + b + c
};
functionName(1,2,3);
as plain English:
formula formulaName(input1, input2, input3) {
// actual formula
run input1 + input2 + input3
};
// without the formula keyword it means execute
// with the formula keyword it means define:
formulaName(1,2,3);
// formula that assigns 1,2,3 as input1, input2, input3, then adds them to get the output when executed
Is my english translation correct?

I'd reckon to call it function instead of formula. A function can do more things than a formula itself. A formula is something applied on one or more expressions whereas a function can contain more than one formula, even an output of a formula can be used as an input for another formula within the same function. Also, the keyword execute make more sense than run. You can also use the keyword statement to refer each expression. There is nothing wrong as long as syntactical pseudo code is correct.

Related

Filter an collection of tuples

I'm playing with iterables and comprehension in Julia and tried to code simple problem: find all pairs of numbers less then 10 whose product is less then 10. This was my first try:
solution = filter((a,b)->a*b<10, product(1:10, 1:10))
collect(solution)
but I got error "wrong number of arguments". This is kind of expected because anonymous function inside filter expects two arguments but it gets one tuple.
I know I can do
solution = filter(p->p[1]*p[2]<10, product(1:10, 1:10))
but it doesn't look nice as the one above. Is there a way I can tell that (a,b) is argument of type tuple and use something similar to syntax in first example?
I don't think there's a way to do exactly as you'd like, but here are some alternatives you could consider for the anonymous function:
x->let (a,b)=x; a*b<10 end
x->((a,b)=x; a*b<10)
These can of course be made into macros if you like:
macro tup(ex)
#assert ex.head == :(->)
#assert ex.args[1].head == :tuple
arg = gensym()
quote
$arg -> ( $(ex.args[1]) = $arg; $(ex.args[2]) )
end
end
Then #tup (a, b) -> a * b < 10 will do as you like.
Metaprogramming in Julia is pretty useful and common for situations where you are doing something over and over and would like specialized syntax for it. But I would avoid this kind of metaprogramming if this were a one-off thing, because adding new syntax means learning new syntax and makes code harder to read.

Pass parameters between method name

I was wondering if you know of any programming language in which we can pass parameters inside method name. I'm guessing this could improve the code readability. I.e.
Lets say I want to multiply to integers in a method. Normally my method declaration would be something like:
function multiply(int a, int b){
return a*b;
}
However, it may be nice to be able to define it this way also:
function multiply (int a) times (int b){
return a*b;
}
This way, we could make a more explicit call in the code by calling:
var c = multiply(4)times(2);
This could have a greater impact on more complicated code and programming syntax.
Do you know if something like this exists?
Of course, there is Smalltalk which is really expressive with its keyword messages...
n := collection size // 2.
head := collection copyFrom: 1 to: n.
Other than that, you will find that in ADA or Python, and probably some others you can prefix each argument with a key (which should match the function parameter names)...

Compound Expressions in a Function in Mathematica

I wanted to calculate the power sum S_p(x) = 1^p + 2^p + 3^p + ... + x^p using the code
powersum[x_,p_]:=sum=0;For[i=1,i<x,i++,sum=sum+i^p];sum
but it seems to output 0 every time. Why does it do that?
As written, Mathematica is parsing your expression like this:
powersum[x_,p_]:=sum=0; (*Definition ended here*)
For[i=1,i<x,i++,sum=sum+i^p];
sum
You need to use to wrap your expression in parenthesis to make them all part of the function definition.
powersum[x_,p_]:=(sum=0;For[i=1,i<x,i++,sum=sum+i^p];sum)
Often it is preferable to use Module[]:
powersum[x_,p_]:=Module[{sum},sum=0;For[i=1,i<x,i++,sum=sum+i^p];sum]
or
powersum[x_,p_]:=Module[{sum=0},For[i=1,i<x,i++,sum=sum+i^p];sum]
this is essentially the same as wrapping in () except sum is protected in a local context.
of course for this example you could as well use :
powersum[x_,p_]:=Sum[i^p,{i,1,x-1}]
or
powersum[x_, p_] := Range[x - 1]^p // Total

How do I make a function use the altered version of a list in Mathematica?

