In a weighted undirected graph I need to find a minimum spanning tree containing a given edge 'e', if it's possible. How can I do it? Kruskal starting from 'e' ?
I would not use Kruskal algorithm because if the edge e is part of cycle and e has maximum weight in that cycle, then the algorithm will not include 'e'. I believe with modification it could work. But with Prim's algorithm modification required is minimal.
Prim's algorithm is best suited for this problem, if we recall Prim algorithm goes like this:
STEP 1: Begin with set S containing a vertex picked randomly.
STEP 2: From all the edges with one vertex in set S and other vertex in set V - S,pick the one with minimum weight. Let it be (x,y), x belongs to S and y belongs to V - S.
STEP 3: Add y to set S.
STEP 4: Repeat step 2 and 3 till S contains all vertices.
Modification required:
For your problem just change step 1 to:
STEP 1: Begin with set S containing a vertex u and v where edge 'e' = (u,v).
Here is a possible "lazy solution" that requires no modification of an MST algorithm
Run any MST algorithm.
The MST algorithm will output an MST T = (V,E,w)
If edge e is already in T then you're done
If edge e is not in T then add edge e and you will have a cycle σ
Iterate over cycle σ, if there is an edge with the same weight as e then remove that edge and your'e done
If none of the edges have the same weight as e then a MST with e is not possible
Whats good about this approach is that is fairly easy to prove formally hence you have a proof for a MST algorithm and the other steps are based on known theorems.
For a lazy solution, make the cost of that edge less than the cost of all other edges and run any MST algorithm on it.
Related
Given undirected, connected graph G={V,E}, a vertex in V(G), label him v, and a weight function f:E->R+(Positive real numbers), I need to find a MST such that v's degree is minimal. I've already noticed that if all the edges has unique weight, the MST is unique, so I believe it has something to do with repetitive weights on edges. I though about running Kruskal's algorithm, but when sorting the edges, I'll always consider edges that occur on v last. For example, if (a,b),(c,d),(v,e) are the only edges of weight k, so the possible permutations of these edges in the sorted edges array are: {(a,b),(c,d),(v,e)} or {(c,d),(a,b),(v,e)}. I've ran this variation over several graphs and it seems to work, but I couldn't prove it. Does anyone know how to prove the algorithm's correct (Meaning proving v's degree is minimal), or give a contrary example of the algorithm failing?
First note that Kruskal's algorithm can be applied to any weighted graph, whether or not it is connected. In general it results in a minimum-weight spanning forest (MSF), with one MST for each connected component. To prove that your modification of Kruskal's algorithm succeeds in finding the MST for which v has minimal degree, it helps to prove the slightly stronger result that if you apply your algorithm to a possibly disconnected graph then it succeeds in finding the MSF where the degree of v is minimized.
The proof is by induction on the number, k, of distinct weights.
Basis Case (k = 1). In this case weights can be ignored and we are trying to find a spanning forest in which the degree of v is minimized. In this case, your algorithm can be described as follows: pick edges for as long as possible according to the following two rules:
1) No selected edge forms a cycle with previously selected edges
2) An edge involving v isn't selected unless any edge which doesn't
involve v violates rule 1.
Let G' denote the graph from which v and all incident edges have been removed from G. It is easy to see that the algorithm in this special case works as follows. It starts by creating a spanning forest for G'. Then it takes those trees in the forest that are contained in v's connected component in the original graph G and connects each component to v by a single edge. Since the components connected to v in the second stage can be connected to each other in no other way (since if any connecting edge not involving v exists it would have been selected by rule 2) it is easy to see that the degree of v is minimal.
Inductive Case: Suppose that the result is true for k and G is a weighted graph with k+1 distinct weights and v is a specified vertex in G. Sort the distinct weights in increasing order (so that weight k+1 is the longest of the distinct weights -- say w_{k+1}). Let G' be the sub-graph of G with the same vertex set but with all edges of weight w_{k+1} removed. Since the edges are sorted in the order of increasing weight, note that the modified Kruskal's algorithm in effect starts by applying itself to G'. Thus -- by the induction hypothesis prior to considering edges of weight w_{k+1}, the algorithm has succeeded in constructing an MSF F' of G' for which the degree, d' of v in G' is minimized.
As a final step, modified Kruskal's applied to the overall graph G will merge certain of the trees in F' together by adding edges of weight w_{k+1}. One way to conceptualize the final step is the think of F' as a graph where two trees are connected exactly when there is an edge of weight w_{k+1} from some node in the first tree to some node in the second tree. We have (almost) the basis case with F'. Modified Kruskal's will add edged of weight w_{k+1} until it can't do so anymore -- and won't add an edge connecting to v unless there is no other way to connect to trees in F' that need to be connected to get a spanning forest for the original graph G.
