Online algorithm for computing average and variance from a subset of data - algorithm

I took this as a reference for online computing the variance and mean from a variable-length array of data: http://www.johndcook.com/standard_deviation.html.
The data is a set from 16-bit unsigned values, which may have any number of samples (actually, the minimum would be about 20 samples, and the maximum about 2e32 samples.
As the dataset may be too big to store, I already implemented this using the above-mentioned online algorithm in C and verified it's computing correctly.
The trouble begins with the following requirement for the application: besides computing the variance and mean for the whole set, I also need to compute a separated result (both mean and variance) for a population comprised of the middle 50% of the values, i.e. disregarding the first 25% and the latter 25% of the samples. The number of samples is not known beforehand, so I must compute the additional set online.
I understand that I can both add and subtract a subset by computing it separately and them using something like the operator+ implementation described here: http://www.johndcook.com/skewness_kurtosis.html (minus the skewness & kurtosis specifics, for which I have no use). The subtraction could be derived from this.
The problem is: how do I maintain these subsets? Or should I try another technique?

If space is an issue, and you'd be happy to accept an approximation, I'd start with the algorithm from the following paper:
M Greenwald, S Khanna, Space-Efficient Online Computation of Quantile Summaries
You can use the algorithm to compute the running estimates of the 25th and 75th percentiles of the observations seen to far. You can then feed those observations that fall between the two percentiles into the Welford algorithm covered in John D Cook's article to compute the running mean and variance.

Related

KMeans evaluation metric not converging. Is this normal behavior or no?

I'm working on a problem that necessitates running KMeans separately on ~125 different datasets. Therefore, I'm looking to mathematically calculate the 'optimal' K for each respective dataset. However, the evaluation metric continues decreasing with higher K values.
For a sample dataset, there are 50K rows and 8 columns. Using sklearn's calinski-harabaz score, I'm iterating through different K values to find the optimum / minimum score. However, my code reached k=5,600 and the calinski-harabaz score was still decreasing!
Something weird seems to be happening. Does the metric not work well? Could my data be flawed (see my question about normalizing rows after PCA)? Is there another/better way to mathematically converge on the 'optimal' K? Or should I force myself to manually pick a constant K across all datasets?
Any additional perspectives would be helpful. Thanks!
I don't know anything about the calinski-harabaz score but some score metrics will be monotone increasing/decreasing with respect to increasing K. For instance the mean squared error for linear regression will always decrease each time a new feature is added to the model so other scores that add penalties for increasing number of features have been developed.
There is a very good answer here that covers CH scores well. A simple method that generally works well for these monotone scoring metrics is to plot K vs the score and choose the K where the score is no longer improving 'much'. This is very subjective but can still give good results.
SUMMARY
The metric decreases with each increase of K; this strongly suggests that you do not have a natural clustering upon the data set.
DISCUSSION
CH scores depend on the ratio between intra- and inter-cluster densities. For a relatively smooth distribution of points, each increase in K will give you clusters that are slightly more dense, with slightly lower density between them. Try a lattice of points: vary the radius and do the computations by hand; you'll see how that works. At the extreme end, K = n: each point is its own cluster, with infinite density, and 0 density between clusters.
OTHER METRICS
Perhaps the simplest metric is sum-of-squares, which is already part of the clustering computations. Sum the squares of distances from the centroid, divide by n-1 (n=cluster population), and then add/average those over all clusters.
I'm looking for a particular paper that discusses metrics for this very problem; if I can find the reference, I'll update this answer.
N.B. With any metric you choose (as with CH), a failure to find a local minimum suggests that the data really don't have a natural clustering.
WHAT TO DO NEXT?
Render your data in some form you can visualize. If you see a natural clustering, look at the characteristics; how is it that you can see it, but the algebra (metrics) cannot? Formulate a metric that highlights the differences you perceive.
I know, this is an effort similar to the problem you're trying to automate. Welcome to research. :-)
The problem with my question is that the 'best' Calinski-Harabaz score is the maximum, whereas my question assumed the 'best' was the minimum. It is computed by analyzing the ratio of between-cluster dispersion vs. within-cluster dispersion, the former/numerator you want to maximize, the latter/denominator you want to minimize. As it turned out, in this dataset, the 'best' CH score was with 2 clusters (the minimum available for comparison). I actually ran with K=1, and this produced good results as well. As Prune suggested, there appears to be no natural grouping within the dataset.

Clustering by date (by distance) in Ruby

I have a huge journal with actions done by users (like, for example, moderating contents).
I would like to find the 'mass' actions, meaning the actions that are too dense (the user probably made those actions without thinking it too much :) ).
That would translate to clustering the actions by date (in a linear space), and to marking the clusters that are too dense.
I am no expert in clustering algorithms and methods, but I think the k-means clustering would not do the trick, since I don't know the number of clusters.
