Count-Min Sketch and Heavy-Hitters problem - algorithm

I am reading about Count-Min Sketch data structure which gives a probabilistic answer to point and range queries, based on error probability parameter and the tolerance parameter.
For example, the question "how many times with probability of 10% did item x appear in the stream of data" could be answered by CM.
An associated problem of heavy hitters has also come up. While implementing a min heap for the HH problem, I have noticed various research papers specifying that only if the minimum count of an item in the sketch is greater than a threshold, do we insert into the heap.
My question is, does this mean we are probabilistically answering the heavy hitters problem? Would the corresponding question be "with probability of 10%, which item was the second most frequent in the stream of data?"

From Wikipedia:
In the data stream model, the frequent elements problem is to output a
set of elements that constitute more than some fixed fraction of the
stream. A special case is the majority problem, which is to determine
whether or not any value constitutes a majority of the stream.
More formally, fix some positive constant c > 1, let the length of the
stream be m, and let fi denote the frequency of value i in the stream.
The frequent elements problem is to output the set { i | fi > m/c
}.
Some notable algorithms are:
Boyer–Moore majority vote algorithm
Karp-Papadimitriou-Shenker algorithm
Count-Min sketch
Sticky sampling
Lossy counting
Sample and Hold
Multi-stage Bloom filters
Count-sketch
Sketch-guided sampling
Event detection Detecting events in data streams is often done using a
heavy hitters algorithm as listed above: the most frequent items and
their frequency are determined using one of these algorithms, then the
largest increase over the previous time point is reported as trend.
This approach can be refined by using exponentially weighted moving
averages and variance for normalization.
So, yes. CMS can be used to determine frequency (in an approximative manner), which can be used to answer the HH question.

Related

What does "algorithm problem size" actually mean?

I'm currently in a Data Structures course at my university and did do some algorithm analysis in a prior class, but it was the section I had the most difficult time with in the previous course. We are now going over algorithm analysis in my data structures course and so I'm going back through my textbook from the previous course to see what it says on the matter.
In the textbook, it says "For every algorithm we want to analyze, we need to define the size of the prob-
lem." Doing some Google searching, it's not entirely clear what "problem size" actually means. I'm trying to get a more concrete definition of what a problem size is so I can identify it in an algorithm.
I know that, if I have an algorithm that is sorting a list of numbers, the problem size is n, the size of the list. With that said, saying that doesn't clarify what "problem size" actually is, except for in that context. An algorithm is not just a process to sort numbers, so I can't always say that the problem size is the number of elements in a list.
Hoping someone out there can clarify things for me, and that you all are doing well.
Thank you
The answer is right there in the part you quoted (emphasis mine):
For every algorithm we want to analyze, we need to define the size of the problem
The "problem size" is only defined numerically relative to the algorithm. For an algorithm where the input is an array or a list, the problem size is typically measured by its length; for a graph algorithm, the problem size is typically measured by the number of vertices and the number of edges (with two variables); for an algorithm where the input is a single number, the problem size may be measured by the number itself, or the amount of bits required to represent the number in binary, depending on context.
So the meaning of "problem size" is specific to the problem that the algorithm solves. If you want a more universal definition which could apply to all problems, then the problem size can be defined as the number of bits required to represent the input; but this definition is not practical, and is only used in theory to talk about classes of problems (such as those which are solvable in polynomial time).
The problem size is the number of bits needed to store an instance of the problem, when it is specified in a reasonable encoding.
To clarify the concept, let me define this in the layman's terms:
Given:
You have a big phone book.
Problem:
You are told to find the number of person John Mcallister.
Approach:
You can either search for this entry through each page (in the linear manner);
or, if the phone-book is sorted, you can utilize Binary Search;
Answer to your question:
Algorithm problem here is Finding the entry in the Phone Book;
Algorithm problem's size is the size of data, your algorithm should apply to (in your case, it's the size of your phone-book. If it has 10 entries per each page, and the book has 50 pages, the size is 50x10=500, to wit, 500 entries.)
As your algorithm should solve your task of examining entire phone book, the size of your task/problem, which you implement the algorithm for, is 500.
Problem Size is generally denoted with n and it literally means the size of input data.