The final degree of v in the resulting MSF is d = d'+d" where d" is the number of edges of weight w_{k+1} added at the final step. Neither d' nor d" can be made any smaller, hence it follows that d can't be made any smaller (since the degree of v in any spanning forest can be written as the sum of the number of edges whose weight is less than w_{k+1} coming into v and the number off edges of weight w_{k+1} coming into v).
QED.
There is still an element of hand-waving in this, especially with the final step -- but Stack Overflow isn't a peer-reviewed journal. Anyway, the overall logic should be clear enough.
One final remark -- it seems fairly clear that Prim's algorithm can be similarly modified for this problem. Have you looked into that?
I have to solve this problem:
Given a weighted connected undirected graph G=(V,E) and vertex u in V.
Describe an algorithm that finds MST for G such that the degree of u
is minimal; the output T of the algorithm is MST and for each another
minimal spanning tree T' being the degree of u in T less than or
equal to the degree of u in T'.
I thought about this algorithm (after some googling I found this solution for similar problem here):
Temporarily delete vertex u.
For each of the resulting connected components C1,…,Cm find a MST using e.g. Kruskal's or Prim's algorithm.
Re-add vertex u and for each Ci add the cheapest edge between 1 and Ci.
EDIT:
I understood that this algorithm may get a wrong MST (see #AndyG comment) so I thought about another one:
let k be the minimal increment between each two weights in G and add 0 < x < k to each adjacent edge of u. (e.g. if all the weights are natural numbers so k=1 and x is fraction).
find a MST using Kruskal's algorithm.
This solution is based on the fact that Kruskal's algorithm iterate the edges
ordered by weigh, so the difference between all the MSTs of G is each edge was chosen from among all edges of the same weight. Therefore, if we increase the degree of the adjacent edges of u, the algorithm will choose the others edges in the same degree and not the adjacent of u unless this edge is necessary for the MST and the degree of u will be the minimal in all the MSTs of G.
I still don't know if it works and how to prove the correctness of this algorithm.
I will appreciate any help.
To summarize the suggested algorithm [with tightened requirements on epsilon (which you called x)]:
Pick a tiny epsilon (such that epsilon * deg(u) is less than d, the smallest non-zero weight difference between any pair of subgraphs). In the case all the original weights are natural numbers, epsilon = 1/(deg(u)+1) suffices.
Add the epsilon to the weights of all edges incident to u
Find a minimal spanning tree.
We'll prove that this procedure finds an MST of the original graph that minimizes the number of edges incident to u.
Let W be the weight of any minimal spanning tree in the original graph.
First, we'll show every MST of the new graph is an MST of the original graph. Any non-MST in the original graph must have weight at least W + d. Any MST in the new graph must have weight at most W + deg(u)*epsilon (since any MST in the original graph has at most this weight in the new graph). Since we chose epsilon such that deg(u)*epsilon < d, we conclude that any MST in the new graph is also an MST in the original graph.
Second, we'll show that the MST of the new graph is the MST of the original graph that minimizes the number of edges incident to u. An MST, T, of the original graph has weight W + k * epsilon in the new graph, where k is the number of edges of T incident to u. We've already shown that every MST of the new graph is also an MST of the original graph. Therefore, the MST of the new graph is the MST of the original graph that minimizes k (the number of edges incident to u).
Let G (U u V, E) be a weighted directed bipartite graph (i.e. U and V are the two sets of nodes of the bipartite graph and E contains directed weighted edges from U to V or from V to U). Here is an example:
In this case:
U = {A,B,C}
V = {D,E,F}
E = {(A->E,7), (B->D,1), (C->E,3), (F->A,9)}
Definition: DirectionalMatching (I made up this term just to make things clearer): set of directed edges that may share the start or end vertices. That is, if U->V and U'->V' both belong to a DirectionalMatching then V /= U' and V' /= U but it may be that U = U' or V = V'.
My question: How to efficiently find a DirectionalMatching, as defined above, for a bipartite directional weighted graph which maximizes the sum of the weights of its edges?
By efficiently, I mean polynomial complexity or faster, I already know how to implement a naive brute force approach.
In the example above the maximum weighted DirectionalMatching is: {F->A,C->E,B->D}, with a value of 13.
Formally demonstrating the equivalence of this problem to any other well known problem in graph theory would also be valuable.
Thanks!
Note 1: This question is based on Maximum weighted bipartite matching _with_ directed edges but with the extra relaxation that it is allowed for edges in the matching to share the origin or destination. Since that relaxation makes a big difference, I created an independent question.