I want to make a list with its elements representing the logic map given by
x_{n+1} = a*x_n(1-x_n)
I tried the following code (which adds stuff manually instead of a For loop):
x0 = Input["Enter x0"]
a = Input["a"]
M = {x0}
L[n_] := If[n < 1, x0, a*M[[n]]*(1 - M[[n]])]
Print[L[1]]
Append[M, L[1]]
Print[M]
Append[M, L[2]]
Print[M]
The output is as follows:
0.3
2
{0.3}
0.42
{0.3,0.42}
{0.3}
Part::partw: Part 2 of {0.3`} does not exist. >>
Part::partw: Part 2 of {0.3`} does not exist. >>
{0.3, 2 (1 - {0.3}[[2]]) {0.3}[[2]]}
{0.3}
It seems that, when the function definition is being called in Append[M,L[2]], L[2] is calling M[[2]] in the older definition of M, which clearly does not exist.
How can I make L use the newer, bigger version of M?
After doing this I could use a For loop to generate the entire list up to a certain index.
P.S. I apologise for the poor formatting but I could find out how to make Latex code work here.
Other minor question: What are the allowed names for functions and lists? Are underscores allowed in names?
It looks to me as if you are trying to compute the result of
FixedPointList[a*#*(1-#)&, x0]
Note:
Building lists element-by-element, whether you use a loop or some other construct, is almost always a bad idea in Mathematica. To use the system productively you need to learn some of the basic functional constructs, of which FixedPointList is one.
I'm not providing any explanation of the function I've used, nor of the interpretation of symbols such as # and &. This is all covered in the documentation which explains matters better than I can and with which you ought to become familiar.
Mathematica allows alphanumeric (only) names and they must start with a letter. Of course, Mathematic recognises many Unicode characters other than the 26 letters in the English alphabet as alphabetic. By convention (only) intrinsic names start with an upper-case letter and your own with a lower-case.
The underscore is most definitely not allowed in Mathematica names, it has a specific and widely-used interpretation as a short form of the Blank symbol.
Oh, LaTeX formatting doesn't work hereabouts, but Mathematica code is plenty readable enough.
It seems that, when the function definition is being called in
Append[M,L2], L2 is calling M[2] in the older definition of M,
which clearly does not exist.
How can I make L use the newer, bigger version of M?
M is never getting updated here. Append does not modify the parameters you pass to it; it returns the concatenated value of the arrays.
So, the following code:
A={1,2,3}
B=Append[A,5]
Will end up with B={1,2,3,5} and A={1,2,3}. A is not modfied.
To analyse your output,
0.3 // Output of x0 = Input["Enter x0"]. Note that the assignment operator returns the the assignment value.
2 // Output of a= Input["a"]
{0.3} // Output of M = {x0}
0.42 // Output of Print[L[1]]
{0.3,0.42} // Output of Append[M, L[1]]. This is the *return value*, not the new value of M
{0.3} // Output of Print[M]
Part::partw: Part 2 of {0.3`} does not exist. >> // M has only one element, so M[[2]] doesn't make sense
Part::partw: Part 2 of {0.3`} does not exist. >> // ditto
{0.3, 2 (1 - {0.3}[[2]]) {0.3}[[2]]} (* Output of Append[M, L[2]]. Again, *not* the new value of M *)
{0.3} // Output of Print[M]
The simple fix here is to use M=Append[M, L[1]].
To do it in a single for loop:
xn=x0;
For[i = 0, i < n, i++,
M = Append[M, xn];
xn = A*xn (1 - xn)
];
A faster method would be to use NestList[a*#*(1-#)&, x0,n] as a variation of the method mentioned by Mark above.
Here, the expression a*#*(1-#)& is basically an anonymous function (# is its parameter, the & is a shorthand for enclosing it in Function[]). The NestList method takes a function as one argument and recursively applies it starting with x0, for n iterations.
Other minor question: What are the allowed names for functions and lists? Are underscores allowed in names?
No underscores, they're used for pattern matching. Otherwise a variable can contain alphabets and special characters (like theta and all), but no characters that have a meaning in mathematica (parentheses/braces/brackets, the at symbol, the hash symbol, an ampersand, a period, arithmetic symbols, underscores, etc). They may contain a dollar sign but preferably not start with one (these are usually reserved for system variables and all, though you can define a variable starting with a dollar sign without breaking anything).