Also, ideally, I would also like to 'fine tune' the algorithm.
What would you advice?
P.S. Here are some resources that I found (in Ruby):
hierclust - a simple hierarchical clustering library for spatial data
AI4R - library that implements some clustering algorithms
K-means would probably do a good job as long as you're interested in an a priori known number of clusters. Since you don't you might consider reading about the LBG algorithm, which is based on k-means and is used in data compression for vector quantisation. It's basically iterative k-means which splits centroids after they converge and keeps splitting until you achieve an acceptable number of clusters.
On the other hand, since your data is one-dimensional, you could do something completely different.
Assume that you've got actions which took place at 5 points in time: (8, 11, 15, 16, 17). Let's plot a Gaussian for each of these actions with μ equal to the time and σ = 3.
Now let's see how a sum of values of these Gaussians looks like.
It shows a density of actions with a peak around 16.
Based on this observation I propose a following simple algorithm.
Create a vector of zeroes for the time range of interest.
For each action calculate the Gaussian and add it to the vector.
Scan the vector looking for values which are greater than the maximum value in the vector multiplied by α.
Note that for each action only a small section of the vector needs updates because values of a Gaussian converge to zero very quickly.
You can tune the algorithm by adjusting values of
α ∈ [0,1], which indicates how significant a peak of activity has to be to be noted,
σ, which affects the distance of actions which are considered close to each other, and
time periods per vector's element (minutes, seconds, etc.).
Notice that the algorithm is linear with regard to the number of actions. Moreover, it shouldn't be difficult to parallelise: split your data across multiple processes summing Gaussians and then sum generated vectors.
Have a look at density based clustering. E.g. DBSCAN and OPTICS.
This sounds like exactly what you want.

Nearest neighbors in high-dimensional data?

I have asked a question a few days back on how to find the nearest neighbors for a given vector. My vector is now 21 dimensions and before I proceed further, because I am not from the domain of Machine Learning nor Math, I am beginning to ask myself some fundamental questions:
Is Euclidean distance a good metric for finding the nearest neighbors in the first place? If not, what are my options?
In addition, how does one go about deciding the right threshold for determining the k-neighbors? Is there some analysis that can be done to figure this value out?
Previously, I was suggested to use kd-Trees but the Wikipedia page clearly says that for high-dimensions, kd-Tree is almost equivalent to a brute-force search. In that case, what is the best way to find nearest-neighbors in a million point dataset efficiently?
Can someone please clarify the some (or all) of the above questions?
I currently study such problems -- classification, nearest neighbor searching -- for music information retrieval.
You may be interested in Approximate Nearest Neighbor (ANN) algorithms. The idea is that you allow the algorithm to return sufficiently near neighbors (perhaps not the nearest neighbor); in doing so, you reduce complexity. You mentioned the kd-tree; that is one example. But as you said, kd-tree works poorly in high dimensions. In fact, all current indexing techniques (based on space partitioning) degrade to linear search for sufficiently high dimensions [1][2][3].
Among ANN algorithms proposed recently, perhaps the most popular is Locality-Sensitive Hashing (LSH), which maps a set of points in a high-dimensional space into a set of bins, i.e., a hash table [1][3]. But unlike traditional hashes, a locality-sensitive hash places nearby points into the same bin.
LSH has some huge advantages. First, it is simple. You just compute the hash for all points in your database, then make a hash table from them. To query, just compute the hash of the query point, then retrieve all points in the same bin from the hash table.
Second, there is a rigorous theory that supports its performance. It can be shown that the query time is sublinear in the size of the database, i.e., faster than linear search. How much faster depends upon how much approximation we can tolerate.
Finally, LSH is compatible with any Lp norm for 0 < p <= 2. Therefore, to answer your first question, you can use LSH with the Euclidean distance metric, or you can use it with the Manhattan (L1) distance metric. There are also variants for Hamming distance and cosine similarity.
A decent overview was written by Malcolm Slaney and Michael Casey for IEEE Signal Processing Magazine in 2008 [4].
LSH has been applied seemingly everywhere. You may want to give it a try.
[1] Datar, Indyk, Immorlica, Mirrokni, "Locality-Sensitive Hashing Scheme Based on p-Stable Distributions," 2004.
[2] Weber, Schek, Blott, "A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces," 1998.
[3] Gionis, Indyk, Motwani, "Similarity search in high dimensions via hashing," 1999.
[4] Slaney, Casey, "Locality-sensitive hashing for finding nearest neighbors", 2008.
I. The Distance Metric
First, the number of features (columns) in a data set is not a factor in selecting a distance metric for use in kNN. There are quite a few published studies directed to precisely this question, and the usual bases for comparison are:
the underlying statistical
distribution of your data;
the relationship among the features
that comprise your data (are they
independent--i.e., what does the
covariance matrix look like); and
the coordinate space from which your
data was obtained.