Note 2: This is a maximum weight matching. Cardinality (how many edges are present) and the number of vertices covered by the matching is irrelevant for a correct result. Only the maximum weight matters.
Note 2: During my research to solve the problem I found this paper, I think it would be helpful to others trying to find a solution: Alternating cycles and paths in edge-coloured
multigraphs: a survey
Note 3: In case it helps, you can also think of the graph as its equivalent 2-edge coloured undirected bipartite multigraph. The problem formulation would then turn into: Find the set of edges without colour-alternating paths or cycles which has maximum weight sum.
Note 4: I suspect that the problem might be NP-hard, but I am not that experienced with reductions so I haven't managed to prove it yet.
Yet another example:
Imagine you had
4 vertices: {u1, u2} {v1, v2}
4 edges: {u1->v1, u1->v2, u2->v1, v2->u2}
Then, regardless of their weights, u1->v2 and v2->u2 cannot be in the same DirectionalMatching, neither can v2->u2 and u2->v1. However u1->v1 and u1->v2 can, and so can u1->v1 and u2->v1.
Define a new undirected graph G' from G as follows.
G' has a node (A, B) with weight w for each directed edge (A, B) with weight w in G
G' has undirected edge ((A, B),(B, C)) if (A, B) and (B, C) are both directed edges in G
http://en.wikipedia.org/wiki/Line_graph#Line_digraphs
Now find a maximal (weighted) independent vertex set in G'.
http://en.wikipedia.org/wiki/Vertex_independent_set
Edit: stuff after this point only works if all of the edge weights are the same - when the edge weights have different values its a more difficult problem (google "maximum weight independent vertex set" for possible algorithms)
Typically this would be an NP-hard problem. However, G' is a bipartite graph -- it contains only even cycles. Finding the maximal (weighted) independent vertex set in a bipartite graph is not NP-hard.
The algorithm you will run on G' is as follows.
Find the connected components of G', say H_1, H_2, ..., H_k
For each H_i do a 2-coloring (say red and blue) of the nodes. The cookbook approach here is to do a depth-first search on H_i alternating colors. A simple approach would be to color each vertex in H_i based on whether the corresponding edge in G goes from U to V (red) or from V to U (blue).
The two options for which nodes to select from H_i are either all the red nodes or all the blue nodes. Choose the colored node set with higher weight. For example, the red node set has weight equal to H_i.nodes.where(node => node.color == red).sum(node => node.w). Call the higher-weight node set N_i.
Your maximal weighted independent vertex set is now union(N_1, N_2, ..., N_k).
Since each vertex in G' corresponds to one of the directed edges in G, you have your maximal DirectionalMatching.
This problem can be solved in polynomial time using the Hungarian Algorithm. The "proof" by Vor above is wrong.
The method of structuring the problem for the above example is as follows:
D E F
A # 7 9
B 1 # #
C # 3 #
where "#" means negative infinity. You then resolve the matrix using the Hungarian algorithm to determine the maximum matching. You can multiply the numbers by -1 if you want to find a minimum matching.
I have an unweighted, connected graph. I want to find a connected subgraph that definitely includes a certain set of nodes, and as few extras as possible. How could this be accomplished?
Just in case, I'll restate the question using more precise language. Let G(V,E) be an unweighted, undirected, connected graph. Let N be some subset of V. What's the best way to find the smallest connected subgraph G'(V',E') of G(V,E) such that N is a subset of V'?
Approximations are fine.
This is exactly the well-known NP-hard Steiner Tree problem. Without more details on what your instances look like, it's hard to give advice on an appropriate algorithm.
I can't think of an efficient algorithm to find the optimal solution, but assuming that your input graph is dense, the following might work well enough:
Convert your input graph G(V, E) to a weighted graph G'(N, D), where N is the subset of vertices you want to cover and D is distances (path lengths) between corresponding vertices in the original graph. This will "collapse" all vertices you don't need into edges.
Compute the minimum spanning tree for G'.
"Expand" the minimum spanning tree by the following procedure: for every edge d in the minimum spanning tree, take the corresponding path in graph G and add all vertices (including endpoints) on the path to the result set V' and all edges in the path to the result set E'.
This algorithm is easy to trip up to give suboptimal solutions. Example case: equilateral triangle where there are vertices at the corners, in midpoints of sides and in the middle of the triangle, and edges along the sides and from the corners to the middle of the triangle. To cover the corners it's enough to pick the single middle point of the triangle, but this algorithm might choose the sides. Nonetheless, if the graph is dense, it should work OK.