Identify more Compressible Dataset by observing Input distribution

This may be a repeat of the question here: Predict Huffman compression ratio without constructing the tree
So basically, I have the probabilistic distribution of two datasets with the same variables but different probabilities. Now, is there any way that by looking at the variable distribution, I can to some degree confidently say that the dataset, when passed through a Huffman Coding implementation would achieve a higher compression ratio than the other?
One of the solutions that I came across was to calculate the upper bound using conditional entropy and then compute the average code length. Is there any other approach that can I can probably explore before using the said method?
Thanks a lot.
I don't know what "to some degree confidently" means, but you can get a lower bound on the compressed size of each set by computing the zero-order entropy as done in the linked question (the negative of the sum of the probabilities times the log of the probabilities). Then the lower entropy very likely produces a shorter Huffman coding than the higher entropy. It is not definite, as I am sure that one could come up with a counter-example.
You also need to send a description of the code itself if you want to decode it on the other end, which adds a wrinkle to the comparison. However if the data is much larger than the code description, then that will be lost in the noise.
Simply generating the code, the coded data, and the code description is very fast. The best solution is to do that, and compare the resulting number of bits directly.

KMeans evaluation metric not converging. Is this normal behavior or no?

I'm working on a problem that necessitates running KMeans separately on ~125 different datasets. Therefore, I'm looking to mathematically calculate the 'optimal' K for each respective dataset. However, the evaluation metric continues decreasing with higher K values.
For a sample dataset, there are 50K rows and 8 columns. Using sklearn's calinski-harabaz score, I'm iterating through different K values to find the optimum / minimum score. However, my code reached k=5,600 and the calinski-harabaz score was still decreasing!
Something weird seems to be happening. Does the metric not work well? Could my data be flawed (see my question about normalizing rows after PCA)? Is there another/better way to mathematically converge on the 'optimal' K? Or should I force myself to manually pick a constant K across all datasets?
Any additional perspectives would be helpful. Thanks!
I don't know anything about the calinski-harabaz score but some score metrics will be monotone increasing/decreasing with respect to increasing K. For instance the mean squared error for linear regression will always decrease each time a new feature is added to the model so other scores that add penalties for increasing number of features have been developed.
There is a very good answer here that covers CH scores well. A simple method that generally works well for these monotone scoring metrics is to plot K vs the score and choose the K where the score is no longer improving 'much'. This is very subjective but can still give good results.
SUMMARY
The metric decreases with each increase of K; this strongly suggests that you do not have a natural clustering upon the data set.
DISCUSSION
CH scores depend on the ratio between intra- and inter-cluster densities. For a relatively smooth distribution of points, each increase in K will give you clusters that are slightly more dense, with slightly lower density between them. Try a lattice of points: vary the radius and do the computations by hand; you'll see how that works. At the extreme end, K = n: each point is its own cluster, with infinite density, and 0 density between clusters.
OTHER METRICS
Perhaps the simplest metric is sum-of-squares, which is already part of the clustering computations. Sum the squares of distances from the centroid, divide by n-1 (n=cluster population), and then add/average those over all clusters.
I'm looking for a particular paper that discusses metrics for this very problem; if I can find the reference, I'll update this answer.
N.B. With any metric you choose (as with CH), a failure to find a local minimum suggests that the data really don't have a natural clustering.
WHAT TO DO NEXT?
Render your data in some form you can visualize. If you see a natural clustering, look at the characteristics; how is it that you can see it, but the algebra (metrics) cannot? Formulate a metric that highlights the differences you perceive.
I know, this is an effort similar to the problem you're trying to automate. Welcome to research. :-)
The problem with my question is that the 'best' Calinski-Harabaz score is the maximum, whereas my question assumed the 'best' was the minimum. It is computed by analyzing the ratio of between-cluster dispersion vs. within-cluster dispersion, the former/numerator you want to maximize, the latter/denominator you want to minimize. As it turned out, in this dataset, the 'best' CH score was with 2 clusters (the minimum available for comparison). I actually ran with K=1, and this produced good results as well. As Prune suggested, there appears to be no natural grouping within the dataset.