If you have no prior knowledge of the distribution(s) from which your data was sampled, at least one (well documented and thorough) study concludes that Euclidean distance is the best choice.
YEuclidean metric used in mega-scale Web Recommendation Engines as well as in current academic research. Distances calculated by Euclidean have intuitive meaning and the computation scales--i.e., Euclidean distance is calculated the same way, whether the two points are in two dimension or in twenty-two dimension space.
It has only failed for me a few times, each of those cases Euclidean distance failed because the underlying (cartesian) coordinate system was a poor choice. And you'll usually recognize this because for instance path lengths (distances) are no longer additive--e.g., when the metric space is a chessboard, Manhattan distance is better than Euclidean, likewise when the metric space is Earth and your distances are trans-continental flights, a distance metric suitable for a polar coordinate system is a good idea (e.g., London to Vienna is is 2.5 hours, Vienna to St. Petersburg is another 3 hrs, more or less in the same direction, yet London to St. Petersburg isn't 5.5 hours, instead, is a little over 3 hrs.)
But apart from those cases in which your data belongs in a non-cartesian coordinate system, the choice of distance metric is usually not material. (See this blog post from a CS student, comparing several distance metrics by examining their effect on kNN classifier--chi square give the best results, but the differences are not large; A more comprehensive study is in the academic paper, Comparative Study of Distance Functions for Nearest Neighbors--Mahalanobis (essentially Euclidean normalized by to account for dimension covariance) was the best in this study.
One important proviso: for distance metric calculations to be meaningful, you must re-scale your data--rarely is it possible to build a kNN model to generate accurate predictions without doing this. For instance, if you are building a kNN model to predict athletic performance, and your expectation variables are height (cm), weight (kg), bodyfat (%), and resting pulse (beats per minute), then a typical data point might look something like this: [ 180.4, 66.1, 11.3, 71 ]. Clearly the distance calculation will be dominated by height, while the contribution by bodyfat % will be almost negligible. Put another way, if instead, the data were reported differently, so that bodyweight was in grams rather than kilograms, then the original value of 86.1, would be 86,100, which would have a large effect on your results, which is exactly what you don't want. Probably the most common scaling technique is subtracting the mean and dividing by the standard deviation (mean and sd refer calculated separately for each column, or feature in that data set; X refers to an individual entry/cell within a data row):
X_new = (X_old - mu) / sigma
II. The Data Structure
If you are concerned about performance of the kd-tree structure, A Voronoi Tessellation is a conceptually simple container but that will drastically improve performance and scales better than kd-Trees.
This is not the most common way to persist kNN training data, though the application of VT for this purpose, as well as the consequent performance advantages, are well-documented (see e.g. this Microsoft Research report). The practical significance of this is that, provided you are using a 'mainstream' language (e.g., in the TIOBE Index) then you ought to find a library to perform VT. I know in Python and R, there are multiple options for each language (e.g., the voronoi package for R available on CRAN)
Using a VT for kNN works like this::
From your data, randomly select w points--these are your Voronoi centers. A Voronoi cell encapsulates all neighboring points that are nearest to each center. Imagine if you assign a different color to each of Voronoi centers, so that each point assigned to a given center is painted that color. As long as you have a sufficient density, doing this will nicely show the boundaries of each Voronoi center (as the boundary that separates two colors.
How to select the Voronoi Centers? I use two orthogonal guidelines. After random selecting the w points, calculate the VT for your training data. Next check the number of data points assigned to each Voronoi center--these values should be about the same (given uniform point density across your data space). In two dimensions, this would cause a VT with tiles of the same size.That's the first rule, here's the second. Select w by iteration--run your kNN algorithm with w as a variable parameter, and measure performance (time required to return a prediction by querying the VT).
So imagine you have one million data points..... If the points were persisted in an ordinary 2D data structure, or in a kd-tree, you would perform on average a couple million distance calculations for each new data points whose response variable you wish to predict. Of course, those calculations are performed on a single data set. With a V/T, the nearest-neighbor search is performed in two steps one after the other, against two different populations of data--first against the Voronoi centers, then once the nearest center is found, the points inside the cell corresponding to that center are searched to find the actual nearest neighbor (by successive distance calculations) Combined, these two look-ups are much faster than a single brute-force look-up. That's easy to see: for 1M data points, suppose you select 250 Voronoi centers to tesselate your data space. On average, each Voronoi cell will have 4,000 data points. So instead of performing on average 500,000 distance calculations (brute force), you perform far lesss, on average just 125 + 2,000.
III. Calculating the Result (the predicted response variable)
There are two steps to calculating the predicted value from a set of kNN training data. The first is identifying n, or the number of nearest neighbors to use for this calculation. The second is how to weight their contribution to the predicted value.