What are the precise rules for when you can omit parenthesis, dots, braces, = (functions), etc.?

What are the precise rules for when you can omit (omit) parentheses, dots, braces, = (functions), etc.?
For example,
(service.findAllPresentations.get.first.votes.size) must be equalTo(2).
service is my object
def findAllPresentations: Option[List[Presentation]]
votes returns List[Vote]
must and be are both functions of specs
Why can't I go:
(service findAllPresentations get first votes size) must be equalTo(2)
?
The compiler error is:
"RestServicesSpecTest.this.service.findAllPresentations
of type
Option[List[com.sharca.Presentation]]
does not take parameters"
Why does it think I'm trying to pass in a parameter? Why must I use dots for every method call?
Why must (service.findAllPresentations get first votes size) be equalTo(2) result in:
"not found: value first"
Yet, the "must be equalTo 2" of
(service.findAllPresentations.get.first.votes.size) must be equalTo 2, that is, method chaining works fine? - object chain chain chain param.
I've looked through the Scala book and website and can't really find a comprehensive explanation.
Is it in fact, as Rob H explains in Stack Overflow question Which characters can I omit in Scala?, that the only valid use-case for omitting the '.' is for "operand operator operand" style operations, and not for method chaining?
You seem to have stumbled upon the answer. Anyway, I'll try to make it clear.
You can omit dot when using the prefix, infix and postfix notations -- the so called operator notation. While using the operator notation, and only then, you can omit the parenthesis if there is less than two parameters passed to the method.
Now, the operator notation is a notation for method-call, which means it can't be used in the absence of the object which is being called.
I'll briefly detail the notations.
Prefix:
Only ~, !, + and - can be used in prefix notation. This is the notation you are using when you write !flag or val liability = -debt.
Infix:
That's the notation where the method appears between an object and it's parameters. The arithmetic operators all fit here.
Postfix (also suffix):
That notation is used when the method follows an object and receives no parameters. For example, you can write list tail, and that's postfix notation.
You can chain infix notation calls without problem, as long as no method is curried. For example, I like to use the following style:
(list
filter (...)
map (...)
mkString ", "
)
That's the same thing as:
list filter (...) map (...) mkString ", "
Now, why am I using parenthesis here, if filter and map take a single parameter? It's because I'm passing anonymous functions to them. I can't mix anonymous functions definitions with infix style because I need a boundary for the end of my anonymous function. Also, the parameter definition of the anonymous function might be interpreted as the last parameter to the infix method.
You can use infix with multiple parameters:
string substring (start, end) map (_ toInt) mkString ("<", ", ", ">")
Curried functions are hard to use with infix notation. The folding functions are a clear example of that:
(0 /: list) ((cnt, string) => cnt + string.size)
(list foldLeft 0) ((cnt, string) => cnt + string.size)
You need to use parenthesis outside the infix call. I'm not sure the exact rules at play here.
Now, let's talk about postfix. Postfix can be hard to use, because it can never be used anywhere except the end of an expression. For example, you can't do the following:
list tail map (...)
Because tail does not appear at the end of the expression. You can't do this either:
list tail length
You could use infix notation by using parenthesis to mark end of expressions:
(list tail) map (...)
(list tail) length
Note that postfix notation is discouraged because it may be unsafe.
I hope this has cleared all the doubts. If not, just drop a comment and I'll see what I can do to improve it.
Class definitions:
val or var can be omitted from class parameters which will make the parameter private.
Adding var or val will cause it to be public (that is, method accessors and mutators are generated).
{} can be omitted if the class has no body, that is,
class EmptyClass
Class instantiation:
Generic parameters can be omitted if they can be inferred by the compiler. However note, if your types don't match, then the type parameter is always infered so that it matches. So without specifying the type, you may not get what you expect - that is, given
class D[T](val x:T, val y:T);
This will give you a type error (Int found, expected String)
var zz = new D[String]("Hi1", 1) // type error
Whereas this works fine:
var z = new D("Hi1", 1)
== D{def x: Any; def y: Any}
Because the type parameter, T, is inferred as the least common supertype of the two - Any.
Function definitions:
= can be dropped if the function returns Unit (nothing).
{} for the function body can be dropped if the function is a single statement, but only if the statement returns a value (you need the = sign), that is,
def returnAString = "Hi!"
but this doesn't work:
def returnAString "Hi!" // Compile error - '=' expected but string literal found."
The return type of the function can be omitted if it can be inferred (a recursive method must have its return type specified).
() can be dropped if the function doesn't take any arguments, that is,
def endOfString {
return "myDog".substring(2,1)
}
which by convention is reserved for methods which have no side effects - more on that later.
() isn't actually dropped per se when defining a pass by name paramenter, but it is actually a quite semantically different notation, that is,
def myOp(passByNameString: => String)
Says myOp takes a pass-by-name parameter, which results in a String (that is, it can be a code block which returns a string) as opposed to function parameters,
def myOp(functionParam: () => String)
which says myOp takes a function which has zero parameters and returns a String.
(Mind you, pass-by-name parameters get compiled into functions; it just makes the syntax nicer.)
() can be dropped in the function parameter definition if the function only takes one argument, for example:
def myOp2(passByNameString:(Int) => String) { .. } // - You can drop the ()
def myOp2(passByNameString:Int => String) { .. }
But if it takes more than one argument, you must include the ():
def myOp2(passByNameString:(Int, String) => String) { .. }
Statements:
. can be dropped to use operator notation, which can only be used for infix operators (operators of methods that take arguments). See Daniel's answer for more information.
. can also be dropped for postfix functions
list tail
() can be dropped for postfix operators
list.tail
() cannot be used with methods defined as:
def aMethod = "hi!" // Missing () on method definition
aMethod // Works
aMethod() // Compile error when calling method
Because this notation is reserved by convention for methods that have no side effects, like List#tail (that is, the invocation of a function with no side effects means that the function has no observable effect, except for its return value).
() can be dropped for operator notation when passing in a single argument
() may be required to use postfix operators which aren't at the end of a statement
() may be required to designate nested statements, ends of anonymous functions or for operators which take more than one parameter
When calling a function which takes a function, you cannot omit the () from the inner function definition, for example:
def myOp3(paramFunc0:() => String) {
println(paramFunc0)
}
myOp3(() => "myop3") // Works
myOp3(=> "myop3") // Doesn't work
When calling a function that takes a by-name parameter, you cannot specify the argument as a parameter-less anonymous function. For example, given:
def myOp2(passByNameString:Int => String) {
println(passByNameString)
}
You must call it as:
myOp("myop3")
or
myOp({
val source = sourceProvider.source
val p = myObject.findNameFromSource(source)
p
})
but not:
myOp(() => "myop3") // Doesn't work
IMO, overuse of dropping return types can be harmful for code to be re-used. Just look at specification for a good example of reduced readability due to lack of explicit information in the code. The number of levels of indirection to actually figure out what the type of a variable is can be nuts. Hopefully better tools can avert this problem and keep our code concise.
(OK, in the quest to compile a more complete, concise answer (if I've missed anything, or gotten something wrong/inaccurate please comment), I have added to the beginning of the answer. Please note this isn't a language specification, so I'm not trying to make it exactly academically correct - just more like a reference card.)