Online algorithm for computing average and variance from a subset of data

I took this as a reference for online computing the variance and mean from a variable-length array of data: http://www.johndcook.com/standard_deviation.html.
The data is a set from 16-bit unsigned values, which may have any number of samples (actually, the minimum would be about 20 samples, and the maximum about 2e32 samples.
As the dataset may be too big to store, I already implemented this using the above-mentioned online algorithm in C and verified it's computing correctly.
The trouble begins with the following requirement for the application: besides computing the variance and mean for the whole set, I also need to compute a separated result (both mean and variance) for a population comprised of the middle 50% of the values, i.e. disregarding the first 25% and the latter 25% of the samples. The number of samples is not known beforehand, so I must compute the additional set online.
I understand that I can both add and subtract a subset by computing it separately and them using something like the operator+ implementation described here: http://www.johndcook.com/skewness_kurtosis.html (minus the skewness & kurtosis specifics, for which I have no use). The subtraction could be derived from this.
The problem is: how do I maintain these subsets? Or should I try another technique?
If space is an issue, and you'd be happy to accept an approximation, I'd start with the algorithm from the following paper:
M Greenwald, S Khanna, Space-Efficient Online Computation of Quantile Summaries
You can use the algorithm to compute the running estimates of the 25th and 75th percentiles of the observations seen to far. You can then feed those observations that fall between the two percentiles into the Welford algorithm covered in John D Cook's article to compute the running mean and variance.

"On-line" (iterator) algorithms for estimating statistical median, mode, skewness, kurtosis?