W/r/t the first component, you can determine the best value of n by solving an optimization problem (very similar to least squares optimization). That's the theory; in practice, most people just use n=3. In any event, it's simple to run your kNN algorithm over a set of test instances (to calculate predicted values) for n=1, n=2, n=3, etc. and plot the error as a function of n. If you just want a plausible value for n to get started, again, just use n = 3.
The second component is how to weight the contribution of each of the neighbors (assuming n > 1).
The simplest weighting technique is just multiplying each neighbor by a weighting coefficient, which is just the 1/(dist * K), or the inverse of the distance from that neighbor to the test instance often multiplied by some empirically derived constant, K. I am not a fan of this technique because it often over-weights the closest neighbors (and concomitantly under-weights the more distant ones); the significance of this is that a given prediction can be almost entirely dependent on a single neighbor, which in turn increases the algorithm's sensitivity to noise.
A must better weighting function, which substantially avoids this limitation is the gaussian function, which in python, looks like this:
def weight_gauss(dist, sig=2.0) :
return math.e**(-dist**2/(2*sig**2))
To calculate a predicted value using your kNN code, you would identify the n nearest neighbors to the data point whose response variable you wish to predict ('test instance'), then call the weight_gauss function, once for each of the n neighbors, passing in the distance between each neighbor the the test point.This function will return the weight for each neighbor, which is then used as that neighbor's coefficient in the weighted average calculation.
What you are facing is known as the curse of dimensionality. It is sometimes useful to run an algorithm like PCA or ICA to make sure that you really need all 21 dimensions and possibly find a linear transformation which would allow you to use less than 21 with approximately the same result quality.
Update:
I encountered them in a book called Biomedical Signal Processing by Rangayyan (I hope I remember it correctly). ICA is not a trivial technique, but it was developed by researchers in Finland and I think Matlab code for it is publicly available for download. PCA is a more widely used technique and I believe you should be able to find its R or other software implementation. PCA is performed by solving linear equations iteratively. I've done it too long ago to remember how. = )
The idea is that you break up your signals into independent eigenvectors (discrete eigenfunctions, really) and their eigenvalues, 21 in your case. Each eigenvalue shows the amount of contribution each eigenfunction provides to each of your measurements. If an eigenvalue is tiny, you can very closely represent the signals without using its corresponding eigenfunction at all, and that's how you get rid of a dimension.
Top answers are good but old, so I'd like to add up a 2016 answer.
As said, in a high dimensional space, the curse of dimensionality lurks around the corner, making the traditional approaches, such as the popular k-d tree, to be as slow as a brute force approach. As a result, we turn our interest in Approximate Nearest Neighbor Search (ANNS), which in favor of some accuracy, speedups the process. You get a good approximation of the exact NN, with a good propability.
Hot topics that might be worthy:
Modern approaches of LSH, such as Razenshteyn's.
RKD forest: Forest(s) of Randomized k-d trees (RKD), as described in FLANN,
or in a more recent approach I was part of, kd-GeRaF.
LOPQ which stands for Locally Optimized Product Quantization, as described here. It is very similar to the new Babenko+Lemptitsky's approach.
You can also check my relevant answers:
Two sets of high dimensional points: Find the nearest neighbour in the other set
Comparison of the runtime of Nearest Neighbor queries on different data structures
PCL kd-tree implementation extremely slow
To answer your questions one by one:
No, euclidean distance is a bad metric in high dimensional space. Basically in high dimensions, data points have large differences between each other. That decreases the relative difference in the distance between a given data point and its nearest and farthest neighbour.
Lot of papers/research are there in high dimension data, but most of the stuff requires a lot of mathematical sophistication.
KD tree is bad for high dimensional data ... avoid it by all means
Here is a nice paper to get you started in the right direction. "When in Nearest Neighbour meaningful?" by Beyer et all.
I work with text data of dimensions 20K and above. If you want some text related advice, I might be able to help you out.
Cosine similarity is a common way to compare high-dimension vectors. Note that since it's a similarity not a distance, you'd want to maximize it not minimize it. You can also use a domain-specific way to compare the data, for example if your data was DNA sequences, you could use a sequence similarity that takes into account probabilities of mutations, etc.
The number of nearest neighbors to use varies depending on the type of data, how much noise there is, etc. There are no general rules, you just have to find what works best for your specific data and problem by trying all values within a range. People have an intuitive understanding that the more data there is, the fewer neighbors you need. In a hypothetical situation where you have all possible data, you only need to look for the single nearest neighbor to classify.
The k Nearest Neighbor method is known to be computationally expensive. It's one of the main reasons people turn to other algorithms like support vector machines.
kd-trees indeed won't work very well on high-dimensional data. Because the pruning step no longer helps a lot, as the closest edge - a 1 dimensional deviation - will almost always be smaller than the full-dimensional deviation to the known nearest neighbors.