A collection of quotes giving insight into the various conditions...
Personally, I thought there'd be more in the specification. I'm sure there must be, I'm just not searching for the right words...
There are a couple of sources however, and I've collected them together, but nothing really complete / comprehensive / understandable / that explains the above problems to me...:
"If a method body has more than one
expression, you must surround it with
curly braces {…}. You can omit the
braces if the method body has just one
expression."
From chapter 2, "Type Less, Do More", of Programming Scala:
"The body of the upper method comes
after the equals sign ‘=’. Why an
equals sign? Why not just curly braces
{…}, like in Java? Because semicolons,
function return types, method
arguments lists, and even the curly
braces are sometimes omitted, using an
equals sign prevents several possible
parsing ambiguities. Using an equals
sign also reminds us that even
functions are values in Scala, which
is consistent with Scala’s support of
functional programming, described in
more detail in Chapter 8, Functional
Programming in Scala."
From chapter 1, "Zero to Sixty: Introducing Scala", of Programming Scala:
"A function with no parameters can be
declared without parentheses, in which
case it must be called with no
parentheses. This provides support for
the Uniform Access Principle, such
that the caller does not know if the
symbol is a variable or a function
with no parameters.
The function body is preceded by "="
if it returns a value (i.e. the return
type is something other than Unit),
but the return type and the "=" can be
omitted when the type is Unit (i.e. it
looks like a procedure as opposed to a
function).
Braces around the body are not
required (if the body is a single
expression); more precisely, the body
of a function is just an expression,
and any expression with multiple parts
must be enclosed in braces (an
expression with one part may
optionally be enclosed in braces)."
"Functions with zero or one argument
can be called without the dot and
parentheses. But any expression can
have parentheses around it, so you can
omit the dot and still use
parentheses.
And since you can use braces anywhere
you can use parentheses, you can omit
the dot and put in braces, which can
contain multiple statements.
Functions with no arguments can be
called without the parentheses. For
example, the length() function on
String can be invoked as "abc".length
rather than "abc".length(). If the
function is a Scala function defined
without parentheses, then the function
must be called without parentheses.
By convention, functions with no
arguments that have side effects, such
as println, are called with
parentheses; those without side
effects are called without
parentheses."
From blog post Scala Syntax Primer:
"A procedure definition is a function
definition where the result type and
the equals sign are omitted; its
defining expression must be a block.
E.g., def f (ps) {stats} is
equivalent to def f (ps): Unit =
{stats}.
Example 4.6.3 Here is a declaration
and a de?nition of a procedure named
write:
trait Writer {
def write(str: String)
}
object Terminal extends Writer {
def write(str: String) { System.out.println(str) }
}
The code above is implicitly completed
to the following code:
trait Writer {
def write(str: String): Unit
}
object Terminal extends Writer {
def write(str: String): Unit = { System.out.println(str) }
}"
From the language specification:
"With methods which only take a single
parameter, Scala allows the developer
to replace the . with a space and omit
the parentheses, enabling the operator
syntax shown in our insertion operator
example. This syntax is used in other
places in the Scala API, such as
constructing Range instances:
val firstTen:Range = 0 to 9
Here again, to(Int) is a vanilla
method declared inside a class
(there’s actually some more implicit
type conversions here, but you get the
drift)."
From Scala for Java Refugees Part 6: Getting Over Java:
"Now, when you try "m 0", Scala
discards it being a unary operator, on
the grounds of not being a valid one
(~, !, - and +). It finds that "m" is
a valid object -- it is a function,
not a method, and all functions are
objects.
As "0" is not a valid Scala