Is there an algorithm to estimate the median, mode, skewness, and/or kurtosis of set of values, but that does NOT require storing all the values in memory at once?
I'd like to calculate the basic statistics:
mean: arithmetic average
variance: average of squared deviations from the mean
standard deviation: square root of the variance
median: value that separates larger half of the numbers from the smaller half
mode: most frequent value found in the set
skewness: tl; dr
kurtosis: tl; dr
The basic formulas for calculating any of these is grade-school arithmetic, and I do know them. There are many stats libraries that implement them, as well.
My problem is the large number (billions) of values in the sets I'm handling: Working in Python, I can't just make a list or hash with billions of elements. Even if I wrote this in C, billion-element arrays aren't too practical.
The data is not sorted. It's produced randomly, on-the-fly, by other processes. The size of each set is highly variable, and the sizes will not be known in advance.
I've already figured out how to handle the mean and variance pretty well, iterating through each value in the set in any order. (Actually, in my case, I take them in the order in which they're generated.) Here's the algorithm I'm using, courtesy http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm:
Initialize three variables: count, sum, and sum_of_squares
For each value:
Increment count.
Add the value to sum.
Add the square of the value to sum_of_squares.
Divide sum by count, storing as the variable mean.
Divide sum_of_squares by count, storing as the variable mean_of_squares.
Square mean, storing as square_of_mean.
Subtract square_of_mean from mean_of_squares, storing as variance.
Output mean and variance.
This "on-line" algorithm has weaknesses (e.g., accuracy problems as sum_of_squares quickly grows larger than integer range or float precision), but it basically gives me what I need, without having to store every value in each set.
But I don't know whether similar techniques exist for estimating the additional statistics (median, mode, skewness, kurtosis). I could live with a biased estimator, or even a method that compromises accuracy to a certain degree, as long as the memory required to process N values is substantially less than O(N).
Pointing me to an existing stats library will help, too, if the library has functions to calculate one or more of these operations "on-line".
I use these incremental/recursive mean and median estimators, which both use constant storage:
mean += eta * (sample - mean)
median += eta * sgn(sample - median)
where eta is a small learning rate parameter (e.g. 0.001), and sgn() is the signum function which returns one of {-1, 0, 1}. (Use a constant eta if the data is non-stationary and you want to track changes over time; otherwise, for stationary sources you can use something like eta=1/n for the mean estimator, where n is the number of samples seen so far... unfortunately, this does not appear to work for the median estimator.)
This type of incremental mean estimator seems to be used all over the place, e.g. in unsupervised neural network learning rules, but the median version seems much less common, despite its benefits (robustness to outliers). It seems that the median version could be used as a replacement for the mean estimator in many applications.
I would love to see an incremental mode estimator of a similar form...
UPDATE (2011-09-19)
I just modified the incremental median estimator to estimate arbitrary quantiles. In general, a quantile function tells you the value that divides the data into two fractions: p and 1-p. The following estimates this value incrementally:
quantile += eta * (sgn(sample - quantile) + 2.0 * p - 1.0)
The value p should be within [0,1]. This essentially shifts the sgn() function's symmetrical output {-1,0,1} to lean toward one side, partitioning the data samples into two unequally-sized bins (fractions p and 1-p of the data are less than/greater than the quantile estimate, respectively). Note that for p=0.5, this reduces to the median estimator.
UPDATE (2021-11-19)
For further details about the median estimator described here, I'd like to highlight this paper linked in the comments below: Bylander & Rosen, 1997, A Perceptron-Like Online Algorithm for Tracking the Median. Here is a postscript version from the author's website.
Skewness and Kurtosis
For the on-line algorithms for Skewness and Kurtosis (along the lines of the variance), see in the same wiki page here the parallel algorithms for higher-moment statistics.
Median
Median is tough without sorted data. If you know, how many data points you have, in theory you only have to partially sort, e.g. by using a selection algorithm. However, that doesn't help too much with billions of values. I would suggest using frequency counts, see the next section.
Median and Mode with Frequency Counts
If it is integers, I would count
frequencies, probably cutting off the highest and lowest values beyond some value where I am sure that it is no longer relevant. For floats (or too many integers), I would probably create buckets / intervals, and then use the same approach as for integers. (Approximate) mode and median calculation than gets easy, based on the frequencies table.
Normally Distributed Random Variables
If it is normally distributed, I would use the population sample mean, variance, skewness, and kurtosis as maximum likelihood estimators for a small subset. The (on-line) algorithms to calculate those, you already now. E.g. read in a couple of hundred thousand or million datapoints, until your estimation error gets small enough. Just make sure that you pick randomly from your set (e.g. that you don't introduce a bias by picking the first 100'000 values). The same approach can also be used for estimating mode and median for the normal case (for both the sample mean is an estimator).
Further comments
All the algorithms above can be run in parallel (including many sorting and selection algorithm, e.g. QuickSort and QuickSelect), if this helps.
I have always assumed (with the exception of the section on the normal distribution) that we talk about sample moments, median, and mode, not estimators for theoretical moments given a known distribution.
In general, sampling the data (i.e. only looking at a sub-set) should be pretty successful given the amount of data, as long as all observations are realizations of the same random variable (have the same distributions) and the moments, mode and median actually exist for this distribution. The last caveat is not innocuous. For example, the mean (and all higher moments) for the Cauchy Distribution do not exist. In this case, the sample mean of a "small" sub-set might be massively off from the sample mean of the whole sample.
I implemented the P-Square Algorithm for Dynamic Calculation of Quantiles and Histograms without Storing Observations in a neat Python module I wrote called LiveStats. It should solve your problem quite effectively. The library supports every statistic that you mention except for mode. I have not yet found a satisfactory solution for mode estimation.
Ryan, I'm afraid you are not doing the mean and variance right... This came up a few weeks ago here. And one of the strong points of the online version (which actually goes by the name of Welford's method) is the fact that it is specially accurate and stable, see the discussion here. One of the strong points is the fact that you do not need to store the total sum or total sum of squares...
I can't think of any on-line approach to the mode and median, which seem to require considering the whole list at once. But it may very well be that a similar approach than the one for the variance and mean will work also for the skewness and kurtosis...