But furthermore, kd-trees only work well with Lp norms for all I know, and there is the distance concentration effect that makes distance based algorithms degrade with increasing dimensionality.
For further information, you may want to read up on the curse of dimensionality, and the various variants of it (there is more than one side to it!)
I'm not convinced there is a lot use to just blindly approximating Euclidean nearest neighbors e.g. using LSH or random projections. It may be necessary to use a much more fine tuned distance function in the first place!
A lot depends on why you want to know the nearest neighbors. You might look into the mean shift algorithm http://en.wikipedia.org/wiki/Mean-shift if what you really want is to find the modes of your data set.
I think cosine on tf-idf of boolean features would work well for most problems. That's because its time-proven heuristic used in many search engines like Lucene. Euclidean distance in my experience shows bad results for any text-like data. Selecting different weights and k-examples can be done with training data and brute-force parameter selection.
iDistance is probably the best for exact knn retrieval in high-dimensional data. You can view it as an approximate Voronoi tessalation.
I've experienced the same problem and can say the following.
Euclidean distance is a good distance metric, however it's computationally more expensive than the Manhattan distance, and sometimes yields slightly poorer results, thus, I'd choose the later.
The value of k can be found empirically. You can try different values and check the resulting ROC curves or some other precision/recall measure in order to find an acceptable value.
Both Euclidean and Manhattan distances respect the Triangle inequality, thus you can use them in metric trees. Indeed, KD-trees have their performance severely degraded when the data have more than 10 dimensions (I've experienced that problem myself). I found VP-trees to be a better option.
KD Trees work fine for 21 dimensions, if you quit early,
after looking at say 5 % of all the points.
FLANN does this (and other speedups)
to match 128-dim SIFT vectors. (Unfortunately FLANN does only the Euclidean metric,
and the fast and solid
scipy.spatial.cKDTree
does only Lp metrics;
these may or may not be adequate for your data.)
There is of course a speed-accuracy tradeoff here.
(If you could describe your Ndata, Nquery, data distribution,
that might help people to try similar data.)
Added 26 April, run times for cKDTree with cutoff on my old mac ppc, to give a very rough idea of feasibility:
kdstats.py p=2 dim=21 N=1000000 nask=1000 nnear=2 cutoff=1000 eps=0 leafsize=10 clustype=uniformp
14 sec to build KDtree of 1000000 points
kdtree: 1000 queries looked at av 0.1 % of the 1000000 points, 0.31 % of 188315 boxes; better 0.0042 0.014 0.1 %
3.5 sec to query 1000 points
distances to 2 nearest: av 0.131 max 0.253
kdstats.py p=2 dim=21 N=1000000 nask=1000 nnear=2 cutoff=5000 eps=0 leafsize=10 clustype=uniformp
14 sec to build KDtree of 1000000 points
kdtree: 1000 queries looked at av 0.48 % of the 1000000 points, 1.1 % of 188315 boxes; better 0.0071 0.026 0.5 %
15 sec to query 1000 points
distances to 2 nearest: av 0.131 max 0.245
You could try a z order curve. It's easy for 3 dimension.
I had a similar question a while back. For fast Approximate Nearest Neighbor Search you can use the annoy library from spotify: https://github.com/spotify/annoy
This is some example code for the Python API, which is optimized in C++.
from annoy import AnnoyIndex
import random
f = 40
t = AnnoyIndex(f, 'angular') # Length of item vector that will be indexed
for i in range(1000):
v = [random.gauss(0, 1) for z in range(f)]
t.add_item(i, v)
t.build(10) # 10 trees
t.save('test.ann')
# ...
u = AnnoyIndex(f, 'angular')
u.load('test.ann') # super fast, will just mmap the file
print(u.get_nns_by_item(0, 1000)) # will find the 1000 nearest neighbors
They provide different distance measurements. Which distance measurement you want to apply depends highly on your individual problem. Also consider prescaling (meaning weighting) certain dimensions for importance first. Those dimension or feature importance weights might be calculated by something like entropy loss or if you have a supervised learning problem gini impurity gain or mean average loss, where you check how much worse your machine learning model performs, if you scramble this dimensions values.
Often the direction of the vector is more important than it's absolute value. For example in the semantic analysis of text documents, where we want document vectors to be close when their semantics are similar, not their lengths. Thus we can either normalize those vectors to unit length or use angular distance (i.e. cosine similarity) as a distance measurement.
Hope this is helpful.
Is Euclidean distance a good metric for finding the nearest neighbors in the first place? If not, what are my options?
I would suggest soft subspace clustering, a pretty common approach nowadays, where feature weights are calculated to find the most relevant dimensions. You can use these weights when using euclidean distance, for example. See curse of dimensionality for common problems and also this article can enlighten you somehow:
A k-means type clustering algorithm for subspace clustering of mixed numeric and
categorical datasets

"On-line" (iterator) algorithms for estimating statistical median, mode, skewness, kurtosis?