identifier, it cannot be neither an
infix nor a postfix operator.
Therefore, Scala complains that it
expected ";" -- which would separate
two (almost) valid expressions: "m"
and "0". If you inserted it, then it
would complain that m requires either
an argument, or, failing that, a "_"
to turn it into a partially applied
function."
"I believe the operator syntax style
works only when you've got an explicit
object on the left-hand side. The
syntax is intended to let you express
"operand operator operand" style
operations in a natural way."
Which characters can I omit in Scala?
But what also confuses me is this quote:
"There needs to be an object to
receive a method call. For instance,
you cannot do “println “Hello World!”"
as the println needs an object
recipient. You can do “Console
println “Hello World!”" which
satisfies the need."
Because as far as I can see, there is an object to receive the call...
I find it easier to follow this rule of thumb: in expressions spaces alternate between methods and parameters. In your example, (service.findAllPresentations.get.first.votes.size) must be equalTo(2) parses as (service.findAllPresentations.get.first.votes.size).must(be)(equalTo(2)). Note that the parentheses around the 2 have a higher associativity than the spaces. Dots also have higher associativity, so (service.findAllPresentations.get.first.votes.size) must be.equalTo(2)would parse as (service.findAllPresentations.get.first.votes.size).must(be.equalTo(2)).
service findAllPresentations get first votes size must be equalTo 2 parses as service.findAllPresentations(get).first(votes).size(must).be(equalTo).2.
Actually, on second reading, maybe this is the key:
With methods which only take a single
parameter, Scala allows the developer
to replace the . with a space and omit
the parentheses
As mentioned on the blog post: http://www.codecommit.com/blog/scala/scala-for-java-refugees-part-6 .
So perhaps this is actually a very strict "syntax sugar" which only works where you are effectively calling a method, on an object, which takes one parameter. e.g.
1 + 2
1.+(2)
And nothing else.
This would explain my examples in the question.
But as I said, if someone could point out to be exactly where in the language spec this is specified, would be great appreciated.
Ok, some nice fellow (paulp_ from #scala) has pointed out where in the language spec this information is:
6.12.3:
Precedence and associativity of
operators determine the grouping of
parts of an expression as follows.
If there are several infix operations in an expression, then
operators with higher precedence bind
more closely than operators with lower
precedence.
If there are consecutive infix operations e0 op1 e1 op2 . . .opn en
with operators op1, . . . , opn of the
same precedence, then all these
operators must have the same
associativity. If all operators are
left-associative, the sequence is
interpreted as (. . . (e0 op1 e1) op2
. . .) opn en. Otherwise, if all
operators are rightassociative, the
sequence is interpreted as e0 op1 (e1
op2 (. . .opn en) . . .).
Postfix operators always have lower precedence than infix operators. E.g.
e1 op1 e2 op2 is always equivalent to
(e1 op1 e2) op2.
The right-hand operand of a
left-associative operator may consist
of several arguments enclosed in
parentheses, e.g. e op (e1, . . .
,en). This expression is then
interpreted as e.op(e1, . . . ,en).
A left-associative binary operation e1
op e2 is interpreted as e1.op(e2). If
op is rightassociative, the same
operation is interpreted as { val
x=e1; e2.op(x ) }, where x is a fresh
name.
Hmm - to me it doesn't mesh with what I'm seeing or I just don't understand it ;)
There aren't any. You will likely receive advice around whether or not the function has side-effects. This is bogus. The correction is to not use side-effects to the reasonable extent permitted by Scala. To the extent that it cannot, then all bets are off. All bets. Using parentheses is an element of the set "all" and is superfluous. It does not provide any value once all bets are off.
This advice is essentially an attempt at an effect system that fails (not to be confused with: is less useful than other effect systems).
Try not to side-effect. After that, accept that all bets are off. Hiding behind a de facto syntactic notation for an effect system can and does, only cause harm.

Resources