The easiest solutions will be the following:
a) based on mst:
- initially, all nodes of V are in V'
- build a minimum spanning tree of the graph G(V,E) - call it T.
- loop: for every leaf v in T that is not in N, delete v from V'.
- repeat loop until all leaves in T are in N.
b) another solution is the following - based on shortest paths tree.
- pick any node in N, call it v, let v be a root of a tree T = {v}.
- remove v from N.
loop:
1) select the shortest path from any node in T and any node in N. the shortest path p: {v, ... , u} where v is in T and u is in N.
2) every node in p is added to V'.
3) every node in p and in N is deleted from N.
--- repeat loop until N is empty.
At the beginning of the algorithm: compute all shortest paths in G using any known efficient algorithm.
Personally, I used this algorithm in one of my papers, but it is more suitable for distributed enviroments.
Let N be the set of nodes that we need to interconnect. We want to build a minimum connected dominating set of the graph G, and we want to give priority for nodes in N.
We give each node u a unique identifier id(u). We let w(u) = 0 if u is in N, otherwise w(1).
We create pair (w(u), id(u)) for each node u.
each node u builds a multiset relay node. That is, a set M(u) of 1-hop neigbhors such that each 2-hop neighbor is a neighbor to at least one node in M(u). [the minimum M(u), the better is the solution].
u is in V' if and only if:
u has the smallest pair (w(u), id(u)) among all its neighbors.
or u is selected in the M(v), where v is a 1-hop neighbor of u with the smallest (w(u),id(u)).
-- the trick when you execute this algorithm in a centralized manner is to be efficient in computing 2-hop neighbors. The best I could get from O(n^3) is to O(n^2.37) by matrix multiplication.
-- I really wish to know what is the approximation ration of this last solution.
I like this reference for heuristics of steiner tree:
The Steiner tree problem, Hwang Frank ; Richards Dana 1955- Winter Pawel 1952
You could try to do the following:
Creating a minimal vertex-cover for the desired nodes N.
Collapse these, possibly unconnected, sub-graphs into "large" nodes. That is, for each sub-graph, remove it from the graph, and replace it with a new node. Call this set of nodes N'.
Do a minimal vertex-cover of the nodes in N'.
"Unpack" the nodes in N'.
Not sure whether or not it gives you an approximation within some specific bound or so. You could perhaps even trick the algorithm to make some really stupid decisions.
As already pointed out, this is the Steiner tree problem in graphs. However, an important detail is that all edges should have weight 1. Because |V'| = |E'| + 1 for any Steiner tree (V',E'), this achieves exactly what you want.
For solving it, I would suggest the following Steiner tree solver (to be transparent: I am one of the developers):
https://scipjack.zib.de/
For graphs with a few thousand edges, you will usually get an optimal solution in less than 0.1 seconds.
I'm writing an algorithm for finding the second min cost spanning tree. my idea was as follows:
Use kruskals to find lowest MST.
Delete the lowest cost edge of the MST.
Run kruskals again on the entire graph.
return the new MST.
My question is: Will this work? Is there a better way perhaps to do this?
You can do it in O(V2). First compute the MST using Prim's algorithm (can be done in O(V2)).
Compute max[u, v] = the cost of the maximum cost edge on the (unique) path from u to v in the MST. Can be done in O(V2).
Find an edge (u, v) that's NOT part of the MST that minimizes abs(max[u, v] - weight(u, v)). Can be done in O(E) == O(V2).
Return MST' = MST - {the edge that has max[u, v] weight} + {(u, v)}, which will give you the second best MST.
Here's a link to pseudocode and more detailed explanations.
Consider this case:
------100----
| |
A--1--B--3--C
| |
| 3
| |
2-----D
The MST consists of A-B-D-C (cost 6). The second min cost is A-B-C-D (cost 7). If you delete the lowest cost edge, you will get A-C-B-D (cost 105) instead.
So your idea will not work. I have no better idea though...
You can do this -- try removing the edges of the MST, one at a time from the graph, and run the MST, taking the min from it. So this is similar to yours, except for iterative:
Use Kruskals to find MST.
For each edge in MST:
Remove edge from graph
Calculate MST' on MST
Keep track of smallest MST
Add edge back to graph
Return the smallest MST.
This is similar to Larry's answer.
After finding MST,
For each new_edge =not a edge in MST
Add new_edge to MST.
Find the cycle that is formed.
Find the edge with maximum weight in
cycle that is not the non-MST edge
you added.
Record the weight increase as W_Inc
= w(new_edge) - w(max_weight_edge_in_cycle).