Is there an algorithm to estimate the median, mode, skewness, and/or kurtosis of set of values, but that does NOT require storing all the values in memory at once?
I'd like to calculate the basic statistics:
mean: arithmetic average
variance: average of squared deviations from the mean
standard deviation: square root of the variance
median: value that separates larger half of the numbers from the smaller half
mode: most frequent value found in the set
skewness: tl; dr
kurtosis: tl; dr
The basic formulas for calculating any of these is grade-school arithmetic, and I do know them. There are many stats libraries that implement them, as well.
My problem is the large number (billions) of values in the sets I'm handling: Working in Python, I can't just make a list or hash with billions of elements. Even if I wrote this in C, billion-element arrays aren't too practical.
The data is not sorted. It's produced randomly, on-the-fly, by other processes. The size of each set is highly variable, and the sizes will not be known in advance.
I've already figured out how to handle the mean and variance pretty well, iterating through each value in the set in any order. (Actually, in my case, I take them in the order in which they're generated.) Here's the algorithm I'm using, courtesy http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm:
Initialize three variables: count, sum, and sum_of_squares
For each value:
Increment count.
Add the value to sum.
Add the square of the value to sum_of_squares.
Divide sum by count, storing as the variable mean.
Divide sum_of_squares by count, storing as the variable mean_of_squares.
Square mean, storing as square_of_mean.
Subtract square_of_mean from mean_of_squares, storing as variance.
Output mean and variance.
This "on-line" algorithm has weaknesses (e.g., accuracy problems as sum_of_squares quickly grows larger than integer range or float precision), but it basically gives me what I need, without having to store every value in each set.
But I don't know whether similar techniques exist for estimating the additional statistics (median, mode, skewness, kurtosis). I could live with a biased estimator, or even a method that compromises accuracy to a certain degree, as long as the memory required to process N values is substantially less than O(N).
Pointing me to an existing stats library will help, too, if the library has functions to calculate one or more of these operations "on-line".
I use these incremental/recursive mean and median estimators, which both use constant storage:
mean += eta * (sample - mean)
median += eta * sgn(sample - median)
where eta is a small learning rate parameter (e.g. 0.001), and sgn() is the signum function which returns one of {-1, 0, 1}. (Use a constant eta if the data is non-stationary and you want to track changes over time; otherwise, for stationary sources you can use something like eta=1/n for the mean estimator, where n is the number of samples seen so far... unfortunately, this does not appear to work for the median estimator.)
This type of incremental mean estimator seems to be used all over the place, e.g. in unsupervised neural network learning rules, but the median version seems much less common, despite its benefits (robustness to outliers). It seems that the median version could be used as a replacement for the mean estimator in many applications.
I would love to see an incremental mode estimator of a similar form...
UPDATE (2011-09-19)
I just modified the incremental median estimator to estimate arbitrary quantiles. In general, a quantile function tells you the value that divides the data into two fractions: p and 1-p. The following estimates this value incrementally:
quantile += eta * (sgn(sample - quantile) + 2.0 * p - 1.0)
The value p should be within [0,1]. This essentially shifts the sgn() function's symmetrical output {-1,0,1} to lean toward one side, partitioning the data samples into two unequally-sized bins (fractions p and 1-p of the data are less than/greater than the quantile estimate, respectively). Note that for p=0.5, this reduces to the median estimator.
UPDATE (2021-11-19)
For further details about the median estimator described here, I'd like to highlight this paper linked in the comments below: Bylander & Rosen, 1997, A Perceptron-Like Online Algorithm for Tracking the Median. Here is a postscript version from the author's website.
Skewness and Kurtosis
For the on-line algorithms for Skewness and Kurtosis (along the lines of the variance), see in the same wiki page here the parallel algorithms for higher-moment statistics.
Median
Median is tough without sorted data. If you know, how many data points you have, in theory you only have to partially sort, e.g. by using a selection algorithm. However, that doesn't help too much with billions of values. I would suggest using frequency counts, see the next section.
Median and Mode with Frequency Counts
If it is integers, I would count
frequencies, probably cutting off the highest and lowest values beyond some value where I am sure that it is no longer relevant. For floats (or too many integers), I would probably create buckets / intervals, and then use the same approach as for integers. (Approximate) mode and median calculation than gets easy, based on the frequencies table.
Normally Distributed Random Variables
If it is normally distributed, I would use the population sample mean, variance, skewness, and kurtosis as maximum likelihood estimators for a small subset. The (on-line) algorithms to calculate those, you already now. E.g. read in a couple of hundred thousand or million datapoints, until your estimation error gets small enough. Just make sure that you pick randomly from your set (e.g. that you don't introduce a bias by picking the first 100'000 values). The same approach can also be used for estimating mode and median for the normal case (for both the sample mean is an estimator).