The Wikipedia article quoted in the question contains the formulas for calcualting skewness and kurtosis on-line.
For mode - I believe - there is no way doing this on-line. Why? Assume that all values of your input are different besides the last one that duplicates a previous one. In this case you have to remember all values allready seen in the input to detect that the last value duplicates a value seen befor and makes it the most frequent one.
For median it is almost the same - up to the last input you don't know what value will become the median if all input values are different because it could be before or after the current median. If you know the length of the input, you can find the median without storing all values in memory, but you will still have to store many of them (I guess around the half) because a bad input sequence could shift the median heavily in the second half possibly making any value from the first half the median.
(Note that I am refering to exact calculation only.)
If you have billions of data points, then it's not likely that you need exact answers, as opposed to close answers. Generally, if you have billions of data points the underlying process which generates them will likely obey some kind of statistical stationarity / ergodicity / mixing property. Also it may matter whether you expect the distributions to be reasonably continuous or not.
In these circumstances, there exist algorithms for on-line, low memory, estimation of quantiles (the median is a special case of 0.5 quantile), as well as modes, if you don't need exact answers. This is an active field of statistics.
quantile estimation example: http://www.computer.org/portal/web/csdl/doi/10.1109/WSC.2006.323014
mode estimation example: Bickel DR. Robust estimators of the mode and skewness of continuous data. Computational Statistics and Data Analysis. 2002;39:153–163. doi: 10.1016/S0167-9473(01)00057-3.
These are active fields of computational statistics. You are getting into the fields where there isn't any single best exact algorithm, but a diversity of them (statistical estimators, in truth), which have different properties, assumptions and performance. It's experimental mathematics. There are probably hundreds to thousands of papers on the subject.
The final question is whether you really need skewness and kurtosis by themselves, or more likely some other parameters which may be more reliable at characterizing the probability distribution (assuming you have a probability distribution!). Are you expecting a Gaussian?
Do you have ways of cleaning/preprocessing the data to make it mostly Gaussianish? (for instance, financial transaction amounts are often somewhat Gaussian after taking logarithms). Do you expect finite standard deviations? Do you expect fat tails? Are the quantities you care about in the tails or in the bulk?
Everyone keeps saying that you can't do the mode in an online manner but that is simply not true. Here is an article describing an algorithm to do just this very problem invented in 1982 by Michael E. Fischer and Steven L. Salzberg of Yale University. From the article:
The majority-finding algorithm uses one of its registers for temporary
storage of a single item from the stream; this item is the current
candidate for majority element. The second register is a counter
initialized to 0. For each element of the stream, we ask the algorithm
to perform the following routine. If the counter reads 0, install the
current stream element as the new majority candidate (displacing any
other element that might already be in the register). Then, if the
current element matches the majority candidate, increment the counter;
otherwise, decrement the counter. At this point in the cycle, if the
part of the stream seen so far has a majority element, that element is
in the candidate register, and the counter holds a value greater than
0. What if there is no majority ele­ment? Without making a second pass through the data—which isn't possible in a stream environment—the
algorithm cannot always give an unambiguous answer in this
circumstance. It merely promises to correctly identify the majority
element if there is one.
It can also be extended to find the top N with more memory but this should solve it for the mode.
Ultimately if you have no a priori parametric knowledge of the distribution I think you have to store all the values.
That said unless you are dealing with some sort of pathological situation, the remedian (Rousseuw and Bassett 1990) may well be good enough for your purposes.
Very simply it involves calculating the median of batches of medians.
median and mode can't be calculated online using only constant space available. However, because median and mode are anyway more "descriptive" than "quantitative", you can estimate them e.g. by sampling the data set.
If the data is normal distributed in the long run, then you could just use your mean to estimate the median.
You can also estimate median using the following technique: establish a median estimation M[i] for every, say, 1,000,000 entries in the data stream so that M[0] is the median of the first one million entries, M[1] the median of the second one million entries etc. Then use the median of M[0]...M[k] as the median estimator. This of course saves space, and you can control how much you want to use space by "tuning" the parameter 1,000,000. This can be also generalized recursively.
I would tend to use buckets, which could be adaptive. The bucket size should be the accuracy you need. Then as each data point comes in you add one to the relevant bucket's count.
These should give you simple approximations to median and kurtosis, by counting each bucket as its value weighted by its count.
The one problem could be loss of resolution in floating point after billions of operations, i.e. adding one does not change the value any more! To get round this, if the maximum bucket size exceeds some limit you could take a large number off all the counts.
OK dude try these:
for c++:
double skew(double* v, unsigned long n){
double sigma = pow(svar(v, n), 0.5);
double mu = avg(v, n);
double* t;
t = new double[n];
for(unsigned long i = 0; i < n; ++i){
t[i] = pow((v[i] - mu)/sigma, 3);
}
double ret = avg(t, n);
delete [] t;
return ret;
}
double kurt(double* v, double n){
double sigma = pow(svar(v, n), 0.5);
double mu = avg(v, n);
double* t;
t = new double[n];
for(unsigned long i = 0; i < n; ++i){
t[i] = pow( ((v[i] - mu[i]) / sigma) , 4) - 3;
}
double ret = avg(t, n);
delete [] t;
return ret;
}
where you say you can already calculate sample variance (svar) and average (avg)
you point those to your functions for doin that.
Also, have a look at Pearson's approximation thing. on such a large dataset it would be pretty similar.
3 (mean − median) / standard deviation
you have median as max - min/2
for floats mode has no meaning. one would typically stick them in bins of a sginificant size (like 1/100 * (max - min)).
This problem was solved by Pebay et al:
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
Median
Two recent percentile approximation algorithms and their python implementations can be found here:
t-Digests
https://arxiv.org/abs/1902.04023
https://github.com/CamDavidsonPilon/tdigest
DDSketch
https://arxiv.org/abs/1908.10693
https://github.com/DataDog/sketches-py
Both algorithms bucket data. As T-Digest uses smaller bins near the tails the
accuracy is better at the extremes (and weaker close to the median). DDSketch additionally provides relative error guarantees.
for j in range (1,M):
y=np.zeros(M) # build the vector y
y[0]=y0
#generate the white noise
eps=npr.randn(M-1)*np.sqrt(var)
#increment the y vector
for k in range(1,T):
y[k]=corr*y[k-1]+eps[k-1]
yy[j]=y
list.append(y)

Resources