If W_Inc < Min_W_Inc_Seen_So_Far Then
Min_W_Inc_Seen_So_Far = W_Inc
edge_to_add = new_edge
edge_to_remove = max_weight_edge_in_cycle
Solution from following link.
http://web.mit.edu/6.263/www/quiz1-f05-sol.pdf
slight edit to your algo.
Use kruskals to find lowest MST.
for all edges i of MST
Delete edge i of the MST.
Run kruskals again on the entire graph.
loss=cost new edge introduced - cost of edge i
return MST for which loss is minimum
Here is an algorithm which compute the 2nd minimum spanning tree in O(n^2)
First find out the mimimum spanning tree (T). It will take O(n^2) without using heap.
Repeat for every edge e in T. =O(n^2)
Lets say current tree edge is e. This tree edge will divide the tree into two trees, lets say T1 and T-T1. e=(u,v) where u is in T1 and v is in T-T1. =O(n^2)
Repeat for every vertex v in T-T1. =O(n^2)
Select edge e'=(u,v) for all v in T-T1 and e' is in G (original graph) and it is minimum
Calculate the weight of newly formed tree. Lets say W=weight(T)-weight(e)+weight(e')
Select the one T1 which has a minimum weight
Your approach will not work, as it might be the case that min. weight edge in the MST is a bridge (only one edge connecting 2 parts of graph) so deleting this edge from the set will result in 2 new MST as compared to one MST.
based on #IVlad's answer
Detailed explanation of the O(V² log V) algorithm
Find the minimum spanning tree (MST) using Kruskal's (or Prim's) algorithm, save its total weight, and for every node in the MST store its tree neighbors (i.e. the parent and all children) -> O(V² log V)
Compute the maximum edge weight between any two vertices in the minimum spanning tree. Starting from every vertex in the MST, traverse the entire tree with a depth- or breadth-first search by using the tree node neighbor lists computed earlier and store the maximum edge weight encountered so far at every new vertex visited. -> O(V²)
Find the second minimum spanning tree and its total weight. For every edge not belonging to the original MST, try disconnecting the two vertices it connects by removing the tree edge with the maximum weight in between the two vertices, and then reconnecting them with the currently considered vertex (note: the MST should be restored to its original state after every iteration). The total weight can be calculated by subtracting the weight of the removed edge and adding that of the added one. Store the minimum of the total weights obtained.
To practice you could try the competitive programming problem UVa 10600 - ACM Contest and Blackout, which involves finding the second minimum spanning tree in a weighted graph, as asked by the OP. My implementation (in modern C++) can be found here.
MST is a tree which has the minimum weight total of all edges of the graph. Thus, 2nd minimum mst will have the 2nd minimum total weight of all edges in the graph.
let T -> BEST_MST ( sort the edges in the graph , then find MST using kruskal algorithm)
T ' -> 2nd best MST
let's say T has 7 edges , now to find T ' we will one by one remove one of those 7 edges and find a replacement for that edge ( cost of that edge definitely will be greater than the edge we just removed from T ).
let's say original graph has 15 edges
our best MST ( T ) has 7 edges
and 2nd best MST ( T ' ) will also going to have 7 edges only
How to find T '
there are 7 edges in T , now for all those 7 edges remove them one by one and find replacement for those edges .
let's say edges in MST ( T ) --> { a,b,c,d,e,f,g }
let's say our answer will be 2nd_BEST_MST and initially it has infinte value ( i know it doesn't sounds good , let's just assume it for now ).
for all edges in BEST_MST :
current_edge = i
find replacement for that edge, replacement for that edge will definitely going to have have weight more than the ith edge ( one of 7 edges )
how we will going to find the replacement for that edge , using Kruskul algorithm ( we are finding the MST again , so we will use kruskal algorithm only , but this we don't have to sort edges again , because we did it when we were finding the BEST_MST ( T ).
NEW_MST will be generated
2nd_best_MST = min( NEW_MST , 2nd_best_MST )
return 2nd_best_MST
ALGORITHM
let' say orignal graph has 10 edges
find the BEST_MST ( using kruskal algo) and assume BEST_MST has only 6 edges
bow there are 4 edges remaining which is not in the BEST_MST ( because their weight value is large and one of those edges will give us our 2nd_Best_MST
for each edge 'X' not present in the BEST_MST ( i.e. 4 edges left ) add that edge in out BEST_MST which will create the cycle
find the edge 'K' with the maximum weight in the cycle ( other than newly_added_edge 'X' )
remove edge 'K' temporarily which will form a new spanning tree
calculate the difference in weight and map the weight_difference with the edge 'X' .
repeat step 4 for all those 4 edges and return the spanning tree with the smallest weight difference to the BEST_MST.