Further comments
All the algorithms above can be run in parallel (including many sorting and selection algorithm, e.g. QuickSort and QuickSelect), if this helps.
I have always assumed (with the exception of the section on the normal distribution) that we talk about sample moments, median, and mode, not estimators for theoretical moments given a known distribution.
In general, sampling the data (i.e. only looking at a sub-set) should be pretty successful given the amount of data, as long as all observations are realizations of the same random variable (have the same distributions) and the moments, mode and median actually exist for this distribution. The last caveat is not innocuous. For example, the mean (and all higher moments) for the Cauchy Distribution do not exist. In this case, the sample mean of a "small" sub-set might be massively off from the sample mean of the whole sample.
I implemented the P-Square Algorithm for Dynamic Calculation of Quantiles and Histograms without Storing Observations in a neat Python module I wrote called LiveStats. It should solve your problem quite effectively. The library supports every statistic that you mention except for mode. I have not yet found a satisfactory solution for mode estimation.
Ryan, I'm afraid you are not doing the mean and variance right... This came up a few weeks ago here. And one of the strong points of the online version (which actually goes by the name of Welford's method) is the fact that it is specially accurate and stable, see the discussion here. One of the strong points is the fact that you do not need to store the total sum or total sum of squares...
I can't think of any on-line approach to the mode and median, which seem to require considering the whole list at once. But it may very well be that a similar approach than the one for the variance and mean will work also for the skewness and kurtosis...
The Wikipedia article quoted in the question contains the formulas for calcualting skewness and kurtosis on-line.
For mode - I believe - there is no way doing this on-line. Why? Assume that all values of your input are different besides the last one that duplicates a previous one. In this case you have to remember all values allready seen in the input to detect that the last value duplicates a value seen befor and makes it the most frequent one.
For median it is almost the same - up to the last input you don't know what value will become the median if all input values are different because it could be before or after the current median. If you know the length of the input, you can find the median without storing all values in memory, but you will still have to store many of them (I guess around the half) because a bad input sequence could shift the median heavily in the second half possibly making any value from the first half the median.
(Note that I am refering to exact calculation only.)
If you have billions of data points, then it's not likely that you need exact answers, as opposed to close answers. Generally, if you have billions of data points the underlying process which generates them will likely obey some kind of statistical stationarity / ergodicity / mixing property. Also it may matter whether you expect the distributions to be reasonably continuous or not.
In these circumstances, there exist algorithms for on-line, low memory, estimation of quantiles (the median is a special case of 0.5 quantile), as well as modes, if you don't need exact answers. This is an active field of statistics.
quantile estimation example: http://www.computer.org/portal/web/csdl/doi/10.1109/WSC.2006.323014
mode estimation example: Bickel DR. Robust estimators of the mode and skewness of continuous data. Computational Statistics and Data Analysis. 2002;39:153–163. doi: 10.1016/S0167-9473(01)00057-3.
These are active fields of computational statistics. You are getting into the fields where there isn't any single best exact algorithm, but a diversity of them (statistical estimators, in truth), which have different properties, assumptions and performance. It's experimental mathematics. There are probably hundreds to thousands of papers on the subject.
The final question is whether you really need skewness and kurtosis by themselves, or more likely some other parameters which may be more reliable at characterizing the probability distribution (assuming you have a probability distribution!). Are you expecting a Gaussian?
Do you have ways of cleaning/preprocessing the data to make it mostly Gaussianish? (for instance, financial transaction amounts are often somewhat Gaussian after taking logarithms). Do you expect finite standard deviations? Do you expect fat tails? Are the quantities you care about in the tails or in the bulk?
Everyone keeps saying that you can't do the mode in an online manner but that is simply not true. Here is an article describing an algorithm to do just this very problem invented in 1982 by Michael E. Fischer and Steven L. Salzberg of Yale University. From the article:
The majority-finding algorithm uses one of its registers for temporary
storage of a single item from the stream; this item is the current
candidate for majority element. The second register is a counter
initialized to 0. For each element of the stream, we ask the algorithm
to perform the following routine. If the counter reads 0, install the
current stream element as the new majority candidate (displacing any
other element that might already be in the register). Then, if the
current element matches the majority candidate, increment the counter;
otherwise, decrement the counter. At this point in the cycle, if the
part of the stream seen so far has a majority element, that element is
in the candidate register, and the counter holds a value greater than
0. What if there is no majority ele­ment? Without making a second pass through the data—which isn't possible in a stream environment—the
algorithm cannot always give an unambiguous answer in this
circumstance. It merely promises to correctly identify the majority
element if there is one.
It can also be extended to find the top N with more memory but this should solve it for the mode.
Ultimately if you have no a priori parametric knowledge of the distribution I think you have to store all the values.
That said unless you are dealing with some sort of pathological situation, the remedian (Rousseuw and Bassett 1990) may well be good enough for your purposes.
Very simply it involves calculating the median of batches of medians.
median and mode can't be calculated online using only constant space available. However, because median and mode are anyway more "descriptive" than "quantitative", you can estimate them e.g. by sampling the data set.
If the data is normal distributed in the long run, then you could just use your mean to estimate the median.
You can also estimate median using the following technique: establish a median estimation M[i] for every, say, 1,000,000 entries in the data stream so that M[0] is the median of the first one million entries, M[1] the median of the second one million entries etc. Then use the median of M[0]...M[k] as the median estimator. This of course saves space, and you can control how much you want to use space by "tuning" the parameter 1,000,000. This can be also generalized recursively.
I would tend to use buckets, which could be adaptive. The bucket size should be the accuracy you need. Then as each data point comes in you add one to the relevant bucket's count.
These should give you simple approximations to median and kurtosis, by counting each bucket as its value weighted by its count.
The one problem could be loss of resolution in floating point after billions of operations, i.e. adding one does not change the value any more! To get round this, if the maximum bucket size exceeds some limit you could take a large number off all the counts.
OK dude try these:
for c++:
double skew(double* v, unsigned long n){
double sigma = pow(svar(v, n), 0.5);
double mu = avg(v, n);
double* t;
t = new double[n];
for(unsigned long i = 0; i < n; ++i){
t[i] = pow((v[i] - mu)/sigma, 3);
}
double ret = avg(t, n);
delete [] t;
return ret;
}
double kurt(double* v, double n){
double sigma = pow(svar(v, n), 0.5);
double mu = avg(v, n);
double* t;
t = new double[n];
for(unsigned long i = 0; i < n; ++i){
t[i] = pow( ((v[i] - mu[i]) / sigma) , 4) - 3;
}
double ret = avg(t, n);
delete [] t;
return ret;
}
where you say you can already calculate sample variance (svar) and average (avg)
you point those to your functions for doin that.
Also, have a look at Pearson's approximation thing. on such a large dataset it would be pretty similar.
3 (mean − median) / standard deviation
you have median as max - min/2
for floats mode has no meaning. one would typically stick them in bins of a sginificant size (like 1/100 * (max - min)).
This problem was solved by Pebay et al:
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2008/086212.pdf
Median
Two recent percentile approximation algorithms and their python implementations can be found here:
t-Digests
https://arxiv.org/abs/1902.04023
https://github.com/CamDavidsonPilon/tdigest
DDSketch
https://arxiv.org/abs/1908.10693
https://github.com/DataDog/sketches-py
Both algorithms bucket data. As T-Digest uses smaller bins near the tails the
accuracy is better at the extremes (and weaker close to the median). DDSketch additionally provides relative error guarantees.
for j in range (1,M):
y=np.zeros(M) # build the vector y
y[0]=y0
#generate the white noise
eps=npr.randn(M-1)*np.sqrt(var)
#increment the y vector
for k in range(1,T):
y[k]=corr*y[k-1]+eps[k-1]
yy[j]=y
list.append(y)

Summarise unlimited sequence using constant storage

Assume we're frequently sampling a particular value and want to keep statistics on the samples. The simplest approach is to store every sample so we can calculate whatever stats we want, but this requires unbounded storage. Using a constant amount of storage, we can keep track of some stats like minimum and maximum values. What else can we track using only constant storage? I am thinking of percentiles, standard deviation, and any other useful statistics.
That's the theoretical question. In my actual situation, the samples are simply millisecond timings: profiling information for a long-running application. There will be millions of samples but not much more than a billion or so. So what stats can be kept for the samples using no more than, say, 10 variables?
Minimum, maximum, average, total count, variance are all easy and useful. That's 5 values.
Usually you'll store sum and not average, and when you need the average you can just divide the sum by the count.
So, in your loop
maxVal=max(x, maxVal);
minVal=min(x, minVal);
count+=1;
sum+=x;
secondorder+=x*x;
later, you may print any of these stats. Mean and standard deviation can be computed at any time and are:
mean=sum/count;
std=sqrt(secondorder/count - mean*mean);
Median and percentile estimation are more difficult, but possible. The usual trick is to make a set of histogram bins and fill the bins when a sample is found inside them.
You can then estimate median and such by looking at the distribution of those bin populations.
This is only an approximation to the distribution, but often enough. To find the exact median, you must store all samples.
Well, lots of them. Consider, eg, σ. Square root of the variance, which is computed from the average and the data point, repeatedly. At point Xi, you have an estimated variance for all the points up to this one; then add (x-μ)² to that for the next estimate. There's a nice section on that in wikipedia.
What you're looking for, in general, is called "on line methods for calculation".

Resources